
Stochastic Frank-Wolfe for
Composite Convex Minimization

Francesco Locatello? Alp Yurtsever† Olivier Fercoq‡ Volkan Cevher†

francesco.locatello@inf.ethz.ch
{alp.yurtsever,volkan.cevher}@epfl.ch
olivier.fercoq@telecom-paristech.fr

?Department of Computer Science, ETH Zurich, Switzerland
†LIONS, Ecole Polytechnique Fédérale de Lausanne, Switzerland

‡LTCI, Télécom Paris, Université Paris-Saclay, France

Abstract

A broad class of convex optimization problems can be formulated as a semidefinite
program (SDP), minimization of a convex function over the positive-semidefinite
cone subject to some affine constraints. The majority of classical SDP solvers
are designed for the deterministic setting where problem data is readily available.
In this setting, generalized conditional gradient methods (aka Frank-Wolfe-type
methods) provide scalable solutions by leveraging the so-called linear minimiza-
tion oracle instead of the projection onto the semidefinite cone. Most problems
in machine learning and modern engineering applications, however, contain some
degree of stochasticity. In this work, we propose the first conditional-gradient-
type method for solving stochastic optimization problems under affine constraints.
Our method guaranteesO(k−1/3) convergence rate in expectation on the objective
residual and O(k−5/12) on the feasibility gap.

1 Introduction

We focus on the following stochastic convex composite optimization template, which covers finite
sum and online learning problems:

minimize
x∈X

EΩf(x, ω) + g(Ax) := F (x). (P)

In this optimization template, we consider the following setting:
. X ⊂ Rn is a convex and compact set,
. ω is a realization of the random variable Ω drawn from the distribution P ,
. EΩf(· , ω) : X → R is a smooth (see Section 1.2 for the definition) convex function,
. A ∈ Rn → Rd is a given linear map,
. g : Rd → R ∪ {+∞} is a convex function (possibly non-smooth).

We consider two distinct specific cases for g:
(i) g is a Lipschitz-continuous function, for which the proximal-operator is easy to compute:

proxg(y) = arg min
z∈Rd

g(z) +
1

2
‖z − y‖2 (1)

(ii) g is the indicator function of a convex set K ⊂ Rd:

g(z) =

{
0 if z ∈ K,
+∞ otherwise.

(2)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

The former covers the regularized optimization problems. This type of regularization is common
in machine learning applications to promote a desired structure to the solution. The latter handles
affine constraints of the formAx ∈ K. We can also attack the combination of both: the minimization
of a regularized loss-function subject to some affine constraints.

In this paper, we propose a conditional-gradient-type method (aka Frank-Wolfe-type) for (P). In
summary, our main contributions are as follows:

. We propose the first CGM variant for solving (P). By CGM variant, we mean that our method
avoids projection onto X and uses the lmo of X instead. The majority of the known methods for
(P) require projections onto X .

. We prove O(k−1/3) convergence rate on objective residual when g is Lipschitz-continuous.

. We prove O(k−1/3) convergence rate on objective residual, and O(k−5/12) on feasibility gap
when g is an indicator function. Surprisingly, affine constraints that make the lmo challenging for
existing CGM variants can be easily incorporated in this framework by using smoothing.

. We provide empirical evidence that validates our theoretical findings. Our results highlight the
benefits of our framework against the projection-based algorithms.

1.1 Motivation: Stochastic Semidefinite Programming

Consider the following stochastic semidefinite programming template, minimization of a convex
function over the positive-semidefinite cone subject to some affine constraints:

minimize
X∈Sn+, tr(X)≤β

EΩf(X,ω) subject to AX ∈ K. (3)

Here, Sn+ denotes the positive-semidefinite cone. We are interested in solving (3) rather than the
classical SDP since it does not require access to the whole data at one time. This creates a new
vein of SDP applications in machine learning. Examples span online variants of clustering [33],
streaming PCA [4], kernel learning [24], community detection [1], optimal power-flow [29], etc.

Example: Clustering. Consider the SDP formulation of the k-means clustering problem [33]:

minimize
X∈Sn+, tr(X)=k

〈
D, X

〉
subject to X1n = 1n, X ≥ 0. (4)

Here, 1n denotes the vector of ones, X ≥ 0 enforces entrywise non-negativity, and D is the Eu-
clidean distance matrix. Classical SDP solvers assume that we can access to the whole data matrix
D at each time instance. By considering (3), we can solve this problem using only a subset of entries
of D at each iteration. Remark that a subset of entries of D can be computed form a subset of the
datapoints, since D is the Euclidean distance matrix.

We can attack (P), and (3) as a special case, by using operator splitting methods, assuming that
we can efficiently project a point onto X (see [2] and the references therein). However, projection
onto semidefinite cone might require a full eigendecomposition, which imposes a computational
bottleneck (with its cubic cost) even for medium scaled problems with a few thousand dimensions.

When affine constraints are absent from the formulation (3), we can use stochastic CGM variants
from the literature. The main workhorse of these methods is the so-called linear minimization oracle:

S = arg min
Y

{〈
∇f(X,ω), Y

〉
: Y ∈ Sn+, tr(Y) ≤ β

}
(lmo)

We can compute S if we can find an eigenvector that corresponds to the smallest eigenvalue of
∇f(X,ω). We can compute these eigenvectors efficiently by using shifted power methods or the
randomized subspace iterations [12]. When we also consider affine constraints in our problem tem-
plate, however, lmo becomes an SDP instance in the canonical form. In this setting, neither projec-
tion nor lmo is easy to compute. To our knowledge, no existent CGM variant is effective for solving
(3) (and (P)). We specifically bridge this gap.

2

1.2 Notation and Preliminaries

We denote the expectation with respect to the random variable Ω by EΩ, and the expectation wrt the
sources of randomness in the optimization simply by E. Furthermore we denote f? := EΩf(x?, ω)
where x? is the solution of (P). Throughout the paper, y? represents the solution of the dual problem
of (P). We assume that strong duality holds. Slater’s condition is a common sufficient condition for
strong duality that implies existence of a solution of the dual problem with finite norm.

Solution. We denote a solution to (P) and the optimal value by x? and F ? respectively:

F ? = F (x?) ≤ F (x), ∀x ∈ X . (5)

We say x?ε ∈ X is an ε-suboptimal solution (or simply an ε-solution) if and only if

F (x?ε)− F ? ≤ ε. (6)

Stochastic first-order oracle (sfo). For the stochastic function EΩf(x, ω), suppose that we have
access to a stochastic first-order oracle that returns a pair (f(x, ω),∇f(x, ω)) given x, where ω is
an iid sample from distribution P .

Lipschitz continuity & Smoothness. A function g : Rd → R is L-Lipschitz continuous if

|g(z1)− g(z2)| ≤ L‖z1 − z2‖, ∀z1, z2 ∈ Rd. (7)

A differentiable function f is said to be L-smooth if the gradient ∇f is L-Lipschitz continuous.

2 Stochastic Homotopy CGM

Algorithm 1 SHCGM

Input: x1 ∈ X , β0 > 0, d0 = 0
for k = 1, 2, . . . , do
ηk = 9/(k + 8)

βk = β0/(k + 8)
1
2

ρk = 4/(k + 7)
2
3

dk = (1− ρk)dk−1 + ρk∇xf(xk, ωk)
vk = dk+β−1

k A>
(
Axk−proxβkg(Axk)

)
sk = arg minx∈X

〈
vk, x

〉
xk+1 = xk + ηk(sk − xk)

end for

Most stochastic CGM variants require mini-
batch size to increase, in order to reduce the
variance of the gradient estimator. However,
Mokhtari et al., [31] have recently shown that
the following (biased) estimator (that can be
implemented with a single sample) can be in-
corporated with the CGM analysis:

dk = (1− ρk)dk−1 + ρk∇xf(xk, ωk) (8)

The resulting method guaranteesO(1/k
1
3) con-

vergence rate for convex smooth minimization,
but it does not apply to our composite problem
template (P).

On the other hand, we introduced a CGM variant for composite problems (also covers affine con-
straints) in the deterministic setting in our prior work [41]. Our framework combines Nesterov
smoothing [32] (and the quadratic penalty for affine constraints) with the CGM analysis. Unfortu-
nately, this method does not work for stochastic problems.

In this paper, we propose the Stochastic Homotopy Conditional Gradient Method (SHCGM) for
solving (P). The proposed method combines the stochastic CGM of [31] with our (deterministic)
CGM for composite problems [41] in a non-trivial way.

Remark that the following formulation uniformly covers the Nesterov smoothing (with the Euclidean
prox-function 1

2‖ · ‖
2) and the quadratic penalty (but the analyses for these two cases differ):

gβ(z) = max
y∈Rd

〈
z, y

〉
− g∗(y)− β

2
‖y‖2, where g∗(x) = max

v∈Rd

〈
x, v

〉
− g(v). (9)

We call gβ as the smooth approximation of g, parametrized by the penalty (or smoothing) parameter
β > 0. It is easy to show that gβ is 1/β-smooth. Remark that the gradient of gβ can be computed
by the following formula:

∇xgβ(Ax) = A>proxβ−1g∗(β
−1Ax) = β−1A>

(
Ax− proxβg(Ax)

)
, (10)

where the second equality follows from the Moreau decomposition.

