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Abstract

Dynamic functional connectivity, as measured by the time-varying covariance
of neurological signals, is believed to play an important role in many aspects of
cognition. While many methods have been proposed, reliably establishing the
presence and characteristics of brain connectivity is challenging due to the high
dimensionality and noisiness of neuroimaging data. We present a latent factor Gaus-
sian process model which addresses these challenges by learning a parsimonious
representation of connectivity dynamics. The proposed model naturally allows
for inference and visualization of connectivity dynamics. As an illustration of the
scientific utility of the model, application to a data set of rat local field potential
activity recorded during a complex non-spatial memory task provides evidence of
stimuli differentiation.

1 Introduction

The celebrated discoveries of place cells, grid cells, and similar structures in the hippocampus have
produced a detailed, experimentally validated theory of the formation and processing of spatial
memories. However, the specific characteristics of non-spatial memories, e.g. memories of odors and
sounds, are still poorly understood. Recent results from human fMRI and EEG experiments suggest
that dynamic functional connectivity (DFC) is important for the encoding and retrieval of memories
[1, 2, 3, 4, 5, 6], yet DFC in local field potentials (LFP) in animal models has received relatively little
attention. We here propose a novel latent factor Gaussian process (LFGP) model for DFC estimation
and apply it to a data set of rat hippocampus LFP during a non-spatial memory task [7]. The model
produces strong statistical evidence for DFC and finds distinctive patterns of DFC associated with
different experimental stimuli.

Due to the high-dimensionality of time-varying covariance and the complex nature of cognitive
processes, effective analysis of DFC requires balancing model parsimony, flexibility, and robustness
to noise. DFC models fall into a common framework with three key elements: dimensionality
reduction, covariance estimation from time series, and identification of connectivity patterns [8].
Many neuroimaging studies use a combination of various methods, such as sliding window (SW)
estimation, principal component analysis (PCA), and the hidden Markov model (HMM) (see e.g.
[9, 10, 11]). In general, these methods are not fully probabilistic, which can make uncertainty
quantification and inference difficult in practice.
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Bayesian latent factor models provide a probabilistic approach to modeling dynamic covariance
that allows for simultaneous dimensionality reduction and covariance process estimation. Examples
include the latent factor stochastic volatility (LFSV) model [12] and the nonparametric covariance
model [13]. In the LFSV model, an autoregressive process is imposed on the latent factors and can be
overly restrictive. While the nonparametric model is considerably more flexible, the matrix process
for time-varying loadings adds substantial complexity.

Aiming to bridge the gap between these factor models, we propose the latent factor Gaussian process
(LFGP) model. In this approach, a latent factor structure is placed on the log-covariance process of a
non-stationary multivariate time series, rather than on the observed time series itself as in other factor
models. Since covariance matrices lie on the manifold of symmetric positive-definite (SPD) matrices,
we utilize the Log-Euclidean metric to allow unconstrained modeling of the vectorized upper triangle
of the covariance process. Dimension reduction and model parsimony is achieved by representing
each covariance element as a linear combination of Gaussian process latent factors [14].

In this work, we highlight three major advantages of the LFGP model for practical DFC analysis.
First, through the prior on the Gaussian process length scale, we are able to incorporate scientific
knowledge to target specific frequency ranges that are of scientific interest. Second, the model
posterior allows us to perform Bayesian inference for scientific hypotheses, for instance, whether the
LFP time series is non-stationary, and if characteristics of DFC differ across experimental conditions.
Third, the latent factors serve as a low-dimensional representation of the covariance process, which
facilitates visualization of complex phenomena of scientific interest, such as the role of DFC in
stimuli discrimination in the context of a non-spatial memory experiment.

