
Supplementary Material

Debmalya Mandal
Columbia University

dm3557@columbia.edu

Ariel D. Procaccia
Carnegie Mellon University
arielpro@cs.cmu.edu

Nisarg Shah
University of Toronto

nisarg@cs.toronto.edu

David P. Woodruff
Carnegie Mellon University
dwoodruf@cs.cmu.edu

1 Upper Bounds

1.1 Deterministic Elicitation, Deterministic Aggregation

Theorem 1. For t ∈ [m] \ {1} and ` ∈ N, we have

C(PREFTHRESHOLDt,`) = log

[(
m

t

)
· (`+ 1)t

]
= Θ

(
t log

m(`+ 1)

t

)
,

dist(PREFTHRESHOLDt,`) = O
(
m1+2/`/t

)
.

For t = 1 and ` ∈ N, we have

C(PREFTHRESHOLD1,`) = log(m`), dist(PREFTHRESHOLDt,`) = O
(
m1+1/`

)
.

Proof. It is evident that the number of possible responses that a voter can provide under
PREFTHRESHOLDt,` is

(
m
t

)
· (` + 1)t if t > 1, and m` if t = 1. Taking the logarithm of this

gives us the desired communication complexity.

We now establish the distortion of PREFTHRESHOLDt,`. Let ~v = (v1, . . . , vn) be the underlying
valuations of voters. For alternative a ∈ A, recall that sw(a,~v) =

∑
i∈N vi(a), and

ŝw(a) =
∑
i∈N

v̂i(a) =
∑

i∈N :a∈St
i

v̂i(a) =
∑

i∈N :a∈St
i

Upi,a .

Let â ∈ arg maxa∈A ŝw(a) be the alternative chosen by the rule, and let a∗ ∈ arg maxa∈A sw(a,~v)
be an alternative maximizing social welfare.

We begin by finding an upper bound on sw(a∗, ~v) in terms of ŝw(â).

sw(a∗, ~v) =
∑
i∈N

vi(a
∗) =

∑
i∈N :a∗∈St

i

vi(a
∗) +

∑
i∈N :a∗ /∈St

i

vi(a
∗)

≤
∑

i∈N :a∗∈St
i

vi(a
∗) +

∑
i∈N :a∗ /∈St

i

(∑
a∈St

i
vi(a)

t

)

≤
∑

i∈N :a∗∈St
i

v̂i(a
∗) +

∑
a∈A\{a∗}

∑
i∈N :a∗ /∈St

i∧a∈St
i
v̂i(a)

t

≤ ŝw(a∗) +

∑
a∈A\{a∗} ŝw(a)

t
≤ ŝw(â) +

(m− 1) · ŝw(â)

t
=
m+ t− 1

t
· ŝw(â),

(1)
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where the third transition holds because for every i ∈ N with a∗ /∈ Sti and every a ∈ Sti , we have
vi(a

∗) ≤ vi(a); the fourth transition holds because for every i ∈ N and a ∈ Sti , vi(a) ≤ v̂i(a);
the fifth transition follows from the definition of ŝw; and the sixth transition holds because â is a
maximizer of ŝw.

We now establish the distortion for t > 1. The first step is to derive an upper bound on ŝw(â) in
terms of sw(â, ~v). Our bucketing implies that for all i ∈ N and a ∈ Sti , we have vi(a) ≤ v̂i(a) ≤
m2/`vi(a) + 1

m2 . Using this, we can derive the following.

ŝw(â) =
∑

i∈N :â∈St
i

v̂i(â) ≤
∑

i∈N :â∈St
i

(
m2/`vi(â) +

1

m2

)
≤ m2/`sw(â, ~v) +

n

m2
. (2)

Next, we derive a lower bound on ŝw(â), which helps establish a lower bound on sw(â, ~v). Note that
for each voter i ∈ N ,

∑
a∈St

i
vi(a) ≥ t/m. Hence,∑

a∈A
ŝw(a) =

∑
i∈N

∑
a∈St

i

v̂i(a) ≥
∑
i∈N

∑
a∈St

i

vi(a) ≥ n · t
m

.