3

The main idea is to replace the non-smooth component g by the smooth approximation gβ in (P).
Clearly the solutions for (P) with g(Ax) and gβ(Ax) do not coincide for any value of β. However,
gβ → g as β → 0. Hence, we adopt a homotopy technique: We decrease β at a controlled rate as
we progress in the optimization procedure, so that the decision variable converges to a solution of
the original problem.

SHCGM is characterized by the following iterative steps:
. Decrease the step-size, smoothing and gradient averaging parameters ηk, βk and ρk.
. Call the stochastic first-order oracle and compute the gradient estimator dk in (8).
. Compute the gradient estimator vk for the smooth approximation of the composite objective,

Fβk(x) = EΩf(x, ω) + gβk(Ax) =⇒ vk = dk +∇xgβk(Ax). (11)

. Compute the lmo with respect to vk.

. Perform a CGM step to find the next iterate.

The roles of ρk and βk are coupled. The former controls the variance of the gradient estimator,
and the latter decides how fast we reduce the smoothing parameter to approach to the original prob-
lem. A carefully tuned interaction between these two parameters allows us to prove the following
convergence rates.

Assumption (Bounded variance). We assume the following bounded variance condition holds:

E
[
‖∇xf(x, ω)−∇xEΩf(x, ω)‖2

]
≤ σ2 < +∞. (12)

Theorem 1 (Lipschitz-continuous regularizer). Assume that g : Rd → R is Lg-Lipschitz contin-
uous. Then, the sequence xk generated by Algorithm 1 satisfies the following convergence bound:

EF (xk+1)− F ? ≤ 9
1
3

C

(k + 8)
1
3

+
β0L

2
g

2
√
k + 8

, (13)

where C := 81
2 D

2
X (Lf + β0‖A‖2) + 36σDX + 27

√
3LfD

2
X .

Proof sketch. The proof follows the following steps:
(i) Relate the stochastic gradient to the full gradient (Lemma 7).
(ii) Show convergence of the gradient estimator to the full gradient (Lemma 8).
(iii) Show O(1/k

1
3) convergence rate on the smooth gap EFβk(xk+1)− F ? (Theorem 9).

(iv) Translate this bound to the actual sub-optimality EF (xk+1)−F ? by using the envelope property
for Nesterov smoothing, see Equation (2.7) in [32]. �

Convergence rate guarantees for stochastic CGM with Lipschitz continuous g (also based on Nes-
terov smoothing) are already known in the literature, see [16, 22, 23] for examples. Our rate is not
faster than the ones in [22, 23], but we obtain O(1

ε3) sample complexity in the statistical setting as
opposed to O(1

ε4).

In contrast with the existing stochastic CGM variants, our algorithm can also handle affine con-
straints. Remark that the indicator functions are not Lipschitz continuous, hence the Nesterov
smoothing technique does not work for affine constraints.

Assumption (Strong duality). For problems with affine constraints, we further assume that the
strong duality holds. Slater’s condition is a common sufficient condition for strong duality. By
Slater’s condition, we mean

relint(X ×K) ∩
{

(x, r) ∈ Rn × Rd : Ax = r
}
6= ∅. (14)

Recall that the strong duality ensures the existence of a finite dual solution.
Theorem 2 (Affine constraints). Suppose that g : Rd → R is the indicator function of a simple
convex setK. Assuming that the strong duality holds, the sequence xk generated by SHCGM satisfies

EEΩf(xk+1, ω)− f? ≥ −‖y?‖ Edist(Axk+1,K)

EEΩf(xk+1, ω)− f? ≤ 9
1
3

C

(k + 8)
1
3

Edist(Axk+1,K) ≤ 2β0‖y?‖√
k + 8

+
2

√
2 · 9 1

3Cβ0

(k + 8)
5
12

(15)

4

Proof sketch. We re-use the ingredients of the proof of Theorem 1, except that at step (iv) we
translate the bound on the smooth gap (penalized objective) to the actual convergence measures
(objective residual and feasibility gap) by using the Lagrange saddle point formulations and the
strong duality. See Corollaries 1 and 2. �

Remark (Comparison to baseline). SHCGM combines ideas from [31] and [41]. Surprisingly,
. O(1/k

1
3) rate in objective residual matches the rate in [31] for smooth minimization.

.O(1/k
5
12) rate in feasibility gap is only an order of k

1
12 worse than the deterministic variant in [41].

Remark (Inexact oracles). We assume to use the exact solutions of lmo in SHCGM in Theorems 1
and 2. In many applications, however, it is much easier to find an approximate solution of lmo. For
instance, this is the case for the SDP problems in Section 1.1. To this end, we extend our results for
inexact lmo calls with additive and multiplicative error in the supplements.

Remark (Splitting). An important use-case of affine constraints in (P) is splitting (see Section 5.6
in [41]). Suppose that X can be written as the intersection of two (or more) simpler (in terms of
computational cost of lmo or projection) setsA∩B. By using the standard product space technique,
we can reformulate this problem in the extended space (x, y) ∈ A× B with the constraint x = y:

minimize
(x,y)∈A×B

EΩf(x, ω) subject to x = y. (16)

This allows us to decompose the difficult optimization domain X into simpler pieces. SHCGM
requires lmo ofA and lmo B separately. Alternatively, we can also use the projection onto one of the
component sets (say B) by reformulating the problem in domainA with an affine constraint x ∈ B:

minimize
x∈A

EΩf(x, ω) subject to x ∈ B. (17)

An important example is the completely positive cone (intersection of the positive-semidefinite cone
and the first orthant). Remark that the Clustering SDP example in Section 1.1 is also defined on this
cone. While the lmo of this intersection can only be evaluated in O(n3) computetion by using the
Hungarian method, we can compute the lmo for the semidefinite cone and the projection onto the
first orthant much more efficiently.

3 Related Works

CGM dates back to the 1956 paper of Frank and Wolfe [8]. It did not acquire much interest in
machine learning until the last decade because of its slower convergence rate in comparison with the
(projected) accelerated gradient methods. However, there has been a resurgence of interest in CGM
and its variants, following the seminal papers of Hazan [14] and Jaggi [18]. They demonstrate that
CGM might offer superior computational complexity than state-of-the-art methods in many large-
scale optimization problems (that arise in machine learning) despite its slower convergence rate,
thanks to its lower per-iteration cost.

The original method by Frank and Wolfe [8] was proposed for smooth convex minimization on
polytopes. The analysis is extended for smooth convex minimization on simplex by Clarkson [3],
spactrahedron by Hazan [14], and finally for arbitrary compact convex sets by Jaggi [18]. All these
methods are restricted for smooth problems.

Lan [21] proposed a variant for non-smooth minimization based on the Nesterov smoothing tech-
nique. Lan and Zhou [23] also introduced the conditional gradient sliding method and extended it
for the non-smooth minimization in a similar way. These methods, however, are not suitable for
solving (P) because we let g to be an indicator function which is not smoothing friendly.

In a prior work [41], we introduced homotopy CGM (HCGM) for composite problems (also with
affine constraints). HCGM combines the Nesterov smoothing and quadratic penalty techniques
under the CGM framework. It has O(1/ε2) iteration complexity. In a follow-up work [40], we
extended this method from quadratic penalty to an augmented Lagrangian formulation for empirical
benefits. Gidel et al., [10] also proposed an augmented Lagrangian CGM but the analysis and
guarantees differ. We refer to the references in [40, 41] for other variants in this direction.

So far, we have focused on deterministic variants of CGM. The literature on stochastic variants are
much younger. We can trace it back to the Hazan and Kale’s projection-free methods for online

5

learning [16]. When g is a non-smooth but Lipschitz continuous function, their method returns an
ε-solution in O(1/ε4) iterations.

The standard extension of CGM to the stochastic setting gets O(1/ε) iteration complexity for
smooth minimization, but with an increasing minibatch size. Overall, this method requiresO(1/ε3)
sample complexity, see [17] for the details. More recently, Mokhtari et al., [31] proposed a new
variant with O(1/ε3) convergence rate, but the proposed method can work with a single sample at
each iteration. Hazan and Luo [17] and Yurtsever et al., [42] incorporated various variance for fur-
ther improvements. Goldfarb et al., [11] introduced two stochastic CGM variants, with away-steps
and pairwise-steps. These methods enjoy linear convergence rate (however, the batchsize increases
exponentially) but for strongly convex objectives and only in polytope domains. None of these
stochastic CGM variants work for non-smooth (or composite) problems.

