
A Noisy K-FAC algorithm

Noisy K-FAC [56] attempts to approximate the structure of the full covariance matrix, and therefore
the updates are a bit more involved than VOGN (see Equation 4). Assuming a fully-connected layer,
we denote the weight matrix of layer by W. The Noisy K-FAC method estimates the parameters of a
matrix-variate Gaussian distribution qt(W) = MN (W|Mt,⌃2,t ⌦⌃1,t) by using the following
updates:

Mt+1 Mt � ↵
⇥
A

�

t+1

⇤�1
⇣
rW E [`(yi, fW (xi))] + �̃Wt

⌘ ⇥
S

�

t+1

⇤�1
, (5)

At+1 (1� �̃t)At + �̃tE
⇥
ata

>
t

⇤
, St+1 (1� �̃t)St + �̃tE

⇥
g

t
g
>
t

⇤
, (6)

where Wt ⇠ qt(W), g
t

:= rs`(yi, fW (xi)) with s = st := W
>
t
at, at is the input vector (the

activation of the previous layer), E [·] is the average over the minibatch. �̃ := �⌧/N , and � := �̃+�ex

with some external damping factor �ex. The covariance parameters are set to ⌃
�1
2,t

:= ⌧A
�

t
/N and

⌃
�1
1,t

:= S
�

t
, where A

�

t
:= At + ⇡t

p
�I and S

�

t
:= St + 1

⇡t

p
�I. ⇡

2
t
(⇡t > 0) is the average

eigenvalue of At divided by that of St. Similarly to the VOGN update in Equation 4, the gradients
are scaled by matrices At and St, which are related to the precision matrix of the approximation.

B Details on fast implementation of the Gauss-Newton approximation

Current codebases are only optimised to directly return the average of gradients over the minibatch. In
order to efficiently compute the Gauss-Newton (GN) approximation, we modify the backward-pass to
efficiently calculate the gradient per example in the minibatch, and extend the solution in Goodfellow
[12] to both convolutional and batch normalisation layers.

B.1 Convolutional layer

Consider a convolutional layer with a weight matrix W 2 RCout⇥Cink
2

(ignore bias for simplicity)
and an input tensor A 2 RCin⇥Hin⇥Win , where Cout, Cin are the number of output, input channels,
respectively, Hin, Win are the spatial dimensions, and k is the kernel size. For any stride and padding,
by applying torch.nn.functional.unfold function in PyTorch5, we get the extended matrix
MA 2 RCink

2⇥HoutWout so that the output tensor S is calculated by a matrix multiplication:

MA unfold (A) 2 RCink
2⇥HoutWout , (7)

MS WMA 2 RCout⇥HoutWout , (8)

S reshape (MS) 2 RCout⇥Hout⇥Wout , (9)

where Hout, Wout are the spatial dimensions of the output feature map. Using the matrix MA, we
can also get the gradient per example by a matrix multiplication:

rMS `(yi, fW (xi)) reshape (rS`(yi, fW (xi))) 2 RCout⇥HoutWout , (10)

rW `(yi, fW (xi)) rMS `(yi, fW (xi))M
>
A
2 RCout⇥Cink

2

. (11)

Note that in PyTorch, we can access to the inputs A and the gradientrS`(yi, fW (xi)) per example
in the computational graph during a forward-pass and a backward-pass, respectively, by using the
Function Hooks

6. Hence, to get the gradient rW `(yi, fW (xi)) per example, we only need to
perform (7), (10), and (11) after the backward-pass for this layer.

B.2 Batch normalisation layer

Consider a batch normalisation layer follows a fully-connected layer, which activation is a 2 Rd,
with the scale parameter � 2 Rd and the shift parameter � 2 Rd, we get the output of this layer

5https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.unfold
6https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#

forward-and-backward-function-hooks

14

Kronecker-factored

diagonal

1<latexit sha1_base64="8jLNIv/S8WBvHtfFxahEaJPNMnU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVtXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe0eMtw==</latexit>

1<latexit sha1_base64="8jLNIv/S8WBvHtfFxahEaJPNMnU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVtXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe0eMtw==</latexit>

<̀latexit sha1_base64="tO8xm45MXnYyaIGHhHOD/E2+VfU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6y7D1e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA4Qjj0=</latexit>