2 Background

2.1 Sliding Window Covariance Estimation

Sliding window methods have been extensively researched for the estimation and analysis of DFC, par-
ticularly in human fMRI studies; applications of these methods have identified significant associations
of DFC with disease status, behavioral outcomes, and cognitive differences in humans. See [8] for a
recent detailed review of existing literature. For X(t) ∼ N (0,K(t)) a p-variate time series of length
T with covariance processK(t), the sliding window covariance estimate K̂SW (t) with window length
L can be written as the convolution K̂SW (t) = (h ∗XX ′)(t) =

∑T
s=1 h(s)X(t− s)X(t− s)′ ds,

for the rectangular kernel h(t) = 1[0,L−1](t)/L, where 1 is the indicator function. Studies
of the performance of sliding window estimates recommend the use of a tapered kernel to de-
crease the impact of outlying measurements and to improve the spectral properties of the es-
timate [15, 16, 17]. In the present work we employ a Gaussian taper with scale τ defined as

hτ (t) = 1
ζ exp

{
− 1

2

(
t−L/2
τL/2

)2}
1[0,L−1](t), where ζ is a normalizing constant. The corresponding

tapered SW estimate is K̂τ (t) = (hτ ∗XX ′)(t).

2.2 Log-Euclidean Metric

Direct modeling of the covariance process from the SW estimates is complicated by the positive
definite constraint of the covariance matrices. To ensure the model estimates are positive definite, it
is necessary to employ post-hoc adjustments, or to build the constraints into the model, typically by
utilizing the Cholesky or spectral decompositions. The LFGP model instead uses the Log-Euclidean
framework of symmetric positive definite (SPD) matrices to naturally ensure positive-definiteness of
the estimated covariance process while also simplifying the model formulation and implementation.

Denote the space of p × p SPD matrices as Pp. For X1, X2 ∈ Pp, the Log-Euclidean distance is
defined by dLE(X1, X2) = ‖Log(X1)− Log(X2)‖, where Log is the matrix logarithm, and ‖ · ‖ is
the Frobenius norm. The metric space (Pp, dLE) is a Riemannian manifold that is isomorphic to Rq
with the usual Euclidean norm, for q = (p+ 1)p/2.

Methods for modeling covariances in regression contexts via the matrix logarithm were first introduced
in [18]. The Log-Euclidean framework for analysis of SPD matrices in neuroimaging contexts was
first proposed in [19], with further applications in neuroimaging having been developed in recent
years [20]. The present work is a novel application of the Log-Euclidean framework for DFC analysis.
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2.3 Bayesian Latent Factor Models

For xij , i = 1, . . . , n, j = 1, . . . , p, the simple Bayesian latent factor model is xi = fiΛ + εi, with

fi
iid∼ N (0, Ir), εi

iid∼ N (0,Σ), and Λ an r × p matrix of factor loadings [21]. Σ is commonly
assumed to be a diagonal matrix, implying the latent factors capture all the correlation structure of the
p features of x. The latent factor model shares some similarities with principal component analysis,
but includes a stochastic error term, which leads to a different interpretation of the resulting factors
[9, 10].

Variants of the linear factor model have been developed for modeling non-stationary multivariate
time series [22, 23]. In general, these models represent the p-variate observed time series as a linear
combination of r latent factors fj(t), j = 1, . . . , r, with r × q loading matrix Λ and errors ε(t):
X(t) = f(t)Λ + ε(t). From this general modeling framework, numerous methods for capturing
the non-stationary dynamics in the underlying time series have been developed, such as latent
factor stochastic volatility (LFSV) [12], dynamic conditional correlation [24], and the nonparametric
covariance model [13].

2.4 Gaussian Processes

A Gaussian process (GP) is a continuous stochastic process for which any finite collection of
points are jointly Gaussian with some specified mean and covariance. A GP can be understood
as a distribution on functions belonging to a particular reproducing kernel Hilbert space (RKHS)
determined by the covariance operator of the process [25]. Typically, a zero mean GP is assumed
(i.e. the functional data has been centered by subtracting a consistent estimator of the mean), so that
the GP is parameterized entirely by the kernel function κ that defines the pairwise covariance. Let
f ∼ GP(0, k(·, ·)). Then for any x and x′ we have(

f(x)
f(x′)

)
∼ N

(
0,

[
κ(x, x) κ(x, x′)
κ(x, x′) κ(x′, x′)

])
. (1)

Further details are given in [26].