Non-smooth conditional gradient sliding by Lan and Zhou [23] also have extensions to the stochastic
setting. There is also a lazy variant with further improvements by Lan et al., [22]. Note however,
similar to their deterministic variants, these methods are based on the Nesterov smoothing and are
not suitable for problems with affine constraints.

Garber and Kaplan [9] considers problem (P). They also propose a variance reduced algorithm, but
this method indeed solves the smooth relaxation of (P) (see Definition 1 Section 4.1). Contrary to
SHCGM, this method might not asymptotically converge to a solution of the original problem.

Lu and Freund [28] also studied a similar problem template. However, their method incorporates
the non-smooth term into the linear minimization oracle. This is restrictive in practice because the
non-smooth term can increase the cost of linear minimization. In particular, this is the case when g
is an indicator function, such as in SDP problems. This is orthogonal to our scenario in which the
affine constraints are processed by smoothing, not directly through lmo.

In recent years, CGM has also been extended for non-convex problems. These extensions are beyond
the scope of this paper. We refer to Yu et al., [39] and Julien-Lacoste [19] for the non-convex
extensions in the deterministic setting, and to Reddi et al., [34], Yurtsever et al., [42], and Shen et
al. [37] in the stochastic setting.

To the best of our knowledge, SHCGM is the first CGM-type algorithm for solving (P) with cheap
linear minimization oracles. Another popular approach for solving large-scale instances of (P) is
the operator splitting. See [2] and the references therein for stochastic operator splitting methods.
Unfortunately, these methods still require projection onto X at each iteration. This projection is
arguably more expensive than the linear minimization. For instance, for solving (3), the projection
has cubic cost (with respect to the problem dimension n) while the linear minimization can be
efficiently solved using subspace iterations, as depicted in Table 1.

Algorithm Iteration complexity Sample complexity Solves (3) Per-iteration cost (for (3))

[41] O(1/ε2) N Yes Θ(N∇/δ)
[9] O(1/ε2) O(1/ε4) No Θ(N∇/δ)
[17] O(1/ε) O(1/ε3) No Θ(N∇/δ)
[28] O(1/ε) O(1/ε2) No SDP
[15] O(1/ε) N No Θ(N∇/δ)
[2]∗ − − Yes Θ(n3)

SHCGM O(1/ε3) O(1/ε3) Yes Θ(N∇/δ)

Table 1: Existing algorithms to tackle (3). N is the size of the dataset. n is the dimension of each
datapoint. N∇ is the number of non-zeros of the gradient. δ is the accuracy of the approximate lmo.
The per-iteration cost of [28] is the cost of solving a SDP in the canonical form.
∗[2] has O(1/ε2) iteration and sample complexity when the objective function is strongly convex. This is not
the case in our model problem, and [2] only has an asymptotic convergence guarantee.

6

4 Numerical Evidence

This section presents the empirical performance of the proposed method for the stochastic k-
means clustering, covariance matrix estimation, and matrix completion problems. We performed
the experiments in MATLAB R2018a using a computing system of 4× Intel Xeon CPU E5-2630
v3@2.40GHz and 16 GB RAM. We include the code to reproduce the results in the supplements1.

4.1 Stochastic k-means Clustering

We consider the SDP formulation (4) of the k-means clustering problem. The same problem is
used in numerical experiments by Mixon et al. [30], and we design our experiment based on their
problem setup2 with a sample of 1000 datapoints from the MNIST data3. See [30] for details on the
preprocessing.

We solve this problem with SHCGM and compare it against HCGM [41] as the baseline. HCGM
is a deterministic algorithm hence it uses the full gradient. For SHCGM, we compute a gradient
estimator by randomly sampling 100 datapoints at each iteration. Remark that this corresponds to
observing approximately 1 percent of the entries of D.

We use β0 = 1 for HCGM and β0 = 10 for SHCGM. We set these values by tuning both methods
by trying β0 = 0.01, 0.1, ..., 1000. We display the results in Figure 1 where we denote a full pass
over the entries of D as an epoch. Figure 1 demonstrates that SHCGM performs similar to HCGM
although it uses less data.

Figure 1: Comparison of SHCGM with HCGM for k-means clustering SDP in Section 4.1.

4.2 Online Covariance Matrix Estimation

Covariance matrix estimation is an important problem in multivariate statistics with applications in
many fields including gene microarrays, social network, finance, climate analysis [35, 36, 7, 6], etc.
In the online setting, we suppose that the data is received as a stream of datapoints in time.

The deterministic approach is to first collect some data, and then to train an empirical risk minimiza-
tion model using the data collected. This has obvious limitations, since it may not be clear a priori
how much data is enough to precisely estimate the covariance matrix. Furthermore, data can be too
large to store or work with as a batch. To this end, we consider an online learning setting. In this
case, we use each datapoint as it arrives and then discard it.

1Code also available at: https://github.com/alpyurtsever/SHCGM
2D.G. Mixon, S. Villar, R.Ward. — Available at https://github.com/solevillar/kmeans_sdp
3Y. LeCun and C. Cortes. — Available at http://yann.lecun.com/exdb/mnist/

7

https://github.com/alpyurtsever/SHCGM
https://github.com/solevillar/kmeans_sdp
http://yann.lecun.com/exdb/mnist/

Figure 2: SHCGM and HCGM on Online covariance matrix estimation from streaming data.

Let us consider the following sparse covariance matrix estimation template (this template also covers
other problems such as graph denoising and link prediction [35]) :

minimize
X∈Sn+, tr(X)≤β1

EΩ‖X − ωω>‖2F subject to ‖X‖1 ≤ β2. (18)

where ‖X‖1 denotes the `1 norm (sum of absolute values of the entries).

Our test setup is as follows: We first create a block diagonal covariance matrix Σ ∈ Rn×n using 10
blocks of the form φφ>, where entries of φ are drawn uniformly random from [−1, 1]. This gives
us a sparse matrix Σ of rank 10. Then, as for datapoints, we stream observations of Σ in the form
ωi ∼ N (0,Σ). We fix the problem dimension n = 1000.

We compare SHCGM with the deterministic method, HCGM. We use β0 = 1 for both methods.
Both methods require the lmo for the positive-semidefinite cone with trace constraint, and the pro-
jection oracle for the `1 norm constraint at each iteration.

We study two different setups: In Figure 2, we use SHCGM in the online setting. We sample a new
datapoint at each iteration. HCGM, on the other hand, does not work in the online setting. Hence,
we use the same sample of datapoints for all iterations. We consider 4 different cases with different
sample sizes for HCGM, with 10, 50, 100 and 200 datapoints. Although this approach converges
fast up to some accuracy, the objective value gets saturated at some estimation accuracy. Naturally,
HCGM can achieve higher accuracy as the sample size increases.

We can also read the empirical convergence rates of SHCGM from Figure 2 as approximately
O(k−1/2) for the objective residual and O(k−1) for the feasibility gap, significantly better than
the theoretical guarantees .

Figure 3: Comparison of SHCGM with HCGM batchsize 200 for
online covariance matrix estimation.

If we can store larger samples, we
can also consider minibatches for the
stochastic methods. Figure 3 com-
pares the deterministic approach with
200 datapoints with the stochastic ap-
proach with minibatch size of 200.
In other words, while the determin-
istic method uses the same 200 data-
points for all iterations, we use a new
draw of 200 datapoints at each itera-
tion with SHCGM.

4.3 Stochastic Matrix Completion

We consider the problem of matrix completion with the following mathematical formulation:

minimize
‖X‖∗≤β1

∑
(i,j)∈Ω

(Xi,j − Yi,j)2 subject to 1 ≤ X ≤ 5, (19)

where, Ω is the set of observed ratings (samples of entries from the true matrix Y that we try
to recover), and ‖X‖∗ denotes the nuclear-norm (sum of singular values). The affine constraint
1 ≤ X ≤ 5 imposes a hard threshold on the estimated ratings (in other words, the entries of X).

8

train RMSE

SHCGM 0.5574±0.0498
SFW 1.8360±0.3266

test RMSE

SHCGM 1.1446±0.0087
SFW 2.0416±0.2739

Figure 4: Training Error, Feasibility gap and Test Error for MovieLens 100k. Table shows the mean values
and standard deviation of train and test RMSE over 5 different train/test splits at the end of 104 iterations.

We first compare SHCGM with the Stochastic Frank-Wolfe (SFW) from [31]. We consider a test
setup with the MovieLens100k dataset4 [13]. This dataset contains ∼100’000 integer valued ratings
between 1 and 5, assigned by 1682 users to 943 movies. The aim of this experiment is to emphasize
the flexibility of SHCGM: Recall that SFW does not directly apply to (19) as it cannot handle the
affine constraint 1 ≤ X ≤ 5. Therefore, we apply SFW to a relaxation of (19) that omits this
constraint. Then, we solve (19) with SHCGM and compare the results.

