
Ultrametric Fitting by Gradient Descent
SUPPLEMENTAL

Giovanni Chierchia∗
Laboratoire d’informatique Gaspard-Monge

ESIEE Paris, France
giovanni.chierchia@esiee.fr

Benjamin Perret∗
Laboratoire d’informatique Gaspard-Monge

ESIEE Paris, France
benjamin.perret@esiee.fr

1 Average linkage approximates the closest ultrametric problem

To help understand how the closest ultrametric problem relates to average linkage, note that an
ultrametric takes a finite set of non-negative values {r1, . . . , rK} with K < |V |. Hence, it can be
represented as

(∀e ∈ E) u(e) =

K∑
k=1

rk xk(e), (1)

where x1, . . . , xK are functions from E to {0, 1} defining a hierarchical partition. In this setting, the
cost function Jclosest boils down to

J̃closest(x, r;w) =
∑
e∈E

K∑
k=1

xk(e)
(
rk − w(e)

)2
, (2)

and, for a fixed hierarchical clustering x̄, the optimal altitudes are given by

r̄k =

∑
e∈E x̄k(e)w(e)∑

e∈E x̄k(e)
. (3)

This is exactly the criterion used by average linkage to build a hierarchical clustering. We can thus
argue that the latter provides an approximate solution to the closest ultrametric problem. As a matter
of fact, average linkage and Algorithm 1 with Jclosest produce structurally similar ultrametrics, as
shown in Figure 3 for illustrative examples of hierarchical clustering.

2 Algorithms

This section describes in detail the algorithms proposed to compute the cost terms associated to
cluster-size regularization, triplet regularization, and Dapgusta cost function.

Cluster-size regularization This regularization penalizes small clusters at large scales (see Figure
1a), and the associated cost is computed by Algorithm 1. It proceeds by first computing the size of the
smallest child of each node of the tree. The size of each node can be trivially computed recursively
from the leaves to the root in linear time. Then, it identifies the pass node associated to each edge
thanks to he fast l.c.a. algorithm, and it deduces the individual cost for this edge. Note that we assume
the weights γu are constants, even though they depend on the variable u being optimized. This allows
us to simplify the gradient evaluation. Moreover, the algorithm presents an additional hyper-parameter
k for applying the regularization only to the top-k dendrogram nodes. In the algorithm we denote
by rank(n), the rank of a node n according to the ordering given by their altitudes (from highest to
lowest values). The root of the tree is thus ranked 1, the second highest node is ranked 2 and so on.

∗Both authors contributed equally.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

(a) The cluster-size regularization Jsize

pushes down the nodes of the hierarchical
clustering having at least one small child.
This corresponds to reducing the distance
between the elements in the cluster, effec-
tively preventing small clusters to appear
at high altitudes.

(b) The triplet regularization Jtriplet pushes down
the lowest common ancestor between elements of
the same class (i.e., it reduces the intra-class dis-
tance) and pushes up the lowest common ancestor
between elements of different classes (i.e., it in-
creases the inter-class distance).

Figure 1: Intuitive interpretation of the proposed regularization schemes.

Algorithm 1 Cluster-size regularization (7)

Require: Graph G = (V,E) with ultrametric u
Require: Parameter k to apply regularization only on the top-k nodes
Require: Output the cluster-size regularization value

1: tree← single-linkage(G, w) . O(N logN) with[1, 2]
2: area← cardinal of each node of tree . O(N)
3: for each node n of tree from the leaves to the root (excluded) do . O(N)
4: min_area_children(n)←∞ . O(1)
5: for each child c of n do . O(1)
6: min_area_children(n)← min(min_area_children(n), area(c)) . O(1)

7: preprocess l.c.a on tree . O(N) with [3]
8: reg ← 0 . O(1)
9: for each edge exy ∈ E do . O(N)

10: pass_node← lcatree(x, y) . O(1) with [3]
11: if rank(pass_node) ≤ k then . O(1)
12: reg ← reg + u(exy)/min_area_children(pass_node) . O(1)

13: return reg

Note that in practice, the single linkage algorithm (as any agglomerative clustering method) naturally
orders nodes according to this ordering and no extra computation is required. We set k = 10 in all
our numerical experiments.

Triplet regularization This regularization for semi-supervised learning enforces triplet constraints
(see Figure 1b), and the associated cost is computed by Algorithm 2, which is very similar to the
subdominant ultrametric algorithm. For every triplet (ref,pos,neg), it searches for n1 and n2, the
smallest clusters containing the pairs (ref,pos) and (ref,neg), with the fast l.c.a. algorithm. It then
introduces a penalization if the altitude of n1 (i.e., the distance between ref and pos) is not small
enough compared to the altitude of n2 (i.e., the distance between ref and neg).