L<latexit sha1_base64="9PF+tKjSQN8i8QYPTB/Bgp+YVSU=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKW78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6QzjNI=</latexit>

L<latexit sha1_base64="9PF+tKjSQN8i8QYPTB/Bgp+YVSU=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKW78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6QzjNI=</latexit>

<̀latexit sha1_base64="tO8xm45MXnYyaIGHhHOD/E2+VfU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6y7D1e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA4Qjj0=</latexit>

H`
<latexit sha1_base64="qilwxl1shsw+IwZZg67Xa0ECA+c=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRIV1F3BTZcV7AOaECbTm3boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIGFUKtv+Nipr6xubW9Xt2s7u3v6BWT/syTgVBLokZrEYBFgCoxy6iioGg0QAjgIG/WB6W/j9BxCSxvxezRLwIjzmNKQEKy35Zt2NsJoEYdbO/cwFxnLfbNhNew5rlTglaaASHd/8ckcxSSPgijAs5dCxE+VlWChKGOQ1N5WQYDLFYxhqynEE0svm0XPrVCsjK4yFflxZc/X3RoYjKWdRoCeLoHLZK8T/vGGqwmsvozxJFXCyOBSmzFKxVfRgjagAothME0wE1VktMsECE6XbqukSnOUvr5LeedO5aNp3l43WTVlHFR2jE3SGHHSFWqiNOqiLCHpEz+gVvRlPxovxbnwsRitGuXOE/sD4/AHGFZRM</latexit>

HL<latexit sha1_base64="pgv3184/qK6SuQDhaoFL9oumxz4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQqqLuCmy5cVLAPaEKZTCft0MkkzEMoob/hxoUibv0Zd/6NkzYLbT0wcDjnXu6ZE6acKe26305pbX1jc6u8XdnZ3ds/qB4edVRiJKFtkvBE9kKsKGeCtjXTnPZSSXEcctoNJ3e5332iUrFEPOppSoMYjwSLGMHaSr4fYz0Oo6w5G9wPqjW37s6BVolXkBoUaA2qX/4wISamQhOOlep7bqqDDEvNCKezim8UTTGZ4BHtWypwTFWQzTPP0JlVhihKpH1Co7n6eyPDsVLTOLSTeUa17OXif17f6OgmyJhIjaaCLA5FhiOdoLwANGSSEs2nlmAimc2KyBhLTLStqWJL8Ja/vEo6F3Xvsu4+XNUat0UdZTiBUzgHD66hAU1oQRsIpPAMr/DmGOfFeXc+FqMlp9g5hj9wPn8AB/GRpA==</latexit>

H1<latexit sha1_base64="qH/LWXSMZ5fAQijwkMjOzt6gNCY=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQqqLuCmy4r2Ac0pUymN+3QySTMTIQS+htuXCji1p9x5984abPQ6oGBwzn3cs+cIBFcG9f9ckpr6xubW+Xtys7u3v5B9fCoo+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpXe53H1FpHssHM0twENGx5CFn1FjJ9yNqJkGYNedDb1ituXV3AfKXeAWpQYHWsPrpj2KWRigNE1TrvucmZpBRZTgTOK/4qcaEsikdY99SSSPUg2yReU7OrDIiYazsk4Ys1J8bGY20nkWBncwz6lUvF//z+qkJbwYZl0lqULLloTAVxMQkL4CMuEJmxMwSyhS3WQmbUEWZsTVVbAne6pf/ks5F3busu/dXtcZtUUcZTuAUzsGDa2hAE1rQBgYJPMELvDqp8+y8Oe/L0ZJT7BzDLzgf3972kYk=</latexit>

H`
<latexit sha1_base64="qilwxl1shsw+IwZZg67Xa0ECA+c=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRIV1F3BTZcV7AOaECbTm3boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIGFUKtv+Nipr6xubW9Xt2s7u3v6BWT/syTgVBLokZrEYBFgCoxy6iioGg0QAjgIG/WB6W/j9BxCSxvxezRLwIjzmNKQEKy35Zt2NsJoEYdbO/cwFxnLfbNhNew5rlTglaaASHd/8ckcxSSPgijAs5dCxE+VlWChKGOQ1N5WQYDLFYxhqynEE0svm0XPrVCsjK4yFflxZc/X3RoYjKWdRoCeLoHLZK8T/vGGqwmsvozxJFXCyOBSmzFKxVfRgjagAothME0wE1VktMsECE6XbqukSnOUvr5LeedO5aNp3l43WTVlHFR2jE3SGHHSFWqiNOqiLCHpEz+gVvRlPxovxbnwsRitGuXOE/sD4/AHGFZRM</latexit>