We use the default ub.train and ub.test partitions provided with the original data. We set the
model parameter for the nuclear norm constraint β1 = 7000, and the initial smoothing parameter
β0 = 10. At each iteration, we compute a gradient estimator from 1000 iid samples. We perform the
same test independently for 10 times to compute the average performance and confidence intervals.
In Figure 4, we report the training and test errors (root mean squared error) as well as the feasibility
gap. The solid lines display the average performance, and the shaded areas show ± one standard
deviation. Note that SHCGM performs uniformly better than SFW, both in terms of the training and
test errors. The Table shows the values achieved at the end of 10′000 iterations.

Finally, we compare SHCGM with the stochastic three-composite convex minimization method
(S3CCM) from [43]. S3CCM is a projection-based method that applies to (19). In this experiment,
we aim to demonstrate the advantages of the projection-free methods for problems in large-scale.

We consider a test setup with the MovieLens1m dataset4 with ∼1 million ratings from ∼6000 users
on ∼4000 movies. We partition the data into training and test samples with a 80/20 train/test split.
We use 10′000 iid samples at each iteration to compute a gradient estimator. We set the model
parameter β1 = 20′000. We use β0 = 10 for SHCGM, and we set the step-size parameter γ = 1
for S3CCM. We implement the lmo efficiently using the power method. We refer to the code in the
supplements for details on the implementation.

Figure 5: SHCGM vs S3CCM with MovieLens-1M.

Figure 5 reports the outcomes of this experi-
ment. SHCGM clearly outperforms S3CCM
in this test. We run both methods for 2
hours. Within this time limit, SHCGM can
perform 27′860 iterations while S3CCM can
gets only up to 435 because of the high com-
putational cost of the projection.

5 Conclusions

We introduced a scalable stochastic CGM-type method for solving convex optimization problems
with affine constraints and demonstrated empirical superiority of our approach in various numerical
experiments. In particular, we consider the case of stochastic optimization of SDPs for which we
give the first projection-free algorithm. In general, we showed that our algorithm provably converges
to an optimal solution of (P) with O(k−1/3) and O(k−5/12) rates in the objective residual and
feasibility gap respectively, with a sample complexity in the statistical setting of O(k−1/3). The
possibility of a faster rate with the same (or even better) sample complexity remains an open question
as well as an adaptive approach with O(k−1/2) rate when fed with exact gradients.

4F.M. Harper, J.A. Konstan. — Available at https://grouplens.org/datasets/movielens/

9

https://grouplens.org/datasets/movielens/

Acknowledgements

Francesco Locatello has received funding from the Max Planck ETH Center for Learning Systems,
by an ETH Core Grant (to Gunnar Rätsch) and by a Google Ph.D. Fellowship. Volkan Cevher and
Alp Yurtsever have received funding from the Swiss National Science Foundation (SNSF) under
grant number 200021 178865/1, and the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement no 725594 - time-data).

References

[1] E. Abbe. Community detection and stochastic block models: Recent developments. Journal
of Machine Learning Research, 18:1–86, 2018.

[2] V. Cevher, B. C. Vu, and A. Yurtsever. Stochastic forward Douglas-Rachford splitting method
for monotone inclusions. In P. Giselsson and A. Rantzer, editors, Large–Scale and Distributed
Optimization, chapter 7, pages 149–179. Springer International Publishing, 2018.

[3] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4), 2010.

[4] A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for
sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

[5] C. Dünner, S. Forte, M. Takác, and M. Jaggi. Primal–dual rates and certificates. In Proc. 33rd
International Conference on Machine Learning, 2016.

[6] J. Fan, F. Han, and H. Liu. Challenges of big data analysis. National science review, 1(2):293–
314, 2014.

[7] J. Fan, Y. Liao, and H. Liu. An overview of the estimation of large covariance and precision
matrices. The Econometrics Journal, 19(1):C1–C32, 2016.

[8] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3:95–110, 1956.

[9] D. Garber and A. Kaplan. Fast stochastic algorithms for low-rank and nonsmooth matrix
problems. arXiv:1809.10477, 2018.

[10] G. Gidel, F. Pedregosa, and S. Lacoste-Julien. Frank-Wolfe splitting via augmented Lagrangian
method. In Proc. 21st International Conference on Artificial Intelligence and Statistics, 2018.

[11] D. Goldfarb, G. Iyengar, and C. Zhou. Linear convergence of stochastic Frank Wolfe variants.
In Proc. 20th International Conference on Artificial Intelligence and Statistics, 2017.

[12] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–
288, 2011.

[13] F. M. Harper and J. A. Konstan. The MovieLens datasets: History and context. ACM Transac-
tions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.

[14] E. Hazan. Sparse approximate solutions to semidefinite programs. In Proc. 8th Latin American
Conf. Theoretical Informatics, pages 306–316, 2008.

[15] E. Hazan. Sparse approximate solutions to semidefinite programs. In Latin American sympo-
sium on theoretical informatics, pages 306–316. Springer, 2008.

[16] E. Hazan and S. Kale. Projection–free online learning. In Proc. 29th International Conference
on Machine Learning, 2012.

[17] E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. In Proc.
33rd International Conference on Machine Learning, 2016.

[18] M. Jaggi. Revisiting Frank–Wolfe: Projection–free sparse convex optimization. In Proc. 30th
International Conference on Machine Learning, 2013.

[19] S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives.
arXiv:1607.00345, 2016.

[20] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe op-
timization for structural SVMs. In Proc. 30th International Conference on Machine Learning,
2013.

10

[21] G. Lan. The complexity of large–scale convex programming under a linear optimization oracle.
arXiv:1309.5550v2, 2014.

[22] G. Lan, S. Pokutta, Y. Zhou, and D. Zink. Conditional accelerated lazy stochastic gradient
descent. arXiv:1703.05840, 2017.

[23] G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM J. Optim.,
26(2):1379–1409, 2016.

[24] G. R. G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. I. Jordan. Learning the
kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27–72, 2004.

[25] F. Locatello, R. Khanna, M. Tschannen, and M. Jaggi. A unified optimization view on gener-
alized matching pursuit and Frank-Wolfe. In Proc. 20th International Conference on Artificial
Intelligence and Statistics, 2017.

[26] F. Locatello, A. Raj, S. P. Karimireddy, G. Rätsch, B. Schölkopf, S. U. Stich, and M. Jaggi. On
matching pursuit and coordinate descent. In Proc. 35th International Conference on Machine
Learning, 2018.

[27] F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained
optimization with convergence guarantees. In Advances in Neural Information Processing
Systems 30, 2017.

[28] H. Lu and R. M. Freund. Generalized stochastic frank-wolfe algorithm with stochastic” sub-
stitute”gradient for structured convex optimization. arXiv:1807.07680, 2018.

[29] J. L. R. Madani and S. Sojoudi. Convex relaxation for optimal power flow problem: mesh
networks. IEEE Trans. on Power Syst., 30(1):199–211, 2015.

[30] D. G. Mixon, S. Villar, and R. Ward. Clustering subgaussian mixtures by semidefinite pro-
gramming. Information and Inference: A Journal of the IMA, 6(4):389–415, 2017.

[31] A. Mokhtari, H. Hassani, and A. Karbasi. Stochastic conditional gradient methods: From
convex minimization to submodular maximization. arXiv:1804.09554, 2018.

[32] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103:127–152,
2005.

[33] J. Peng and Y. Wei. Approximating K–means–type clustering via semidefinite programming.
SIAM J. Optim., 18(1):186–205, 2007.

[34] S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic frank-wolfe methods for nonconvex
optimization. arXiv:1607.08254, 2016.

[35] E. Richard, P.-A. Savalle, and N. Vayatis. Estimation of simultaneously sparse and low rank
matrices. In Proc. 29th International Conference on Machine Learning, 2012.

[36] J. Schäfer and K. Strimmer. A shrinkage approach to large-scale covariance matrix estimation
and implications for functional genomics. Statistical applications in genetics and molecular
biology, 4(1), 2005.

[37] Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free stochastic
non-convex minimization. In Proc. 22nd International Conference on Artificial Intelligence
and Statistics, 2019.

[38] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-dual optimization framework for
nonsmooth composite convex minimization. SIAM J. Optim., 28(1):96–134, 2018.

[39] Y. Yu, X. Zhang, and D. Schuurmans. Generalized conditional gradient for sparse estimation.
arXiv:1410.4828v1, 2014.

[40] A. Yurtsever, O. Fercoq, and V. Cevher. A conditional-gradient-based augmented Lagrangian
framework. In Proc. 36th International Conference on Machine Learning, 2019.

[41] A. Yurtsever, O. Fercoq, F. Locatello, and V. Cevher. A conditional gradient framework for
composite convex minimization with applications to semidefinite programming. In Proc. 35th
International Conference on Machine Learning, 2018.

[42] A. Yurtsever, S. Sra, and V. Cevher. Conditional gradient methods via stochastic path-
integrated differential estimator. In Proc. 36th International Conference on Machine Learning,
2019.