3 Latent Factor Gaussian Process Model

3.1 Formulation

We consider estimation of dynamic covariance from a sample of n independent time series with p
variables and T time points. Denote the ith observed p-variate time series by Xi(t), i = 1, · · · , n.
We assume that each Xi(t) follows an independent distribution D with zero mean and stochastic
covariance process Ki(t). To model the covariance process, we first compute the Gaussian tapered
sliding window covariance estimates for each Xi(t), with fixed window size L and taper τ to obtain
K̂τ,i. We then apply the matrix logarithm to obtain the q = p(p+ 1)/2 length vector Yi(t) specified
by K̂τ,i = Log(~u(Yi)), where ~u maps a matrix to its vectorized upper triangle. We refer to Yi(t) as
the “log-covariance" at time t.

The resulting Yi(t) can be modeled as an unconstrained q-variate time series. The LFGP model
represents Yi(t) as a linear combination of r latent factors Fi(t) through an r × q loading matrix B
and independent Gaussian errors εi. The loading matrix B is held constant across observations and
time. Here Fi(t) is modeled as a product of independent Gaussian processes. Placing priors p1, p2, p3
on the loading matrix B, Gaussian noise variance σ2, and Gaussian process hyper-parameter θ,
respectively, gives a fully probabilistic latent factor model on the covariance process:

Xi(t) ∼ D(0,Ki(t)) where Ki(t) = exp (~u(Yi(t))) (2)

Yi(t) = Fi(t) ·B + εi where εi
iid∼ N (0, Iσ2) (3)

Fi(t) ∼ GP(0, κ(t; θ)) (4)

B ∼ p1, σ2 ∼ p2, θ ∼ p3. (5)

The LFGP model employs a latent distribution of curves GP(0, κ(t; θ)) to capture temporal depen-
dence of the covariance process, thus inducing a Gaussian process on the log-covariance Y (t). This
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conveniently allows multiple observations to be modeled as different realizations of the same induced
GP as done in [27]. The model posteriors are conditioned on different observations despite sharing
the same kernel. For better identifiability, the GP variance scale is fixed so that the loading matrix
can be unconstrained.

3.2 Properties

Theorem 1. The log-covariance process induced by the LFGP model is weakly stationary when the
GP kernel κ(s, t) depends only on |s− t|.

Proof. The covariance of the log-covariance process Y (t) depends only on the static loading
matrix B = (βkj)1≤k≤r;1≤j≤q and the factor covariance kernels. Explicitly, for factor kernels

κ(s, t; θk), k = 1, . . . , r, and assuming εi(t)
iid∼ N (0,Σ), with Σ = (σ2

jj′)j,j′≤q constant across
observations and time, the covariance of elements of Y (t) is

Cov(Yij(s), Yij′(t)) = Cov

(
r∑

k=1

Fik(s)βkj + εij′(t),

r∑
k=1

Fik(t)βkj′ + εij′(t)

)
(6)

=

r∑
k=1

βkjβkj′κ(s, t; θk) + σ2
jj′ , (7)

which is weakly stationary when κ(s, t) depends only on |s− t|.

Posterior contraction. To consider posterior contraction of the LFGP model, we make the following
assumptions. The true log-covariance process w = ~u(log(K(t)) is in the support of the product GP
W ∼ F (t)B, for F (t) and B defined above, with known number of latent factors r. The GP kernel
κ is α-Hölder continuous with α ≥ 1/2. Y (t) : [0, 1]→ Rq is a smooth function in `∞q ([0, 1]) with
respect to the Euclidean norm, and the prior p2 for σ2 has support on a given interval [a, b] ⊂ (0,∞).
Under the above assumptions, bounds on the posterior contraction rates then follow from previous
results on posterior contraction of Gaussian process regression for α-smooth functions given in
[28, 29]. Specifically,

E0Πn((w, σ) : ‖w − w0‖n + |σ − σ0| > Mεn|Y1, · · · , Yn)→ 0

for sufficiently largeM and with posterior contraction rate εn = n−α/(2α+q) logδ(n) for some δ > 0,
where E0(Πn(·|Y1, · · · , Yn)) is the expectation of the posterior under the model priors.