Because â is a maximizer of ŝw, this yields ŝw(â) ≥ n · t/m2. Substituting this into Equation (2),
we get

n

m2
+ sw(â, ~v) ·m2/` ≥ ŝw(â) ≥ n · t

m2
⇒ sw(â, ~v) ≥ n · (t− 1)

m2
·m−2/` ≥ n

m2
·m−2/`. (3)

Applying Equations (1), (2), and (3) in this order, we have

sw(a∗, ~v)

sw(â, ~v)
≤ m+ t− 1

t
· ŝw(â)

sw(â, ~v)
≤ m+ t− 1

t
·
(
m2/` +

n

m2 · sw(â, ~v)

)
≤ m+ t− 1

t
·
(
m2/` +m2/`

)
∈ O(m1+2/`/t).

For t = 1, we have that for every i ∈ N and a ∈ Sti , vi(a) ≤ v̂i(a) ≤ m1/`vi(a). Hence, in
Equation (2), the additive factor of n/m2 disappears and the multiplicative factor of m2/` becomes
m1/`, yielding ŝw(â) ≤ sw(â, ~v) ·m1/`. Similarly, Equation (3) becomes sw(â, ~v) ≥ n

m2 ·m−1/`.
Following the same line of proof as for the case of t > 1, we obtain

sw(a∗, ~v)

sw(â, ~v)
≤ m · ŝw(â)

sw(â, ~v)
≤ m ·m1/`,

which is the desired bound on distortion.

1.2 Randomized Elicitation, Randomized Aggregation

Theorem 2. For every voting rule f and s ∈ [m], we have Cm(RANDSUBSET(f, s)) = Cs(f) +
logdlog(4m)e and distm(RANDSUBSET(f, s)) ≤ 4m

s · dists(f).

Proof. Let ~v = (v1, . . . , vn) denote the underlying valuations of voters. First, let us consider a fixed
choice of S ⊆ A with |S| = s. Due to our bucketing, we have that for every i ∈ N ,

vi(S)

2
− 1

4m
≤ Lpi ≤ vi(S). (4)

Recall that in the input to the aggregation rule of f , we have 4m · Lpi copies of the response ρi of
voter i. Hence, the social welfare function approximated by the aggregation rule of f is given by

∀a ∈ S, ŝw(a,~v) =
∑
i∈N

4m · Lpi ·
vi(a)

vi(S)
= 4m

∑
i∈N

vi(a) · Lpi
vi(S)

.
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Combining this with Equation (4), we have that for each a ∈ S,

ŝw(a,~v) ≥ 4m
∑
i∈N

vi(a) ·
(

1

2
− 1

4m · vi(S)

)
= 2m · sw(a,~v)−

∑
i∈N

vi(a)

vi(S)
≥ 2m · sw(a,~v)− n,

(5)
as well as

ŝw(a,~v) ≤ 4m
∑
i∈N

vi(a) · 1 = 4m · sw(a,~v). (6)

Let â denote the alternative chosen by our rule. Because the distortion of f for choosing an alternative
from S is dists(f), we have that E[ŝw(â, ~v)] ≥ maxa∈S ŝw(a,~v)/dists(f). Note that so far, we
have fixed S. The expectation on the left hand side is due to the fact that even for fixed S, â can be
randomized if f is randomized.