[43] A. Yurtsever, B. C. Vu, and V. Cevher. Stochastic three-composite convex minimization. In
Advances in Neural Information Processing Systems 29, 2016.

11

A A Review of Smoothing

The technique described in [32] consists in a the following smooth approximation of a Lipschitz
continuous function g as:

gβ(z) = max
y∈Rd

〈
z, y

〉
− g∗(y)− β

2
‖y‖2,

where β > 0 controls the tightness of smoothing and g∗ denotes the Fenchel conjugate of g

g∗(x) = sup
v∈dom g

〈
x, v

〉
− g(v).

It is easy to see that gβ is convex and 1
β smooth. Optimizing gβ(z) guarantees progress on g(z)

when g(z) is Lg-Lipschitz continuous as:

gβ(z) ≤ g(z) ≤ gβ(z) +
β

2
Lg

The challenge of smoothing an affine constraint consists in the fact that the indicator function is not
Lipschitz. Therefore, g∗ does not have bounded support so adding a strongly convex term to it does
not guarantee that g and its smoothed version are uniformly close.

In order to smooth constraints which are not Nesterov smoothable, [41] consider an Homotopy
transformation on β which can be intuitively understood as follows. If β decreases during the
optimization, optimizing gβ(z) will progressively become similar to optimizing g(z). Therefore,
the iterate will converge to the feasibility set.

Using the Homotopy smoothing, the objective of Equation (P) is replaced by the following approx-
imation:

min
x∈X

Fβ(x) := EΩf(x, ω) + gβ(Ax). (20)

Let y∗βk be:

y∗βk(Ax) = arg max
y∈Rd

〈
Ax, y

〉
− g∗(y)− βk

2
‖y‖2 = proxβ−1

k g∗(β
−1
k Ax) =

1

βk

(
Ax− proxβkg(Ax)

)
,

with the last equality due to the Moreau decomposition.

Note that often proxβkg(Ax) is easy to compute (for example when g(z) is an affine constraint) but
the projection on X is not. For example, for the AX = b constraint of (3), y∗βk(AX) = AX − b.
Therefore, [41] suggests to follow the same iterative procedure of the CGM which queries a Linear
Minimization Oracle (lmo) at each iteration:

lmo(∇Fβk) := arg min
x∈X

〈
x, ∇Fβk(xk)

〉
(21)

Moreover, we can compute the gradient of Fβk as long as proxβkg(Ax) is easy to compute. Indeed:

∇Fβk(x) = ∇xEΩf(x, ω) +A>y∗βk(Ax). (22)

The solution of the lmo is then combined to the current iterate with a convex combination, so that
the next iterate is guaranteed to be a member of X . In the deterministic setting this technique comes
with a reduction in the rate from O(1/k) to O(1/

√
k).

B Inexact Oracles

In practice, finding an exact solution can be expensive, especially when it involves a matrix factor-
ization. Therefore, algorithms which are robust against inexact oracles are crucial in practice.

Even when the penalty is not present, we are not aware of approximate oracle rates in the framework
of [31]. Due to the accumulation of the stochastic gradient, the deterministic definitions of inexact
oracle are applicable to the stochastic case with the non-smooth penalty [20, 25, 27].

12

B.1 Additive Error

At iteration k, for the given vk, we assume that the approximate lmo returns an element s̃k ∈ X
such that: 〈

vk, s̃k
〉
≤
〈
vk, sk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
(23)

for some δ > 0, where sk is the exact lmo solution.

We now present the convergence guarantees of Algorithm 1 when the exact lmo is replaced with the
approximate oracle with additive error.

Corollary 3. Assume that g is Lg-Lipschitz continuous. Then, the sequence xk generated by Algo-
rithm 1 for k ≥ 1 with approximate lmo (23) satisfies:

EF (xk+1)− F ? ≤ 9
1
3

Cδ

(k + 8)
1
3

+
β0L

2
g

2
√
k + 8

,

where Cδ := 81
2 D

2
X (Lf + β0‖A‖2)(1 + δ) + 9DX

√
Q. We can optimize β0 from this bound if δ is

known.

Corollary 4. Assume that g is the indicator function of a simple convex set K. Then, the sequence
xk generated by Algorithm 1 with the lmo (23) satisfies:

EEΩf(xk+1, ω)− f? ≥ −‖y?‖ Edist(Axk+1,K)

EEΩf(xk+1, ω)− f? ≤ 9
1
3

Cδ

(k + 8)
1
3

Edist(Axk+1,K) ≤ 2β0‖y?‖√
k + 8

+
2

√
2 · 9 1

3Cδβ0

(k + 8)
5
12

B.2 Multiplicative Error

The additive error requires the accuracy of lmo to increase as the algorithm progresses [18]. This is
restrictive in practice as it forces to invest more and more effort in the solution of the lmo problem.

For this reason, multiplicative error is often preferred, even though it adds the quality of the lmo as
a hyperparmeter [25, 26], which we consider:〈

vk, s̃k − xk
〉
≤ δ
〈
vk, sk − xk

〉
(24)

where δ ∈ (0, 1] and sk is the exact lmo solution.

We now present the convergence guarantees of Algorithm 1 when the exact lmo is replaced with the
approximate oracle with multiplicative error (24)

Corollary 5. Assume that g is Lg-Lipschitz continuous. Then, the sequence xk generated by Algo-
rithm 1 with the lmo (24), and modifying ηk = 9

δ(k−1)+9 , βk = β0√
δ(k−1)+9

and ρk = 4

(δ(k−2)+9)
2
3

satisfies:

EF (xk+1)− F ? ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

+
β0L

2
g

2
√
δ(k − 1)+9

,

We can optimize β0 from this bound if δ is known.

Corollary 6. Assume that g is the indicator function of a simple convex set K. Then, the sequence
xk generated by Algorithm 1 with approximate lmo (24), and modifying ηk = 9

δ(k−1)+9 , βk =

13

β0√
δ(k−1)+9

and ρk = 4

(δ(k−2)+9)
2
3

satisfies:

EEΩf(xk+1, ω)− f? ≥ −‖y?‖ Edist(Axk+1,K)

EEΩf(xk+1, ω)− f? ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

Edist(Axk+1,K) ≤ 2β0‖y?‖√
δ(k − 1) + 9

+
2
√

2 · 9 1
3 (Cδ + E1)β0

(δ(k − 1) + 9)
5
12

C Convergence Rate

We first prove some key lemmas. This section builds on top of the analysis of [31] and the homotopy
CGM framework. All these results are for the inexact oracle with additive error, the exact oracle case
can be obtained setting δ = 0.
Lemma 7. For any given iteration k ≥ 1 of Algorithm 1 the following relation holds:〈
∇Fβk(xk), sk − xk

〉
≤ ‖∇xEΩf(xk, ω)− dk‖DX + f? − EΩf(xk, ω) + g(Ax?)− gβk(Axk)

− βk
2
‖y∗βk(Axk)‖2 + δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
where δ ≥ 0 is the accuracy of the inexact lmo with additive error.

Proof.〈
∇Fβk(xk), s̃k − xk

〉
=
〈
∇xEΩf(xk, ω), s̃k − xk

〉
+
〈
A>∇gβk(Axk), s̃k − xk

〉
=
〈
∇xEΩf(xk, ω), s̃k − xk

〉
+
〈
A>∇gβk(Axk), s̃k − xk

〉
+
〈
dk, s̃k − xk

〉
−
〈
dk, s̃k − xk

〉
=
〈
∇xEΩf(xk, ω)− dk, s̃k − xk

〉
+
〈
dk +A>∇gβk(Axk), s̃k − xk

〉
≤
〈
∇xEΩf(xk, ω)− dk, sk − xk

〉
+
〈
dk +A>∇gβk(Axk), sk − xk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
(25)

≤
〈
∇xEΩf(xk, ω)− dk, sk − xk

〉
+
〈
dk +A>∇gβk(Axk), x? − xk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
(26)

=
〈
∇xEΩf(xk, ω)− dk, sk − xk

〉
+
〈
dk +A>∇gβk(Axk), x? − xk

〉
+
〈
∇xEΩf(xk, ω), x? − xk

〉
−
〈
∇xEΩf(xk, ω), x? − xk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
=
〈
∇xEΩf(xk, ω)− dk, sk − x?