To illustrate posterior contraction in the LFGP model, we simulate data for five signals with various
sample sizes (n) and numbers of observation time points (t), with a covariance process generated by
two latent factors. To measure model bias, we consider the mean squared error of posterior median
of the reconstructed log-covariance series. To measure posterior uncertainty, the posterior sample
variance is used. As shown in Table 1, both sample size n and number of observation time points t
contribute to posterior contraction.

Table 1: Mean squared error of posterior median (posterior sample variance) ×10−2

n = 1 n = 10 n = 20 n = 50

t = 25 12.212 (20.225) 7.845 (8.743) 7.089 (7.714) 5.869 (7.358)
t = 50 6.911 (7.588) 4.123 (5.836) 3.273 (3.989) 3.237 (3.709)
t = 100 3.728 (5.218) 1.682 (2.582) 1.672 (2.659) 1.672 (1.907)

Large prior support. The prior distribution of the log-covariance process Y (t) is a linear combi-
nation of r independent GPs each with mean 0 and kernel κ(s, t; θk), k = 1, · · · , r. That is, each
log-covariance element will have prior Yj(t) =

∑r
k=1 βjkFk(t) ∼ GP(0,

∑
β2
jkκ(s, t; θk)). Con-

sidering B fixed, the resulting prior for Fi(t)B has support equal to the closure of the reproducing
kernel Hilbert space (RKHS) with kernel BTK(t, ·)B [26], where K is the covariance tensor formed
by stacking κk = κ(s, t; θk), k = 1, · · · , r [25]. Accounting for the prior p1 of B, a function
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W ∈ `∞q [0, 1] will have nonzero prior probability Π0(W ) > 0 if W is in the closure of the RKHS
with kernel ATK(t, ·)A for some A in the support of p1.

3.3 Factor Selection via the Horseshoe Prior

Similar to other factor models, the number of latent factors in the LFGP model has a crucial effect on
model performance, and must be selected somehow. For Bayesian factor analysis, there is extensive
literature on factor selection methods, such as Bayes factors, reversible jump sampling [30], and
shrinkage priors [31]. While we can compare different models in terms of goodness-of-fit, we cannot
compare their latent factors in a meaningful way due to identifiability issues. Therefore, we instead
iteratively increase the number of factors and fit the new factors on the residuals resulting from the
previous fit. In order to avoid overfitting with too many factors, we place a horseshoe prior on the
loadings of the new factors, so that the loadings shrink to zero if the new factor is unnecessary.

Figure 1: Violin plots of loading posteriors show that the loadings for the fourth factor (indices 30 to
39) shrink to zero with the horseshoe prior (left). Compared to the posteriors of the first three factors
(dashed gray), the posterior of the extraneous factor (solid red) is diffused around zero as a result of
zero loadings (right).

Introduced by [32], the horseshoe prior in the regression setting is given by

β|λ, τ ∼ N(0, λ2ρ2) (8)

λ ∼ Cauchy+(0, 1) (9)

and can be considered as a scale-mixture of Gaussian distributions. A small global scale ρ encourages
shrinkage, while the heavy tailed Cauchy distribution allows the loadings to escape from zero. The
example shown in Figure 1 illustrates the shrinkage effect of the horseshoe prior when iteratively
fitting an LFGP model with four factors to simulated data generated from three latent factors. For
sampling from the loading posterior distribution, we use the No-U-Turn Sampler [33] as implemented
in PyStan [34].

