
We thank all reviewers for their constructive comments. All typographic errors pointed out will be corrected accordingly.1

Recall thatM = {Pi}li=1 is the set of l candidate models, R is the unknown data generating distribution, D is the2

discrepancy measure (MMD or KSD), J ∈ argmaxiD(Pi, R), and Ĵ ∈ argmaxi D̂(Pi, R) (see L138 for details).3

Rev 1, 3, 7: Why compare more than two models? Model comparison beyond two models is a more realistic scenario.4

Given the availability of possible solutions, e.g. zoo of GANs, it is unlikely that a practitioner will only consider two5

candidate models for a task. A popular approach is to rank candidate models by a fitness score (e.g., FID). These6

estimated scores are correlated since they are computed on the same set of observations. Simply ranking these scores7

without accounting for the randomness and correlation leads to uncontrolled false positive rate (FPR) e.g. Table 18

below, B (true best) is not selected 1− 83% = 17% of the time and @[Rev 7] for Experiment 3 (CelebA), Model 49

(the "best") is not selected 1− 63% = 37% of the time. By contrast, the two proposed tests (RelPSI and RelMulti) have10

a well controlled FPR and false detection rate (FDR), respectively, as noted by Rev 7. We will add to our manuscript.11

Rev 3, 7: Multiple goodness-of-fit testing vs multiple model comparison. The two questions are fundamentally12

different. In multiple goodness-of-fit testing, the goal is to determine whether R (observed through samples) is inM13

i.e., find P ∗ ∈M such that D(P ∗, R) = 0. A PSI-based multiple goodness-of-fit test has been considered in [31] for14

several candidate GAN models. Since all models are wrong (Box. 1976), it has led to the trivial result of the rejection15

of all candidate models [31, section 5.3]. In multiple model comparison (our work), the goal is to find the model(s)16

which has the lowest (not necessarily zero) discrepancy to R i.e., find P ∗ ∈ argminP∈MD(P,R) with statistical17

significance. While the former may be addressed by reducing it to l individual goodness-of-fit tests (one for each18

candidate), the latter problem is more complicated since finding P ∗ requires comparing l correlated estimates of D.19

All reviewers: Why not use the previous relative tests? The relative model comparison tests RelMMD, RelKSD (for20

l = 2) considered in [4, 17] require the practitioner to choose the ordering of models; that is, one has to decide a priori21

H0:D(P1, R) ≤ D(P2, R) or H0:D(P2, R) ≤ D(P1, R). It is not obvious how one would use these relative tests to22

find the best model(s) when l > 2. On the other hand, our proposed tests automatically determine the index Ĵ of the23

best model, and take into account the fact that the data used to find Ĵ are the same as the data used for testing each24

model against PĴ , creating the conditional null hypothesis (see L152, L169). This is the complication that did not exist25

in the previous relative tests, and is the crux of our proposal. @[Rev 1] L179-180, @[Rev 7] L168: The conditional26

H0 reduces to the standard unconditional H0 if the data used to find Ĵ are independent of the test data (i.e., conditioning27

on an independent event Az). The independence can be achieved by data splitting, which is the basis of the proposed28

RelMulti.29

Rev 2: L1, positive and negative. We follow the convention that when a test declares a significant result, it is positive.30

Thus model Pi is assigned positive when our test declares that it is worse than the best model (i.e., reject the null31

hypothesis). L95, Mild conditions: If Ep[k(x, x)] < ∞, then the mean embedding µp exists [26]. In particular,32

if k is bounded (e.g., IMQ kernel, Gaussian kernel), µp always exists. L231, TPR and random sample: TPR is33

defined (in Appendix A) as the population expectation of the proportion of number of true positive models that34

are declared as positive, and is not random. L234, definition of µ: We define µ := D(P1, R) − D(P2, R). The35

discrepancy measure D can be MMD or KSD. L271, H0 is true: In Experiment 1, H0 : D(P1, R)≤D(P2, R) holds36

since D(P1, R) = D(P2, R) (there is a typo on L267). L288, sampling variability: For all our experiments, we37

averaged the results over at least 100 trials (for Fig 1, it was 300 trials), with new samples redrawn in each trial.38

PĴ = A B C

Sel 16% 83% 1%
CTPR .115 .271 .009
CFPR .010 0 0

A 0 .065 .017
B .010 0 0
C .229 .477 0

Table 1: Results of the toy experi-
ment of Rev 3 using RelPSI-MMD.
Results averaged over 5000 trials with
sample size 100. Sel is the propor-
tion of times a particular Ĵ is selected.
CTPR (and CFPR) is the empirical
TPR (and FPR) conditioned on the
selected Ĵ . The bottom half shows
rejection rates of each model for dif-
ferent PĴ . α = 0.05. We estimate
FPR = 0.001 and TPR = 0.2428.

Rev 3: Selected reference is not the best. It is true that the selection is noisy39

and we can pick a worse model than the actual best, i.e. Ĵ 6= J (assuming40

the best is unique). In this case, “H Ĵ
0,i : D(PĴ , R) ≥ D(Pi, R) | PĴ selected”41

will hold for a larger portion of the tests, and will only result in lower TPR. In42

particular, FPR is not affected. See Table 1. We emphasize that our theoretical43

results do not make an assumption that the reference is correctly selected. It44

is accounted for in TPR/FPR calculations and an incorrect rejection is made45

with probability no larger than α. ME, FSSD, SCF: We will provide a unified46

statement in the revised version. “Complete” refers to the complete U-statistic47

estimator and “linear” refers to the linear time estimator of [14, Section 6].48

Rev 7: Gaussian kernel with KSD. [13] shows that if the KSD with a Gaus-49

sian kernel is used to measure the discrepancy between a collection of n points50

Xn from a non-convergent MCMC and a distribution p, then vanishing KSD51

does not imply thatXn ∼ p. This is an issue only whenXn does not follow any52

distribution at all. It is irrelevant for goodness-of-fit/model comparison testing53

since Xn is assumed to follow a proper distribution. The KSD goodness-of-fit54

test will detect any discrepancy asymptotically (see Proposition 4.2 of [23]).55