〉
+
〈
∇xEΩf(xk, ω) +A>∇gβk(Axk), x? − xk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
≤ ‖∇xEΩf(xk, ω)− dk‖‖sk − x?‖

+
〈
∇xEΩf(xk, ω) +A>∇gβk(Axk), x? − xk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
(27)

≤ ‖∇xEΩf(xk, ω)− dk‖DX

+
〈
∇xEΩf(xk, ω) +A>∇gβk(Axk), x? − xk

〉
+ δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)
(28)

where Equation (25) is the definition of inexact oracle with additive error, Equation (26) is be-
cause sk is a solution of minx∈X

〈
dk + A>∇gβk(Axk), x

〉
, Equation (27) is Cauchy-Schwarz

14

and the Equation (28) is the definition of diameter. Now, convexity of EΩf(xk, ω) ensures
〈∇xEΩf(xk, ω), x? − xk〉 ≤ f? − EΩf(xk, ω). From Lemma 10 in [38] we have that:

g(z1) ≥ gβ(z2) +
〈
∇gβ(z2), z1 − z2

〉
+
β

2
‖y∗β(z2)‖2. (29)

Therefore: 〈
A>∇gβk(Axk), x? − xk

〉
=
〈
∇gβk(Axk), Ax? −Axk

〉
≤ g(Ax?)− gβk(Axk)− βk

2
‖y∗βk(Axk)‖2.

Therefore:〈
∇Fβk(xk), s̃k − xk

〉
≤ ‖∇xEΩf(xk, ω)− dk‖DX + f?)− EΩf(xk, ω) + g(Ax?)− gβk(Axk)

− βk
2
‖y∗βk(Axk)‖2 + δ

ηk
2
D2
X

(
Lf +

‖A‖2

βk

)

Lemma 8. For any k ≥ 1 the estimate of the gradient computed in Algorithm 1 satisfies:

E
[
‖∇xEΩf(xk, ω)− dk‖2

]
≤ Q

(k + 8)
2
3

where Q = max
{
‖∇xEΩf(x1, ω)− d1‖27

2
3 , 16σ2 + 81L2

fD
2
X

}
Proof. This lemma simply applies Lemma 1 and Lemma 17 of [31] to our different stepsizes. We
report all the steps for clarity and completeness. First, we invoke Lemma 1:

E
[
‖∇xEΩf(xk, ω)− dk‖2

]
≤
(

1− ρk
2

)
‖∇xEΩf(xk−1, ω)− dk−1‖2 + ρ2

kσ
2 +

2L2
fD

2
X η

2
k−1

ρk

≤
(

1− 2

(k + 7)
2
3

)
‖∇xEΩf(xk−1, ω)− dk−1‖2 +

16σ2 + 81L2
fD

2
X

(k + 7)
4
3

(30)

where we used ρk = 4

(k+7)
2
3

. Now, Lemma 17 of [31] gives the following solution:

φt ≤
Q

(k + k0 + 1)α

to the recursion

φk ≤
(

1− c

(k + k0)α

)
φk−1 +

b

(k + k0)2α

where b ≥ 0, c > 1, α ≤ 1, k0 ≥ 0 and Q := max {φ1k
α
0 , b/(c− 1)} Applying this lemma to

Equation (30) with k0 = 7, α = 2
3 , c = 2, b = 16σ2 + 81L2

fD
2
X gives:

E
[
‖∇xEΩf(xk, ω)− dk‖2

]
≤ Q

(k + 8)
2
3

where Q = max
{
‖∇EΩf(x1, ω)− d1‖27

2
3 , 16σ2 + 81L2

fD
2
X

}
C.1 Proof of Theorem 9

We prove Theorem 9 with the oracle with additive error. The proof without additive error can be
obtained with δ = 0.
Theorem 9. The sequence xk generated by Algorithm 1 satisfies the following bound for k ≥ 1:

EFβk(xk+1)− F ? ≤ 9
1
3

Cδ

(k + 8)
1
3

,

where Cδ := 81
2 D

2
X (Lf + β0‖A‖2)(1 + δ) + 9DX

√
Q, Q =

max
{

4‖∇EΩf(x1, ω)− d1‖2, 16σ2 + 2L2
fD

2
X

}
and δ ≥ 0.

15

Proof. Note that Theorem 9 can be obtained as a special case setting δ = 0. First, we use the
smoothness of Fβk to upper bound the progress. Note that Fβk is (Lf + ‖A‖2/βk)-smooth.

Fβk(xk+1) ≤ Fβk(xk) + ηk
〈
∇Fβk(xk), s̃k − xk

〉
+
η2
k

2
‖s̃k − xk‖2(Lf +

‖A‖2

βk
)

≤ Fβk(xk) + ηk
〈
∇Fβk(xk), s̃k − xk

〉
+
η2
k

2
D2
X (Lf +

‖A‖2

βk
), (31)

where sk denotes the atom selected by the lmo, and the second inequality follows since sk ∈ X . We
now apply Lemma 7 and obtain:

Fβk(xk+1) ≤ Fβk(xk) + ηk

(
f? − EΩf(xk, ω) + g(Ax?)− gβk(Axk)− βk

2
‖∇y∗βk(Axk)‖2

)
+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ) + ηk‖∇xEΩf(xk, ω)− dk‖DX (32)

= (1− ηk)Fβk(xk) + ηkF
? − ηkβk

2
‖∇y∗βk(Axk)‖2 +

η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ)

+ ηk‖∇xEΩf(xk, ω)− dk‖DX .

Now, using Lemma 10 of [38] we get:

gβ(z1) ≤ gγ(z1) +
γ − β

2
‖y∗β(z1)‖2 (33)

and therefore:
Fβk(xk) = EΩf(xk, ω) + gβk(Axk)

≤ EΩf(xk, ω) + gβk−1
(Axk) +

βk−1 − βk
2

‖y∗βk(Axk)‖2

= Fβk−1
(xk) +

βk−1 − βk
2

‖y∗βk(Axk)‖2.

We combine this with (32) and subtract F ? from both sides to get

Fβk(xk+1)− F ? ≤ (1− ηk)
(
Fβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ)

+
(
(1− ηk)(βk−1 − βk)− ηkβk

)1

2
‖y∗βk(Axk)‖2 + ηk‖∇xEΩf(xk, ω)− dk‖DX .

Let us choose ηk and βk in a way to vanish the last term. By choosing ηk = 9
k+8 and βk = β0

(k+8)
1
2

for k ≥ 1 with some β0 > 0, we get (1− ηk)(βk−1 − βk)− ηkβk < 0. Hence, we end up with

Fβk(xk+1)− F ? ≤ (1− ηk)
(
Fβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ)

+ ηk‖∇xEΩf(xk, ω)− dk‖DX .

We now compute the expectation, use Jensen inequality and use Lemma 8 to obtain the final recur-
sion:

EFβk(xk+1)− F ? ≤ (1− ηk)
(
EFβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ)

+ ηkE‖∇xEΩf(xk, ω)− dk‖DX

≤ (1− ηk)
(
EFβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ)

+ ηk
√
E‖∇EΩf(xk, ω)− dk‖2DX

≤ (1− ηk)
(
EFβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)(1 + δ)

+
9DX

√
Q

(k + 8)
4
3

16

Now, note that:

η2
k

2
D2
X (Lf +

‖A‖2

βk
) =

η2
k

2
D2
XLf +

η2
k

2
D2
X
‖A‖2

βk

=
81
2

(k + 8)2
D2
XLf +

81
2

(k + 8)
3
2

β0D
2
X ‖A‖2

≤
81
2

(k + 8)
4
3

D2
XLf +

81
2

(k + 8)
4
3

β0D
2
X ‖A‖2

Therefore:

EFβk(xk+1)− F ? ≤
(

1− 9

k + 8

)(
EFβk−1

(xk)− F ?
)

+
81
2 D

2
X (Lf + β0‖A‖2)(1 + δ) + 9DX

√
Q

(k + 8)
4
3

For simplicity, let Cδ := 81
2 D

2
X (Lf +β0‖A‖2)(1 + δ) + 9DX

√
Q and Ek+1 := EFβk(xk+1)−F ?.

Then, we need to solve the following recursive equation:

Ek+1 ≤
(

1− 9

k + 8

)
Ek +

Cδ

(k + 8)
4
3

(34)

Let the induction hypothesis for k ≥ 1 be:

Ek+1 ≤ 9
1
3

Cδ

(k + 8)
1
3

For the base case k = 1 we need to prove E2 ≤ Cδ . From Equation (34) we have E2 ≤ Cδ

(9)
4
3
< Cδ

as 9
4
3 > 1 Now:

Ek+1 ≤
(

1− 9

k + 8

)
Ek +

Cδ

(k + 8)
4
3

≤
(

1− 9

k + 8

)
9

1
3

Cδ

(k + 7)
1
3

+
Cδ

(k + 8)
4
3

≤
(

1− 9

k + 8

)
9

1
3

Cδ

(k + 7)
1
3

+ 9
1
3

Cδ

(k + 8)
4
3

≤
(

1− 9

k + 8

)
9

1
3

Cδ

(k + 7)
1
3

+ 9
1
3

Cδ

(k + 7)
1
3 (k + 8)

= 9
1
3

Cδ

(k + 8)(k + 7)
1
3

(k − 1)

≤ 9
1
3

Cδ

(k + 8)
1
3

Corollary’ 1. Assume that g : Rd → R is Lg-Lipschitz continuous. Then, the sequence xk gener-
ated by Algorithm 1 satisfies the following convergence bound for k ≥ 1:

EF (xk+1)− F ? ≤ 9
1
3

Cδ

(k + 8)
1
3

+
β0L

2
g

2
√
k + 8

.