Next, we take expectation over the choice of S, and use the fact that the optimal alternative a∗ ∈
arg maxa∈A sw(a,~v) belongs to S with probability s/m. We obtain

E[ŝw(â, ~v)] ≥ E[maxa∈S ŝw(a,~v)]

dists(f)
≥

s
m · ŝw(a∗, ~v)

dists(f)
≥

s
m (2m · sw(a∗, ~v)− n)

dists(f)
, (7)

where the final transition follows from Equation (5). On the other hand, from Equation (6), we have

E[ŝw(â, ~v)] ≤ 4mE[sw(â, ~v)]. (8)

Combining Equations (7) and (8), we have that

distm(RANDSUBSET(f, s)) =
sw(a∗, ~v)

E[sw(â, ~v)]
≤ sw(a∗, ~v)

sw(a∗,~v)
2 − n

4m

· m
s
· dists(f) ≤ 4m

s
· dists(f),

where the final transition uses the fact that sw(a∗, ~v) ≥ (1/m) ·
∑
a∈A sw(a,~v) = n/m. This

establishes the desired distortion bound. Since each voter answers the query of f for s alternatives
and chooses one of dlog(4m)e buckets, we get Cm(RANDSUBSET(f, s)) = Cs(f) + logdlog(4m)e,
as desired.

2 Lower Bounds

2.1 Direct Lower Bounds for Deterministic Elicitation

We start by establishing a straightforward lemma. Recall that for a valuation v ∈ ∆m, supp(v)
denotes the support of v.
Lemma 1. Let f be a voting rule which uses deterministic elicitation and deterministic aggregation.
Let q∗ be the query used by f . If some compartment of q∗ contains two valuations v1 and v2 such
that supp(v1) ∩ supp(v2) = ∅, then the distortion of f is unbounded.

Proof. Suppose compartment P contains valuations v1 and v2 such that supp(v1) ∩ supp(v2) = ∅.
Let â be the alternative returned by f when all voters pick compartment P . Pick t ∈ {1, 2} such that
â /∈ supp(vt). Note that vt(â) = 0, but there exists a∗ ∈ supp(vt) such that vt(a∗) > 0.

Define voter valuations ~v = (v1, . . . , vn) such that vi = vt for each i ∈ N . This yields sw(â, ~v) = 0
and sw(a∗, ~v) > 0, which implies that f must have infinite distortion.

Theorem 3. Every voting rule that has deterministic elicitation, deterministic aggregation, and
communication complexity strictly less than logm has unbounded distortion.

Proof. We need the following definition. For a ∈ A, we say that the unit valuation corresponding
to a is the valuation va ∈ ∆m for which va(a) = 1. Let f be a voting rule that has deterministic
elicitation and deterministic aggregation, and let C(f) < logm. Hence, the query used by f must
partition ∆m into less than m compartments.

Because there are m unit valuations, by the pigeonhole principle there must exist distinct a, b ∈ A
such that va and vb belong to the same compartment. Because supp(va) ∩ supp(vb) = ∅, Lemma 1
implies that the distortion of f must be infinite.
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Theorem 4. Let f be a voting rule which uses deterministic elicitation and has C(f) ≤ logm. If
f uses deterministic aggregation, then dist(f) = Ω(m2). If f uses randomized aggregation, then
dist(f) = Ω(m).

Proof. Let f be a voting rule which has deterministic elicitation and C(f) ≤ logm. As argued
above, we can assume C(f) = logm without loss of generality. Hence, the query q∗ used by f
partitions ∆m into m compartments. Let P = (P1, . . . , Pm) denote the set of compartments. If f
has unbounded distortion, we are done. Suppose f has bounded distortion.

Due to Lemma 1, each of m unit vectors must belong to a different compartment. Since there are m
compartments, we identify each compartment by the unit valuation it contains. For a ∈ A, let P a
denote the compartment containing unit valuation va. Before we construct adversarial valuations, we
need to define low valuations and high valuations.

Low valuations: We say that a valuation v ∈ ∆m is a low valuation if |supp(v)| = m/5 and
v(a) = 5/m for every a ∈ supp(v). Let ∆m,low denote the set of all low valuations. Due to Lemma 1,
we have

v ∈ ∆m,low ∩ P a ⇒ a ∈ supp(v) ∧ v(a) =
5

m
. (9)

Let L = {P ∈ P : P ∩∆m,low 6= ∅} be the set of compartments containing at least one low valuation,
and AL = {a ∈ A : P a ∈ L} be the set of alternatives corresponding to these compartments.