3.4 Scalable Computation

The LFGP model can be fit via Gibbs sampling, as commonly done for Bayesian latent variable
models. In every iteration, we first sample F |B, σ2, θ, Y from the conditional p(F |Y ) as F, Y are
jointly multivariate Gaussian where the covariance can be written in terms of B, σ2, θ. However,
it is worth noting that this multivariate Gaussian has a large covariance matrix, which could be
computationally expensive to invert. Given F , the parameters B, σ2 and θ become conditionally
independent. Using conjugate priors for Bayesian linear regression, the posterior p(B, σ2|F, Y ) is
directly available. For the GP parameter posterior p(θ|F ), either Metropolis random walk or slice
sampling [35] can be used within each Gibbs step because the parameter space is low dimensional.

For efficient GP posterior sampling, it is essential to exploit the structure of the covariance matrix.
For each independent latent GP factor Fj , there are n independent sets of observations at t time points.
Therefore, the GP covariance matrix Σj has dimensions nT × nT . To reduce the computational
burden, we notice that the covariance Σj can be decomposed using a Kronecker product Σj =
In ⊗ Ktime(t), where Ktime is the T × T temporal covariance. The cost to invert Σj using this
decomposition is O(T 3), which is a substantial reduction compared to the original cost O((nT )3).
For many choices of kernel, such as the squared-exponential or Matérn kernel,Ktime(t) has a Toeplitz
structure and can be approximated through interpolation [36], further reducing the computational
cost.
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(a) (b) (c) (d)

Figure 2: The full covariance matrix ΣY is composed of building blocks of smaller matrices. (a)
GP covariance matrix at evenly-spaced time points, (b) covariance matrix of factor Fj for n sets of
observations, (c) contribution to the covariance of Y from factor Fj , and (d) full covariance matrix
ΣY .

Combining the latent GP factors F (dimensions n×T × r) and loading matrix B (dimensions r× q)
induces a GP on Y . The dimensionality of Y is n× T × q so the full (nTq)× (nTq) covariance
matrix ΣY is prohibitive to invert. As every column of Y is a weighted sum of the GP factors,
the covariance matrix ΣY can be written as a sum of Kronecker products

∑r
j=1Aj ⊗ Σj + Iσ2,

where Σj is the covariance matrix of the jth latent GP factor and Aj is a q × q matrix based on the
factor loadings. We can regress residuals of Y on each column of F iteratively to sample from the
conditional distribution p(F |Y ) so that the residual covariance is only Aj ⊗ Σj + I . The inversion
can be done in a computationally efficient way with the following matrix identity

(C ⊗D + I)−1 = (P ⊗Q)T (I + Λ1 ⊗ Λ2)−1(P ⊗Q) (10)

where C = PΛ1P
T and D = QΛ2Q

T are the spectral decompositions. In the identity, obtaining
P,Q,Λ1,Λ2 costs O(q3) and O((nT )3), which is a substantial reduction from the cost of direct
inversion, O((nTq)3); calculating (I + Λ1 ⊗Λ2)−1 is straightforward since Λ1 and Λ2 are diagonal.

4 Experiments

4.1 Model Comparisons on Simulated Data

We here consider three benchmark models: sliding window with principal component analysis (SW-
PCA), hidden Markov model, and LFSV model. SW-PCA and HMM are commonly used in DFC
studies but have severe limitations. The sliding window covariance estimates are consistent but noisy,
and PCA does not take the estimation error into account. HMM is a probabilistic model and can be
used in conjunction with a time series model, but it is not well-suited to capturing smoothly varying
dynamics in brain connectivity.