Proof. The proof is trivial and the technique comes from [41]. We report it for completeness. If
g : Rd → R ∪ {+∞} is Lg-Lipschitz continuous from equation (2.7) in [32] and the duality
between Lipshitzness and bounded support (cf. Lemma 5 in [5]) we have:

gβ(z) ≤ g(z) ≤ gβ(z) +
β

2
L2
g (35)

17

Using this fact, we write:

g(Axk+1) ≤ gβk(Axk+1) +
βkL

2
g

2

= gβk(Axk+1) +
β0L

2
g

2
√
k + 8

.

We complete the proof by adding EEΩf(xk+1, ω)− F ? to both sides:

EF (xk+1)− F ? ≤ EFβk(xk+1)− F ? +
β0L

2
g

2
√
k + 8

≤ 9
1
3

Cδ

(k + 8)
1
3

+
β0L

2
g

2
√
k + 8

.

Corollary’ 2. Assume that g : Rd → R is the indicator function of a simple convex set K. Then, the
sequence xk generated by Algorithm 1 satisfies:

EEΩf(xk, ω)− f? ≥ −‖y?‖ Edist(Axk,K)

EEΩf(xk, ω)− f? ≤ 9
1
3

Cδ

(k + 8)
1
3

Edist(Axk,K) ≤ 2β0‖y?‖√
k + 8

+
2

√
2 · 9 1

3Cδβ0

(k + 8)
5
12

Proof. We adapt to our rate the proof technique of Theorem 4.3 in [41]. From the Lagrange saddle
point theory, we know that the following bound holds ∀x ∈ X and ∀r ∈ K:

f? ≤ L(x, r, y?) = EΩf(x, ω) +
〈
y?, Ax− r

〉
≤ EΩf(x, ω) + ‖y?‖‖Ax− r‖,

Since xk+1 ∈ X and taking the expectation, we get

EEΩf(xk+1, ω)− f? ≥ −Emin
r∈K
‖y?‖‖Axk+1 − r‖

= −‖y?‖Edist(Axk+1,K). (36)

This proves the first bound in Corollary 2.

The second bound directly follows by Theorem 9 as

EEΩf(xk+1, ω)− f?E ≤ EEΩf(xk+1, ω)− f? +
1

2βk
E [dist(Axk+1,K)]

2

≤ EFβk(xk+1)− F ?

≤ 9
1
3

Cδ

(k + 8)
1
3

.

Now, we combine this with (36), and we get

−‖y?‖Edist(Axk+1,K) +
1

2βk
E [dist(Axk+1,K)]

2 ≤ 9
1
3

Cδ

(k + 8)
1
3

This is a second order inequality in terms of Edist(Axk,K). Solving this inequality, we get

Edist(Axk+1,K) ≤ 2β0‖y?‖√
k + 8

+
2

√
2 · 9 1

3Cδβ0

(k + 8)
5
12

.

18

D Inexact Oracle with Multiplicative Error

Lemma 10. For any given iteration k ≥ 1 of Algorithm 1 the following relation holds:〈
∇Fβk(xk), s̃k − xk

〉
≤ ‖∇xEΩf(xk, ω)− dk‖DX

+ δ

[
f? − EΩf(xk, ω) + g(Ax?)− gβk(Axk)− βk

2
‖y∗βk(Axk)‖2

]
where δ ∈ (0, 1] is the accuracy of the inexact lmo with multiplicative error.

Proof.〈
∇Fβk(xk), s̃k − xk

〉
=
〈
∇xEΩf(xk, ω), s̃k − xk

〉
+
〈
A>∇gβk(Axk), s̃k − xk

〉
=
〈
∇xEΩf(xk, ω), s̃k − xk

〉
+
〈
A>∇gβk(Axk), s̃k − xk

〉
+
〈
dk, s̃k − xk

〉
−
〈
dk, s̃k − xk

〉
=
〈
∇xEΩf(xk, ω)− dk, s̃k − xk

〉
+
〈
dk +A>∇gβk(Axk), s̃k − xk

〉
≤
〈
∇xEΩf(xk, ω)− dk, s̃k − xk

〉
+ δ
〈
dk +A>∇gβk(Axk), sk − xk

〉
(37)

≤
〈
∇xEΩf(xk, ω)− dk, s̃k − xk

〉
+ δ
〈
dk +A>∇gβk(Axk), x? − xk

〉
(38)

=
〈
∇xEΩf(xk, ω)− dk, s̃k − xk

〉
+ δ
〈
dk +A>∇gβk(Axk), x? − xk

〉
+ δ
〈
∇xEΩf(xk, ω), x? − xk

〉
− δ
〈
∇xEΩf(xk, ω), x? − xk

〉
=
〈
∇xEΩf(xk, ω)− dk, s̃k − xk − δx? + δxk

〉
+ δ
〈
∇xEΩf(xk, ω) +A>∇gβk(Axk), x? − xk

〉
≤ ‖∇xEΩf(xk, ω)− dk‖‖s̃k − ((1− δ)xk + δx?)‖

+ δ
〈
∇xEΩf(xk, ω) +A>∇gβk(Axk), x? − xk

〉
(39)

≤ ‖∇xEΩf(xk, ω)− dk‖DX + δ
〈
∇xEΩf(xk, ω) +A>∇gβk(Axk), x? − xk

〉
(40)

where the Equation (37) is the definition of inexact oracle with multiplicative error, Equation (38)
is because sk is a solution of minx∈X

〈
dk + A>∇gβk(Axk), x

〉
, Equation (39) is cauchy-schwarz

and Equation (40) is the diameter definition noting that (1 − δ)xk + δx? ∈ X as it is a convex
combination of elements in X .

Now, convexity of EΩf(xk, ω) ensures 〈∇EΩf(xk, ω), x? − xk〉 ≤ f? −EΩf(xk, ω). Using prop-
erty (29), we have〈

A>∇gβk(Axk), x? − xk
〉

=
〈
∇gβk(Axk), Ax? −Axk

〉
≤ g(Ax?)− gβk(Axk)− βk

2
‖y∗βk(Axk)‖2.

Therefore:〈
∇Fβk(xk), s̃k − xk

〉
≤ ‖∇xEΩf(xk, ω)− dk‖DX

+ δ

[
f? − EΩf(xk, ω) + g(Ax?)− gβk(Axk)− βk

2
‖y∗βk(Axk)‖2

]

Lemma 11. For any k ≥ 1 the estimate of the gradient computed in Algorithm 1 satisfies:

E
[
‖∇xEΩf(xk, ω)− dk‖2

]
≤ Q

(δ(k − 1) + 9)
2
3

where Q = max
{
‖∇xEΩf(x1, ω)− d1‖27

2
3 , 16σ2 + 81L2

fD
2
X

}
19

Proof. This lemma simply applies Lemma 1 and Lemma 17 of [31] to our different stepsizes. We
report all the steps for clarity and completeness. First, we invoke Lemma 1:

E
[
‖∇xEΩf(xk, ω)− dk‖2

]
≤
(

1− ρk
2

)
‖∇xEΩf(xk−1, ω)− dk−1‖2 + ρ2

kσ
2 +

2L2
fD

2
X η

2
k−1

ρk

≤
(

1− 2

(δ(k − 2) + 9)
2
3

)
‖∇xEΩf(xk−1, ω)− dk−1‖2 +

16σ2 + 81L2
fD

2
X

(δ(k − 2) + 9)
4
3

(41)

where we used ρk = 4

(δ(k−2)+9)
2
3

. Now, Lemma 17 of [31] gives the following solution:

φt ≤
Q

(k + k0 + 1)α

to the recursion

φk ≤
(

1− c

(k + k0)α

)
φk−1 +

b

(k + k0)2α

where b ≥ 0, c > 1, α ≤ 1, k0 ≥ 0 and Q̃ := max {φ1k
α
0 , b/(c− 1)} Applying this lemma to

Equation (41) with k0 = 9
δ − 2, α = 2

3 , c = 2

δ
2
3

, b =
16σ2+81L2

fD
2
X

δ
4
3

gives:

E
[
‖∇xEΩf(xk, ω)− dk‖2

]
≤ Q

(δ(k − 1) + 9)
2
3

where Q = max

{
‖∇xEΩf(x1, ω)− d1‖2(9− 2δ)

2
3 ,

16σ2+81L2
fD

2
X

(2−δ
2
3)

}
Theorem 12. The sequence xk generated by Algorithm 1 with approximate lmo of the form (24),
and modifying ηk = 9

δ(k−1)+9 , βk = β0√
δ(k−1)+9

and ρk = 4

(δ(k−2)+9)
2
3

satisfies:

EFβk(xk+1)− F ? ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

where E1 := F β0√
9

(x1)− F ?.