We claim that |AL| = |L| ≥ 4m/5 + 1. Suppose for contradiction that |AL| ≤ 4m/5. Then,
|A \ AL| ≥ m/5. Hence, there exists a low valuation v ∈ ∆m,low such that supp(v) ⊆ A \ AL.
Let a ∈ A be the alternative for which v ∈ P a. Because P a contains a low valuation, a ∈ AL by
definition. Thus, the construction of v ensures v(a) = 0. We have v ∈ ∆m,low ∩ P a with v(a) = 0,
which contradicts Equation (9). Hence, |AL| ≥ 4m/5 + 1.

High valuations: We say that a valuation v ∈ ∆m is a high valuation if |supp(v)| = 2 and v(a) = 1/2
for each a ∈ supp(v). Let ∆m,high denote the set of high valuations. Note that |∆m,high| =

(
m
2

)
.

Similarly to the case of low valuations, we can apply Lemma 1, and obtain that

v ∈ ∆m,high ∩ P a ⇒ a ∈ supp(v) ∧ v(a) =
1

2
. (10)

For a ∈ A, let Ha = {P ∈ L : ∃v ∈ ∆m,high ∩ P s.t. a ∈ supp(v)}. In words, Ha is the set
of compartments from L which contain at least one high valuation v for which v(a) = 1/2. Let
Ahigh = {a ∈ A : |Ha| ≥ m/5}. We claim that |Ahigh| ≥ m/6.

Suppose this is not true. LetB = |A\Ahigh|. Then, |B| ≥ 5m/6. Consider a ∈ B. Each of them−1
high valuations which contain a in their support must belong to some compartments inHa ∪ (P \L).
Since |Ha| ≤ m/5− 1 for a ∈ B and |P \ L| ≤ m/5− 1, the m− 1 high valuations containing a
in their support are distributed across at most 2m/5− 2 compartments. However, due to Lemma 1, a
compartment other than P a can contain at most one high valuation with a in its support. Hence, P a
must contain at least m− 1− (2m/5− 3) = 3m/5 + 2 high valuations. Thus, we have established
that |B| ≥ 5m/6 and for each a ∈ B, P a contains at least 3m/5 + 2 high valuations. Thus, the
number of high valuations is at least (5m/6) · (3m/5 + 2) > m2/2 >

(
m
2

)
, which is a contradiction.

Thus, we have |Ahigh| ≥ m/6.

We are now ready to prove the desired result for both deterministic and randomized aggregation.

Voter responses: When responding to the query q∗, suppose each compartment P ∈ L is picked by a
set NP of n/|L| voters.

Deterministic aggregation: Let â denote the alternative picked by f . We claim that â ∈ AL. If
â /∈ AL, consider voter valuations ~v such that every voter i picking compartment P a ∈ L has
valuation vi = va. Since â /∈ AL, we have vi(â) = 0 for each i ∈ N , i.e., sw(â, ~v) = 0. Since
sw(a,~v) > 0 for some a ∈ A, f has infinite distortion, which is a contradiction. Thus, we must have
â ∈ AL.

Now, let us construct the voter valuations as follows. Pick a low valuation v̂ ∈ P â ∩∆m,low, which
exists because we have established â ∈ AL. Note that v̂(â) = 5/m. For each i ∈ NP â , let vi = v̂.
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Pick a∗ ∈ Ahigh \ {â}. Let P̄ be the compartment containing the high valuation under which both
â and a∗ have utility 1/2. For each P ∈ Ha∗ \ {P â, P̄}, and for each i ∈ NP , let vi be the high
valuation in P such that vi(a∗) = 1/2 and vi(â) = 0. For every other P a ∈ L and every i ∈ NPa ,
let vi = va.

