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In the supplementary, we provide the derivation of the objective function, the architecture representa-
tion method, more implementation details, and more comparison results of our paper [5]. For clarity,
we organize our supplementary as follows. First, we give the derivation of our proposed objective
function in Section 1. Second, we depict the details about architecture representation method of
our NAT in Section 2. Third, we provide more implementation details about our model architecture
in Section 3. Fourth, we report the quantitative results and corresponding visualizations w.r.t. the
randomly sampled architecture and the effect of different graph representations in Section 4.

1 The Derivation of Objective Function

The objective function of NAT can be formulated as

J(θ) = Eβ∼p(·)
[
Eα∼π(·|β;θ) [R (α,w)−R (β,w)] + λH

(
π(·|β; θ)

)]
=
∑
β

p(β)

[∑
α

π(α|β; θ)
(
R (α,w)−R (β,w)

)
+ λH

(
π(·|β; θ)

)]
.

(1)

The gradient ∇θJ(θ) of the objective function w.r.t. θ is given by
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.

(2)

2 Architecture Representation Methods of NAT

Deep neural networks (DNNs) have achieved remarkable success in many challenging tasks, including
image classification [4, 6, 14, 15], face recognition [12, 13], brain signal processing [9, 10] many
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Figure 1: The architecture representation method of the proposed NAT. We define the operation
connected to the input node with a smaller index as the first operation (red lines and blocks), and the
other one as the second operation (purple lines and blocks).

Architectures Original NAT
#Params (M) 6.40±2.04 4.67±1.36
#MAdds (G) 1.07±0.32 0.79±0.21

Test accuracy (%) 95.83±1.08 96.56±0.47 93.5
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Figure 2: Effect of NAT on the average performance over 20 randomly sampled architectures on
CIFAR-10 in terms of the number of parameters, the number of MAdds and test accuracy.

other areas [7, 1, 3, 2]. According to [16, 11, 8], we can represent an architecture α as a directed
acyclic graph (DAG), i.e., α = (V, E), where V is a set of nodes that denote the feature maps in DNNs
and E is an edge set. To better exploit the adjacency information of operations in an architecture, we
propose to exploit graph convolution network (GCN) to build the architecture optimization model.

In this paper, we develop a simple yet effective method to reconstruct node attributes as the combina-
tion of edge attributes. In the architecture graph, the intermediate nodes vary from each other due to
the differences of their two input edges. We define the edge from the node with a small index as the
first operation and the other one as the second operation. For any intermediate node vk, we use the
attributes of two input edges to uniquely represent it in the graph, i.e., vk := (eik, ejk), i ≤ j, where
eik and ejk are the first and the second operation respectively. To incorporate the information of the
two input nodes, i.e., v−2 and v−1, we construct attribute vectors of each node with twice the length
as that of an edge. Since all the architectures follow the same connection pattern in the output node,
similar to ENAS [11] and DARTS [8], we omit the output node in our representation method. By
combining the adjacency matrix and the representation of each node, the proposed representation
method can uniquely identify a specific architecture.

3 More Implementation Details

The existing architectures can be classified into two categories, namely (i) loose-end architectures [11]
and (ii) fully-concat architectures [8]. The loose-end architectures average all the nodes that are not
selected as inputs to any other nodes and take the average value as the output (e.g., ENAS, VGG
and ResNet). The fully-concat architectures average all the intermediate nodes (e.g., DARTS). One
architecture transformer cannot be adapted to these two kinds architectures simultaneously. Thus, in
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Figure 3: Architecture optimization results of several randomly sampled architectures on CIFAR-10.

this paper, we train two architecture transformers for the loose-end architectures and the fully-concat
architectures separately. Furthermore, to cover most possible architectures and learn a general policy
for NAT, we consider the original architectures with an operation set consisting of 9 very common
operations, including identity, convolution with the kernel size 1× 1 and 3× 3, separable convolution
with the kernel size 3 × 3 and 5 × 5, dilated separable convolution with the kernel size 3 × 3 and
5× 5, max pooling, and average pooling. During training, we build the deep network by stacking 8
basic cells and train the transformer for 100 epochs. with the batch size of 64 and the initial channel
number of 20.
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4 More Results

4.1 Results on Randomly Sampled Architectures

In this section, we apply our NAT method to 20 architectures, which are randomly sampled from
the whole architecture space. We train all the input architectures using momentum SGD with the
batch size of 128 for 600 epochs. We set the initial learning rate to 0.05 and use a cosine scheduler to
gradually decrease it to zero. Due to the large number of architectures, training all the models on
ImageNet becomes extremely time-consuming and infeasible. Hence, we only report the results of
these optimized architectures on CIFAR-10, which is a smaller dataset but can still demonstrate the
effectiveness of our method.

From Figure 2, the architectures optimized by NAT outperform the original ones in terms of both
model complexity and test accuracy. Thus, we draw a conclusion that the proposed method is able to
produce more compact and accurate architectures compared to the original ones.

We take several architectures optimized by NAT as examples and shown them in Figure 3. From
Figure 3, some computational modules in the randomly sampled architectures are replaced with skip
connections or null operations in NAT based models while the accuracy improves. These results show
that our NAT method is able to optimize different architectures to obtain better performance without
introducing extra cost.

4.2 Effect of different graph representations for hand-crafted architectures.

Note that some nodes in the existing hand-crafted architecture only have one input. To make all
the architectures share the same representation of DAG in which each node has two inputs, we add
additional null operations to the nodes that has less than 2 input edges. Actually, there are multiple
ways to add these null operations. Thus, a hand-crafted architecture can be transformed into different
graph representations. For example, in Figure 5, the null operation of node 2 can be added to the
edge from node -2 (ResnetV1), node 1 (ResNetV2) or node 0 (ResnetV3). To investigate the effect of
different graph representations on NAT, we conduct more experiments on hand-crafted architectures
(e.g., VGG and ResNet20) in CIFAR-10. From the examples in Figure 4 and 5, our NAT based
models consistently outperform the baseline models, which demonstrates the effectiveness of the
proposed method.
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Figure 4: Optimization results with different graph representations of VGG on CIFAR-10.
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View of Graph View of Network
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Figure 5: Optimization results with different graph representations of ResNet20 on CIFAR-10.
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