Figure 3: With the jagged dynamics of discrete states, the LFGP model fails to capture the “jumps"
but approximates the overall trend (left). When the underlying dynamics are smooth, the LFGP
model can accurately recover the shape up to some scaling constant (right).
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To compare the performance of different models, we simulate time series data Xt ∼ N(0,K(t))
with time-varying covariance K(t). The covariance K(t) follows deterministic dynamics that are
given by ~u(log(K(t))) = U(t) ·A. We consider three different scenarios of dynamics U(t): square
waves, piece-wise linear functions, and cubic splines. Note that both square waves and piece-wise
linear functions give rise to dynamics that are not well-represented by the LFGP model when the
squared-exponential kernel is used. For each scenario, we randomly generate 100 time series data
sets and fit all the models. The evaluation metric is reconstruction loss of the covariance as measured
by the Log-Euclidean distance. The simulation results in Table 2 show that the proposed LFGP model
has the lowest reconstruction loss among the methods considered. Each time series has 10 variables

Table 2: Median reconstruction loss (standard deviation) across 100 data sets

SW-PCA HMM LFSV LFGP
Square save 0.693 (0.499) 1.003 (1.299) 4.458 (2.416) 0.380 (0.420)
Piece-wise 0.034 (0.093) 0.130 (0.124) 0.660 (0.890) 0.027 (0.088)

Smooth spline 0.037 (0.016) 0.137 (0.113) 0.532 (0.400) 0.028 (0.123)

with 1000 observations and the latent dynamics are 4-dimensional as illustrated in Figure 3. For the
SW-PCA model, the sliding window size is 50 and the number of principal components is 4. For
the HMM, the number of hidden states is increased gradually until the model does not converge,
following the implementation outlined in [37]. For the LFSV model, the R package factorstochvol is
used with default settings. All simulations are run on a 2.7 GHz Intel Core i5 Macbook Pro laptop
with 8GB memory.

4.2 Application to Rat Hippocampus Local Field Potentials

To investigate the neural mechanisms underlying the temporal organization of memories, [7] recorded
neural activity in the CA1 region of the hippocampus as rats performed a sequence memory task.
The task involves the presentation of repeated sequences of 5 stimuli (odors A, B, C, D, and E) at
a single port and requires animals to correctly identify each stimulus as being presented either “in
sequence” (e.g., ABC...) or “out of sequence” (e.g., ABD...) to receive a reward. Here the model is
applied to local field potential (LFP) activity recorded from the rat hippocampus, but the key reason
for choosing this data set is that it provides a rare opportunity to subsequently apply the model to
other forms of neural activity data collected using the same task (including spiking activity from
different regions in rats [38] and whole-brain fMRI in humans).

LFP signals were recorded in the hippocampi of five rats performing the task. The local field
potentials are measured by surgically implanted tetrodes and the exact tetrode locations vary across
rats. Therefore, it may not make sense to compare LFP channels of different rats. This issue actually
motivates the latent factor approach because we want to eventually visualize and compare the latent
trajectories for all the rats. For the present analysis, we have focused on the data from a particular rat
exhibiting the best memory task performance. To boost the signal-to-noise ratio, six LFP channels
that recorded a majority of the attached neurons were chosen. Only trials of odors B and C were
considered, to avoid potential confounders with odor A being the first odor presented, and due to
substantially fewer trials for odors D and E.

Figure 4: Time series of 6 LFP channels for a single trial sampled at 1000Hz include all frequency
components (left). Posterior draws of latent factors for the covariance process appear to be smoothly
varying near the theta frequency range (right).

During each trial, the LFP signals are sampled at 1000Hz for one second after odor release. We focus
on 41 trials of odor B and 37 trials of odor C. Figure 4 shows the time series of these six LFP channels
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for a single trial. We treat all 78 trials as different realizations of the same stochastic process without
distinguishing the stimuli explicitly in the model. In order to facilitate interpretation of the latent
space representation, we fit two latent factors which explain about 40% of the variance in the data.
The prior for GP length scale is a Gamma distribution concentrated around 100ms on the time scale
to encourage learning frequency dynamics close to the theta range (4-12 Hz). Notably, oscillations
in this frequency range have been associated with memory function but have not previously been
shown to differentiate among the type of stimuli used here, thus providing an opportunity to test
the sensitivity of the model. For the loadings and variances, we use the Gaussian-Inverse Gamma
conjugate priors. 20,000 MCMC draws are taken with the first 5000 draws discarded as burn-in.