Observe that under these valuations, sw(â, ~v) = Θ(n/m2), whereas, since |Ha∗ | ≥ m/5 and
|L| ≤ |P| = m, sw(a∗, ~v) = Θ(n). We conclude that dist(f) = Ω(m2).

Randomized aggregation: Note that f must select at least one alternative a∗ ∈ Ahigh with probability
at most 1/|Ahigh| ≤ 6/m. Construct voter valuations such that for every P ∈ Ha∗ and every i ∈ NP ,
vi is the high valuation under which vi(a∗) = 1/2. For every P a ∈ L \ Ha∗ , and for every i ∈ NPa ,
let vi = va. It holds that sw(a∗, ~v) = Θ(n) (as before), whereas sw(a,~v) = O(n/m) for every
a ∈ A \ {a∗}. Because f selects a∗ with probability at most 6/m, we have Eâ∼f(~v)[sw(â, ~v)] =
O(n/m), implying dist(f) = Ω(m), as required.

2.2 Lower Bound for Plurality Votes

In this section, we show that eliciting plurality votes (whereby each voter picks her most favorite
alternative) results in Ω(m) distortion, even with randomized aggregation. This is implied by
Theorem 4, which proves this for any elicitation that has at most logm communication complexity.
However, for the special case of plurality votes, we can provide a much simpler proof.
Theorem 5. Every voting rule which elicits plurality votes incurs Ω(m) distortion.

Proof. For simplicity, let the number of voters n be divisible by the number of alternatives m.
Consider an input profile in which the set of voters N is partitioned into equal-size sets {Na}a∈A
such that for each a ∈ A, a is the most favorite alternative of every voter in Na.

Take any voting rule f . It must return some alternative a∗ ∈ A with probability at most 1/m. Now,
construct adversarial valuations of voters ~v as follows.

• For all i ∈ Na∗ , vi(a∗) = 1 and vi(a) = 0 for all a ∈ A \ {a∗}.

• For all â ∈ A \ {a∗} and i ∈ Nâ, vi(â) = vi(a
∗) = 1/2 and vi(a) = 0 for all a ∈

A \ {a∗, â}.

Under these valuations, we have sw(a∗, ~v) ≥ n/2, while sw(a,~v) = (n/m) · (1/2) for every
a ∈ A \ {a∗}. Hence, the distortion of f is

dist(f) ≥ sw(a∗, ~v)
1
m sw(a∗, ~v) + m−1

m
n
2m

= Ω(m),

where the final transition holds when substituting sw(a∗, ~v) ≥ n/2.

3 Lower Bounds Through Multi-Party Communication Complexity

3.1 Lower Bound on the Communication Complexity of FDISJm,s,t

In this section, we prove a lower bound on the communication complexity of multi-party fixed-size
set-disjointness. Let us recall Theorem 6.
Theorem 6. For a sufficiently small constant δ > 0 and m ≥ (3/2)st, Rδ(FDISJm,s,t) = Ω(s).

Proof. Suppose there is a δ-error protocol Π for FDISJm,s,t. We use it to construct a 2δ-error
protocol Π′ for DISJm′,t′ , where m′ = st/2 and t′ = 2t.

Consider an instance (S′1, . . . , S
′
t′) of DISJm′,t′ . Due to the promise that the sets are either pairwise

disjoint or pairwise uniquely intersecting, we have that at most one of the m′ elements can appear in
multiple sets. Hence,

∑t′

i=1 |S′i| ≤ m′ − 1 + t′. Due to the pigeonhole principle, there must exist at
least t′/2 = t sets of size at most 2(m′ + t′ − 1)/t′. Note that

2(m′ + t′ − 1)

t′
=
st/2 + 2t− 1

t
=
s

2
+ 2− 1

t
≤ s.
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The final transition holds when s ≥ 4. When s < 4, the lower bound of Ω(s) is trivial.