Dasgupta cost function The difficulty in implementing the proposed relaxation of Dasgupta cost
term lies in the soft-cardinal function defined in (16). The main function described in Algorithm 3 is
similar to previously presented algorithm. The soft-cardinal function is computed by algorithm 4. As

2

Algorithm 2 Triplet regularization (15)

Require: Graph G = (V,E) with ultrametric u
Require: Triplets T ⊂ V3
Require: Margin α ∈ R+

Require: Output the triplet regularization value
1: tree← single-linkage(G, w) . O(N logN) with[1, 2]
2: preprocess l.c.a on tree . O(N) with [3]
3: reg ← 0 . O(1)
4: for each (ref,pos,neg) ∈ T do . O(|T |)
5: pass_node1 ← lcatree(ref, pos) . O(1) with [3]
6: pass_node2 ← lcatree(ref, neg) . O(1) with [3]
7: reg ← reg + max(0, α+ u(σ(pass_node1))− u(σ(pass_node2))) . O(1)

8: return reg

Algorithm 3 Dasgupta cost function (11)

Require: Graph G = (V,E) with ultrametric u
Require: Output Dapgusta cost function value

1: soft_cardinal← soft-cardinal((G, u), tree) . Algorithm 4 O(N2)
2: preprocess l.c.a on tree . O(N) with [3]
3: cost← 0 . O(1)
4: for each edge exy ∈ E do . O(N)
5: pass_node← lcatree(x, y) . O(1) with [3]
6: cost← cost+ soft_cardinal(pass_node)/u(exy) . O(1)

7: return cost

with Algorithm 1, the size of the nodes of the tree can be computed recursively from leaves to root in
linear time. Note that, on line 9, the child of y that does not contain x can easily be determined by
remembering the previous node of the "for each" loop: it is the sibling of the latter.

2.1 Framework validation

All the tests in the comparison with the CUCP algorithm (Section 4) were conducted on a computer
with an Intel I7 4 cores processor and 16 GB of memory. For the optimization, we use the AMSGrad
variation [4] of the ADAM method with step-size 0.01. Our implementation of the proposed
algorithms are all single threaded.

For each of the 52 test instances, the values Jclosest obtained at each iteration of Algorithm 1 were
normalized between 0 (lowest achieved cost for this instance) and 1 (highest cost reached for this
instance). Figure 2 shows the mean-normalized convergence curve (with its standard deviation). We
can see, that the convergence rate appears to be very good and smooth in practice. The convergence
is usually reached within a bit more than a hundred iterations.

3 Illustrative examples

Figure 3 shows more illustrative examples of hierarchical clustering. For each dataset, we build
a 5-nearest-neighbor graph, to which we add the edges of a minimum spanning tree to ensure the
connectivity. Then, we perform hierarchical clustering on this graph, and we threshold the resulting
ultrametric at the prescribed number of clusters. The column "Closest" is the solution to Algorithm 1
with the cost function Jclosest. The column "Closest+Size" is the solution to Algorithm 1 with the
cost function Jclosest + λJsize and λ = 0.1, where the regularization is only applied to the top-10
dendogram nodes. The column "Closest+Triplet" is the solution to Algorithm 1 with the cost function
Jclosest + λJtriplet, λ = 1, and α = 3. The column "Dasgupta" is the solution to Algorithm 1 with
the cost function JDasgupta. For the optimization, we use the AMSGrad variation [4] of the ADAM
method with step-size 0.1.

3

Algorithm 4 Soft-cardinal function (16)

Require: Graph G = (V,E) with ultrametric u
Require: Single linkage clustering tree on (G, u)
Require: Output the soft-cardinal of non leaves node of tree

1: area← cardinal of each node of tree . O(N)
2: preprocess l.c.a on tree . O(N) with [3]
3: for each non leaf node n of tree do . O(N)
4: pass_edge← σ(n) . O(1)
5: alt_n← u(pass_edge) . O(1)
6: soft_cardinal(n)← 2× sigmoid(alt_n) . O(1)
7: for each vertex x of pass_edge do . O(1)
8: for each ancestor y of x do . O(N)
9: c_other ← child of the y that does not contain x . O(1)

10: contrib_y ← area(c_other)× sigmoid(alt_n− u(σ(()y))) . O(1)
11: soft_cardinal(n)← soft_cardinal(n) + contrib_y . O(1)

12: return soft_cardinal

Figure 2: Mean-normalized convergence curve of the proposed approach and standard deviation.

References
[1] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 18(1):54–64, 1969.

[2] L. Najman, J. Cousty, and B. Perret. Playing with kruskal: Algorithms for morphological trees in
edge-weighted graphs. In ISMM, volume 7883, pages 135–146, 2013.

[3] M.A. Bender and M. Farach-Colton. The lca problem revisited. In Gaston H. Gonnet and Alfredo
Viola, editors, LATIN 2000: Theoretical Informatics, pages 88–94. Springer Berlin Heidelberg,
2000.

[4] S.J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In Proc ICLR, 2018.

4

(a) Graph/Labels (b) Average link (c) Closest (d) Closest+Size (e) Closest+Triplet (f) Dasgupta

Figure 3: Illustrative examples of hierarchical clustering. Top rows: Ultrametrics fitted to the input
graph (only the top-30 non-leaf nodes are shown in the dendrograms). Bottom rows: Assignments
obtained by thresholding the ultrametrics at two, three, or four clusters.

5

	Average linkage approximates the closest ultrametric problem
	Algorithms
	Framework validation

	Illustrative examples