Proof. First, we use the smoothness of Fβk to upper bound the progress. Note that Fβk is (Lf +
‖A‖2/βk)-smooth.

Fβk(xk+1) ≤ Fβk(xk) + ηk
〈
∇Fβk(xk), s̃k − xk

〉
+
η2
k

2
‖s̃k − xk‖2(Lf +

‖A‖2

βk
)

≤ Fβk(xk) + ηk
〈
∇Fβk(xk), s̃k − xk

〉
+
η2
k

2
D2
X (Lf +

‖A‖2

βk
), (42)

where s̃k denotes the atom selected by the approximate lmo with multiplicative accuracy, and the
second inequality follows since s̃k ∈ X .

Using Lemma 10 we get:

Fβk(xk+1) ≤ Fβk(xk) + ηkδ

(
f? − EΩf(xk, ω) + g(Ax?)− gβk(Axk)− βk

2
‖∇y∗βk(Axk)‖2

)
+
η2
k

2
D2
X (Lf +

‖A‖2

βk
) + ηk‖∇xEΩf(xk, ω)− dk‖DX (43)

= (1− δηk)Fβk(xk) + δηkF
? − δηkβk

2
‖∇y∗βk(Axk)‖2

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
) + ηk‖∇xEΩf(xk, ω)− dk‖DX .

20

Now, using (33), we get

Fβk(xk) = EΩf(xk, ω) + gβk(Axk)

≤ EΩf(xk, ω) + gβk−1
(Axk) +

βk−1 − βk
2

‖y∗βk(Axk)‖2

= Fβk−1
(xk) +

βk−1 − βk
2

‖y∗βk(Axk)‖2.

We combine this with (43) and subtract F ? from both sides to get

Fβk(xk+1)− F ? ≤ (1− δηk)
(
Fβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)

+
(
(1− δηk)(βk−1 − βk)− δηkβk

)1

2
‖y∗βk(Axk)‖2 + ηk‖∇xEΩf(xk, ω)− dk‖DX .

Let us choose ηk and βk in a way to vanish the last term. By choosing ηk = 9
δ(k−1)+9 and βk =

β0

(δ(k−1)+9)
1
2

for k ≥ 1 with some β0 > 0, we get (1− δηk)(βk−1 − βk)− δηkβk < 0. Hence, we

end up with

Fβk(xk+1)− F ? ≤ (1− δηk)
(
Fβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
) + ηk‖∇xEΩf(xk, ω)− dk‖DX .

We now compute the expectation, use Jensen inequality and use Lemma 8 to obtain the final recur-
sion:

EFβk(xk+1)− F ? ≤ (1− δηk)
(
EFβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)

+ ηkE‖∇xEΩf(xk, ω)− dk‖DX

≤ (1− δηk)
(
EFβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
)

+ ηk
√
E‖∇xEΩf(xk, ω)− dk‖2DX

≤ (1− δηk)
(
EFβk−1

(xk)− F ?
)

+
η2
k

2
D2
X (Lf +

‖A‖2

βk
) +

9DX
√
Q

(δ(k − 1) + 9)
4
3

Now, note that:

η2
k

2
D2
X (Lf +

‖A‖2

βk
) =

η2
k

2
D2
XLf +

η2
k

2
D2
X
‖A‖2

βk

=
81/2

(δ(k − 1) + 9)2
D2
XLf +

81/2

(δ(k − 1) + 9)
3
2

β0D
2
X ‖A‖2

≤ 81/2

(δ(k − 1) + 9)
4
3

D2
XLf +

81/2

(δ(k − 1) + 9)
4
3

β0D
2
X ‖A‖2

Therefore:

EFβk(xk+1)− F ? ≤
(

1− 9δ

δ(k − 1) + 9

)(
Fβk−1

(xk)− F ?
)

+
81
2 D

2
X (Lf + β0‖A‖2) + 9DX

√
Q

(δ(k − 1) + 9)
4
3

For simplicity, let C := 81
2 D

2
X (Lf + β0‖A‖2) + 9DX

√
Q and Ek+1 := EFβk(xk+1)− F ?. Then,

we need to solve the following recursive equation:

Ek+1 ≤
(

1− 9δ

δ(k − 1) + 9

)
Ek +

C

(δ(k − 1) + 9)
4
3

(44)

Let the induction hypothesis for k ≥ 1 be:

Ek+1 ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

21

The base case k = 1 is trivial as from (44) we have E2 ≤ (1− δ) E1 + C

9
4
3
≤ E1 + C

9
4
3
≤ E1 + C

δ

For simplicity let K := δ(k− 1) + 9. From Equation (34) we have E2 ≤ C

(9)
4
3
< C as 9

4
3 > 1 Now:

Ek+1 ≤
(

1− 9δ

K

)
Ek +

C

(K)
4
3

≤
(

1− 9δ

K

)
9

1
3

C
δ + E1

(K − δ) 1
3

+
C

(K)
4
3

≤
(

1− 9δ

K

)
9

1
3

C
δ + E1

(K − δ) 1
3

+ 9
1
3 δ

C
δ + E1

K(K − δ) 1
3

≤
(

1− 8δ

K

)
9

1
3

C
δ + E1

(K − δ) 1
3

≤ 9
1
3

C
δ + E1

(K + δ)
1
3

Corollary’ 5. Assume that g is Lg-Lipschitz continuous. Then, the sequence xk generated by
Algorithm 1 with approximate lmo (24), and modifying ηk = 9

δ(k−1)+9 , βk = β0√
δ(k−1)+9

and

ρk = 4

(δ(k−2)+9)
2
3

satisfies:

EF (xk+1)−F ? ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

+
β0L

2
g

2
√
δ(k − 1)+9

,

We can optimize β0 from this bound if δ is known.

Proof. If g : Rd → R ∪ {+∞} is Lg-Lipschitz continuous we get from (35):

g(Axk+1) ≤ gβk(Axk+1) +
βkL

2
g

2

= gβk(Axk+1) +
β0L

2
g

2
√
δ(k − 1) + 9

.

We complete the proof by adding EEΩf(xk+1, ω)− F ? to both sides:

EF (xk+1, ω)− F ? ≤ EFβk(xk+1)− F ? +
β0L

2
g

2
√
k + 8

≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

+
β0L

2
g

2
√
δ(k − 1) + 9

.

Corollary’ 6. Assume that g is the indicator function of a simple convex set K. Then, the sequence
xk generated by Algorithm 1 with approximate lmo (24), and modifying ηk = 9

δ(k−1)+9 , βk =
β0√

δ(k−1)+9
and ρk = 4

(δ(k−2)+9)
2
3

satisfies:

EEΩf(xk+1, ω)− f? ≥ −‖y?‖ Edist(Axk+1,K)

EEΩf(xk+1, ω)− f? ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

Edist(Axk+1,K) ≤ 2β0‖y?‖√
δ(k − 1) + 9

+
2
√

2 · 9 1
3 (Cδ + E1)β0

(δ(k − 1) + 9)
5
12

22

Proof. We adapt to our rate the proof technique of Theorem 4.3 in [41]. From the Lagrange saddle
point theory, we know that the following bound holds ∀x ∈ X and ∀r ∈ K:

f? ≤ L(x, r, y?) = EΩf(x, ω) +
〈
y?, Ax− r

〉
≤ EΩf(x, ω) + ‖y?‖‖Ax− r‖,

Since xk+1 ∈ X , we get after taking the expectation

EEΩf(xk+1, ω)− f? ≥ −Emin
r∈K
‖y?‖‖Axk+1 − r‖

= −‖y?‖Edist(Axk+1,K). (45)

This proves the first bound in Corollary 2.

The second bound directly follows by Theorem 9 as

EEΩf(xk+1, ω)− f? ≤ EEΩf(xk+1, ω)− f? +
1

2βk
E [dist(Axk+1,K)]

2

≤ EFβk(xk+1)− F ?

≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

.

Now, we combine this with (45), and we get

−‖y?‖Edist(Axk+1,K) +
1

2βk
E [dist(Axk+1,K)]

2 ≤ 9
1
3

C
δ + E1

(δ(k − 1) + 9)
1
3

This is a second order inequality in terms of Edist(Axk,K). Solving this inequality, we get

Edist(Axk+1,K) ≤ 2β0‖y?‖√
δ(k − 1) + 9

+
2
√

2 · 9 1
3 (Cδ + E1)β0

(δ(k − 1) + 9)
5
12

.

23

	Introduction
	Motivation: Stochastic Semidefinite Programming
	Notation and Preliminaries

	Stochastic Homotopy CGM
	Related Works
	Numerical Evidence
	Stochastic k-means Clustering
	Online Covariance Matrix Estimation
	Stochastic Matrix Completion

	Conclusions
	A Review of Smoothing
	Inexact Oracles
	Additive Error
	Multiplicative Error

	Convergence Rate
	Proof of Theorem 9

	Inexact Oracle with Multiplicative Error