Consider a set of t players {i1, . . . , it} such that |S′ik | ≤ s for each k ∈ [t]. Suppose that each such
player ik adds s− |S′ik | unique elements to S′ik and creates a set Sik with |Sik | = s. The number of
unique elements required is at most st. Hence, the total number of elements used in sets Si1 , . . . , Sit
is at most m′ + st = (3/2)st ≤ m. In other words, these sets can be created using the m-element
universe of FDISJm,s,t. Further, it is easy to check that sets Si1 , . . . , Sit are pairwise disjoint (resp.
pairwise uniquely intersecting) if and only if sets S′1, . . . , S

′
t′ are pairwise disjoint (resp. pairwise

uniquely intersecting). Thus, (Si1 , . . . , Sit) is a valid instance of FDISJm,s,t and has the same
solution as the instance (S′1, . . . , S

′
t′) of DISJm′,t′ .

Our goal is to construct a 2δ-error protocol Π′ for DISJm′,t′ that solves (S′1, . . . , S
′
t′) by effectively

running the given δ-error protocol Π for FDISJm,s,t on (S′i1 , . . . , S
′
it

). We could ask each player
i to report a single bit indicating whether |S′i| ≤ s, determine t players for which this holds, and
then run Π on them. However, this would add a t′-bit overhead. Instead, we would like to bound the
overhead in terms of the communication cost of Π, denoted |Π|, which could be significantly smaller.

This is achieved as follows. We first order the players according to a uniformly random permutation
σ. Then, we simulate Π. Every time Π wants to interact with a new player, we ask players that we
have not interacted with so far, in the order in which they appear in σ, whether their sets have size at
most s, until we find one such player. Then, we let Π interact with this player. Protocol Π′ terminates
naturally when protocol Π terminates (and returns the same answer), but terminates abruptly if, at
any point, it has interacted with more than 2|Π|/δ players (and returns an arbitrary answer).

Note that |Π| is also an upper bound with the number of players that Π needs to interact with. Let
X be the smallest index such that there are at least |Π| players having sets of size at most s among
the first X players in σ. Then, because at least half of the players have sets of size at most s, we
have E[X] ≤ 2 · |Π|. Due to Markov’s inequality, we have that Pr[X > 2|Π|/δ] ≤ δ. Hence, the
probability that Π′ terminates abruptly is at most δ. When it does not terminate abruptly, it returns
the wrong answer with probability at most δ (as Π is a δ-error protocol). Hence, due to the union
bound, we conclude that Π′ is a 2δ-error protocol for DISJm′,t′ .

Finally, we have that |Π′| ≤ 2|Π|/δ + |Π| = |Π|(1 + 2/δ). When δ is sufficiently small, Grone-
meier [1] showed that |Π′| ≥ R2δ(DISJm′,t′) = Ω(m′/t′) = Ω(s). Hence, we have that |Π| = Ω(s).
Since this holds for every δ-error protocol Π for FDISJm,s,t, we have Rδ(FDISJm,s,t) = Ω(s).

3.2 Lower Bounds on the Communication Complexity of Voting Rules

Theorem 7. For a voting rule f with elicitation rule Πf and dist(f) = d, the following hold.

• If Πf is deterministic, then C(f) ≥ Ω
(
m/d2

)
.

• If Πf is randomized, then C(f) ≥ Ω
(
m/d3

)
.

Proof. Let t = 2 · dist(f) and s = 2m/(3t). Note that for these parameters, we have
Rδ(FDISJm,s,t) = Ω(s) from Theorem 6.

Consider an input (S1, . . . , St) to FDISJm,s,t with a universe U of size m. Let us create an
instance of the voting problem with a set of n voters N and a set of m alternatives A. Each
alternative in A corresponds to a unique element of U . Partition the set of voters N into t equal-
size buckets {N1, . . . , Nt}. Here, bucket Ni corresponds to player i, and consists of n/t voters
that each have valuation vSi given by vSi(a) = 1/s for each a ∈ Si and vSi(a) = 0 for each
a /∈ Si. Let ~v denote the resulting profile of voter valuations. Note that under these valuations,
sw(a,~v) = n

ts

∑t
i=1 1[a ∈ Si], where 1 is the indicator variable. Due to the promise that an element

either belongs to at most one set or belongs to every set, we have sw(a,~v) ∈ {0, n/(ts), n/s}. We
say that a is a “good” alternative if sw(a,~v) = n/s and a “bad” alternative otherwise.

