
Supplementary Materials

KMC-based Multi-class Data Sampling Process

Algorithm 1: Multi-class Data Sampling using KMC
input :Initial training set: (Xl,yl), unlabeled data pool: Xu, kernel function: k(·, ·), S, C
output :Actively learned K KMC models: {q∗(w) ∼ N (m∗q , S∗q ), α∗, γ∗}

1 initialize: Compute Φ using the given kernel function;
2 while Xu ! empty do
3 for each class k do
4 γ∗ = γ0, α∗ = α0;
5 while ! converged do // Start to train the k-th model
6 Evaluate S∗q ,m∗q using (8) ;
7 Solve the dual problem (11);
8 for γ∗i ∈ γ∗, α∗i ∈ α∗ do
9 Re-evaluate S∗q ,m∗q using (8);

10 Update γi using (14);
11 Re-evaluate S∗q ,m

∗
q using (8);

12 Update:α∗i using (17);
13 end
14 end
15 end
16 Predict p(y|xu) for ∀xu ∈ Xu ;
17 Compute the entropy: En(xu) for ∀xu ∈ Xu;
18 Choose top-S data points XS from Xu according to the entropy measurement.;
19 Retrain KMC with XS and their predicted labels yS ;
20 Sample x∗ using (18);
21 Label x∗;
22 Move x∗ from Xu to Xl;
23 end

Passive learning performance comparison

In this set of experiments, we compare the classification performance of KMC with RVM and SVM
under the passive learning setting. To demonstrate the behavior of models with different amount
training data, we use the same configuration for active learning to initialize passive learning and
gradually add new batches of training data. Please note that these new batches are randomly selected
instead of relying on a sampling function. This process is repeated either until we observe the
convergence of the model performance (Penstroke, Yeast, Auto-drive, and Reuters) or until we run
out of training samples (Dermatology 1 and Dermatology 2). As shown in Table 2, the general trend
is that with limited training data, RVM and KMC perform better than SVM as SVM may be easily
trapped to a locally optimal decision boundary. With sufficient training data, SVM and KMC achieve
comparable model performance and both outperform RVM. However, SVM requires a large number
of support vectors to fine-tune the decision boundary while KMC uses much less KMC vectors. In
summary, in passive learning, KMC can automatically adapt to the size of the training data and
provide robust and competitive classification performance in all cases, which mainly benefits from
the unified objective function. It also worth to note that KMC is able to clearly outperform the other
two models at the presence of 500 new training data samples chosen via active learning. This also
shows the effectiveness of the sampling function using the proposed model.

Sampling method comparison

In this set of experiments, we demonstrate the effectiveness of the proposed sampling function given
by (18). This will help justify that the good active learning performance of the proposed model is not
only due to the contribution from the KMC model but also benefits from its effectiveness sampling
mechanism. More specifically, we report the performance of KMC with best-vs-second best and
entropy sampling, respectively. We also include RVM with these two sampling approaches for a
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Table 2: Passive Learning Performance Comparison
Dataset Model initial +100 +150 +300 +500 +700 +1000 +1100

Yeast
RVM 0.33 0.36 0.39 0.41 0.43 0.54 0.57 0.57

SVM 0.32 0.35 0.35 0.36 0.39 0.59 0.6 0.61

KMC 0.35 0.37 0.38 0.4 0.42 0.59 0.59 0.59

Reuters
RVM 0.53 0.52 0.53 0.53 0.54 0.54 0.58 0.58

SVM 0.52 0.51 0.53 0.53 0.56 0.57 0.6 0.61

KMC 0.59 0.59 0.58 0.58 0.59 0.65 0.69 0.7

Penstroke
RVM 0.07 0.08 0.1 0.15 0.18 0.21 0.3 0.31

SVM 0.06 0.12 0.13 0.17 0.21 0.23 0.32 0.34

KMC 0.07 0.1 0.12 0.15 0.19 0.21 0.32 0.32

Dermatology1
RVM 0.12 0.2 0.25 0.46 0.78 0.95 N/A N/A

SVM 0.06 0.17 0.24 0.48 0.8 0.96 N/A N/A

KMC 0.16 0.22 0.26 0.45 0.78 0.95 N/A N/A

Dermatology2
RVM 0.12 0.22 0.4 0.51 0.76 0.85 N/A N/A

SVM 0.1 0.18 0.35 0.48 0.78 0.89 N/A N/A

KMC 0.11 0.24 0.42 0.48 0.75 0.87 N/A N/A

Auto-drive
RVM 0.17 0.17 0.18 0.21 0.28 0.3 0.33 0.35

SVM 0.21 0.22 0.19 0.25 0.31 0.33 0.37 0.37

KMC 0.19 0.19 0.19 0.22 0.28 0.3 0.34 0.35
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Figure 7: Sampling method comparison

complete comparison. The performance of SVM with the two sampling methods has already been
reported in Figure 4 thus omitted here. As shown in Figure 7, the proposed sampling function outper-
forms the other two commonly used methods. Entropy sampling also provides good performance,
which is as expected because entropy is used in the initial sampling phase of our proposed sampling
process to identify the top-S candidate samples. The advantage over the entropy based sampling
shows the effectiveness of final sampling, which further identifies KMC vectors from the initial
candidate set. These KMC vectors effectively contribute to improving the decision boundaries while
properly exploring the data space to avoid slow convergence of AL.
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Table 3: Efficiency Improvement using the Sparse Structure
Yeast Reuters Penstroke Derm I Derm II Auto Drive

Dense 22s 111s 54s 60s 35s 131s
Sparse 12s 90s 33s 45s 20s 97s
Improvement 46% 19% 38% 34% 42% 26%

Computational Efficiency using the Sparse Structure

We evaluate the computational advantage by leveraging the sparse structure of KMC for parameter
learning. To see the benefit of this, we compare the time costs for AL between a dense QP solver,
CVXOPT [22], and a sparse solver, MOSEK [20]. Specifically, we measure the computational time
for a complete AL sampling step at iterations 50, 100, 150, 200, 300, and 500 and report the average
sampling time. In order to make a fair comparison, we use the sparse threshold of 10−6 to identify
zero entities from Sq and the resultant Sq would have sparsity close to 60% for all the datasets. Table
3 shows that AL efficiency can be significantly improved by leveraging the sparse structure of KMC.
Notice that the QP-solver needs to be invoked multiple times before KMC converges. Each time, the
sparse QP-solver become more efficient due to a better learned, more sparse α while the execution
time of the dense QP-solver remains the same. This makes the sparsity of the model more important
for fine tuning where more iterations are required to reach a strict convergence condition.
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