Figure 5: Posterior draws of median GP factors visualized as trajectories in latent space can be
separated based on the odor, with maximum separation around 250ms (left). The latent trajectories
are much more intertwined when the model is fitted to data of the same odor. (right)

For each odor, we can calculate the posterior median latent factors across trials and visualize them
as a trajectory in the latent space. Figure 5 shows that the two trajectories start in an almost
overlapping area, with separation occurring around 250ms. This is corroborated by the experimental
data indicating that animals begin to identify the odor 200-250ms after onset. We also observe that
the two trajectories converge toward the end of the odor presentation. This is also consistent with the
experimental data showing that, by then, animals have correctly identified the odors and are simply
waiting to perform the response (thereby resulting in similar neural states). In order to quantify odor
separation, we can evaluate the difference between the posterior distributions of odor median latent
trajectories by using classifiers on the MCMC draws. We also fit the model to two random subsets of
the 58 trials of odor A and train the same classifiers. Table 3) shows the classification results and the
posteriors are more separated for different odors.

Table 3: Odor separation as measured by Latent space classification accuracy (standard deviation)

Different odors Same odor
Logistic regression 69.97 (0.78) 63.10 (0.91)

k-NN 87.12 (0.33) 78.41 (0.65)
SVM 74.53 (0.67) 64.75 (1.21)

As a comparison, a hidden Markov model was fit to the LFP data from the same six selected tetrodes.
Figure 6 compares the estimated covariance with different models. Eight states were selected with an
elbow method using the AIC of the HMM; we note that the minimum AIC is not achieved for less
than 50 states, suggesting that the dynamics of the LFP covariance may be better described with a
continuous model. Moreover, the proportion of time spent in each state for odor B and C trials given
in Table 4 fails to capture odor separation in the LFP data.

Collectively, these results provide compelling evidence that this model can use LFP activity to
differentiate the representation of different stimuli, as well as capture their expected dynamics within
trials. Stimuli differentiation has frequently been accomplished by analyzing spiking activity, but
not LFP activity alone. This approach, which may be applicable to other types of neural data
including spiking activity and fMRI activity, may significantly advance our ability to understand how
information is represented among brain regions.
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Table 4: State proportions for odors B and C as estimated by HMM

Odor State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8
B 0.123 0.089 0.146 0.153 0.109 0.159 0.160 0.061
C 0.133 0.092 0.144 0.147 0.106 0.164 0.152 0.062

Figure 6: Median covariance matrices over time for odor B trials estimated with sliding window (top),
HMM (middle), and LFGP model (bottom) reveal similar patterns in dynamic connectivity in the six
LFP channels.

5 Discussion

The proposed LFGP model is a novel application of latent factor models for directly modeling the
dynamic covariance in multivariate non-stationary time series. As a fully probabilistic approach, the
model naturally allows for inference regarding the presence of DFC, and for detecting differences in
connectivity across experimental conditions. Moreover, the latent factor structure enables visualiza-
tion and scientific interpretation of connectivity patterns. Currently, the main limitation of the model
is scalability with respect to the number of observed signals. Thus, in practical applications it may
be necessary to select a relevant subset of the observed signals, or apply some form of clustering of
similar signals. Future work will consider simultaneously reducing the dimension of the signals and
modeling the covariance process to improve the scalability and performance of the LFGP model.

The Gaussian process regression framework is a new avenue for analysis of DFC in many neu-
roimaging modalities. Within this framework, it is possible to incorporate other covariates in the
kernel function to naturally account for between-subject variability. In our setting, multiple trials are
treated as independent observations or repeated measurements from the same rat, while in human
neuroimaging studies, there are often single observations from many subjects. Pooling information
across subjects in this setting could yield more efficient inference and lead to more generalizable
results.
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