We define two processes that will help covert our voting rule f into a protocol for FDISJm,s,t.

Process E: In this process, we ask each player i to respond to the query posed by voting rule f
(possibly selected in a randomized manner) according to valuation vSi . We note that this requires a
total of t · C(f) bits of communication from the players.
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Process A: We take players’ responses from process E, create n/t copies of the response of each
player, and pass the resulting profile as input to the aggregation rule Γf to obtain the returned
alternative â (possibly selected in a randomized manner). We end the process by determining if â is a
good alternative or a bad alternative. This requires eliciting 2 extra bits of information: we can ask
any two players i and j whether their sets contain â, and due to the promise of FDISJm,s,t, we know
that â is good if and only if it belongs to both Si and Sj .

Knowing whether â is good or bad is useful for solving the given instance of FDISJm,s,t due to the
following reason.

1. If (S1, . . . , St) is a “NO input”, then we know that every alternative is a bad alternative.
Hence, sw(a,~v) ≤ (n/t) · (1/s) = n/(ts) for each a ∈ A. In particular, this implies
sw(â, ~v) ≤ n/(ts) with probability 1.

2. If (S1, . . . , St) is a “YES input”, then there exists a unique good alternative a∗ ∈ A
with sw(a∗, ~v) = n/s, and every other alternative a is a bad alternative with sw(a,~v) ≤
n/(ts). Because dist(f) = t/2, we have that E[sw(â, ~v)] ≥ n/s

t/2 = 2n
ts . This implies

that Pr[sw(â, ~v) = n/s] = Pr[â = a∗] ≥ 1/t because if Pr[â = a∗] < 1/t, then
E[sw(â, ~v)] < (1/t) · (n/s) + 1 · n/(ts) = 2n/(ts), which is a contradiction.

We are now ready to use f to construct a protocol for FDISJm,s,t, and use Theorem 6 to derive
a lower bound on C(f). We consider two cases depending on whether the elicitation rule Πf is
deterministic or randomized.

1. Deterministic elicitation: In this case, we run process E once and then run process A t ln(1/δ)
times. In a NO input, we always get a bad alternative. In a YES input, each run of process A
returns a good alternative with probability at least 1/t. Hence, the probability that we get a
good alternative at least once is at least 1−(1−1/t)t ln(1/δ) ≥ 1−δ. Hence, this is a δ-error
protocol for FDISJm,s,t which requires t · C(f) + t ln(1/δ) · 2 bits of total communication
from the players. Using Theorem 6, we have that t · (C(f) + 2 ln(1/δ)) = Ω(s). Using
s = 2m/(3t) and t = 2d, we have C(f) = Ω(m/d2).

2. Randomized elicitation: In this case, we run E once followed by running A once. And we
repeat this entire process t ln(1/δ) times. Note that we need to repeat process E because the
elicitation is also randomized. Like in the previous case, we always get a bad alternative in
a NO input, and get a good alternative with probability at least 1/t in each run in a YES
input. Hence, in a YES input, we get a good alternative in at least one run with probability
at least 1 − (1 − 1/t)t ln(1/δ) ≥ 1 − δ. This results in a δ-error protocol for FDISJm,s,t
which requires t ln(1/δ) · (t ·C(f) + 2) bits of total communication from the players. Using
Theorem 6, we have t ln(1/δ) · (t · C(f) + 2) = Ω(s). Using s = 2m/(3t) and t = 2d, we
have C(f) = Ω(m/d3).

These are the desired lower bounds on C(f).
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