⌦
<latexit sha1_base64="/AopNi+UvXmbne7B02/2UzbATF0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoN4CXjxGMA9IljA7mU2GzM4sM71CCPkILx4U8er3ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR3cxvPXFjhVaPOE55mNCBErFgFJ3U6moUCbe9csWv+nOQVRLkpAI56r3yV7evWZZwhUxSazuBn2I4oQYFk3xa6maWp5SN6IB3HFXULQkn83On5MwpfRJr40ohmau/JyY0sXacRK4zoTi0y95M/M/rZBjfhBOh0gy5YotFcSYJajL7nfSF4Qzl2BHKjHC3EjakhjJ0CZVcCMHyy6ukeVENLqv+w1WldpvHUYQTOIVzCOAaanAPdWgAgxE8wyu8ean34r17H4vWgpfPHMMfeJ8/g+CPpg==</latexit>

H̃`
<latexit sha1_base64="FlNYDCeh8QQGQ4M30e5PURH4GDk=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkqignoreOmxgv2AJoTNZtIu3WzC7kYoIXjxr3jxoIhXf4U3/42btgdtfTDweG+GmXlByqhUtv1tVFZW19Y3qpu1re2d3T1z/6Ark0wQ6JCEJaIfYAmMcugoqhj0UwE4Dhj0gvFt6fceQEia8Hs1ScGL8ZDTiBKstOSbR66iLITcjbEaBVHeKgo/d4GxwjfrdsOewlomzpzU0Rxt3/xyw4RkMXBFGJZy4Nip8nIsFCUMipqbSUgxGeMhDDTlOAbp5dMXCutUK6EVJUIXV9ZU/T2R41jKSRzozvJSueiV4n/eIFPRtZdTnmYKOJktijJmqcQq87BCKoAoNtEEE0H1rRYZYYGJ0qnVdAjO4svLpHvecC4a9t1lvXkzj6OKjtEJOkMOukJN1EJt1EEEPaJn9IrejCfjxXg3PmatFWM+c4j+wPj8AVrCmAI=</latexit>

⇡<latexit sha1_base64="YFCHK6WsItiBx7hYztqr3rYTJRk=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnorePFYwX5Au5Rsmm1Ds0lIsmJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfj25nffqTaMCke7ETRMMFDwWJGsHVSu4eV0vKpX674VX8OtEqCnFQgR6Nf/uoNJEkTKizh2Jhu4CsbZlhbRjidlnqpoQqTMR7SrqMCJ9SE2fzcKTpzygDFUrsSFs3V3xMZToyZJJHrTLAdmWVvJv7ndVMbX4cZEyq1VJDFojjlyEo0+x0NmKbE8okjmGjmbkVkhDUm1iVUciEEyy+vktZFNbis+ve1Sv0mj6MIJ3AK5xDAFdThDhrQBAJjeIZXePOU9+K9ex+L1oKXzxzDH3ifP5FXj68=</latexit>

H
<latexit sha1_base64="w7qvh2GPhjKa8uVbLAf6ktIDOeg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooO4KbrqsYB/YlpJJ77ShmcyQZIQy9C/cuFDErX/jzr8x085CWw8EDufcS849fiy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJYthkkYhUx6caBZfYNNwI7MQKaegLbPuTu8xvP6HSPJIPZhpjP6QjyQPOqLHSYy+kZuwHaX02KFfcqjsHWSVeTiqQozEof/WGEUtClIYJqnXXc2PTT6kynAmclXqJxpiyCR1h11JJQ9T9dJ54Rs6sMiRBpOyThszV3xspDbWehr6dzBLqZS8T//O6iQlu+imXcWJQssVHQSKIiUh2PhlyhcyIqSWUKW6zEjamijJjSyrZErzlk1dJ66LqXVbd+6tK7TavowgncArn4ME11KAODWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHsj6Q5Q==</latexit>

⇡<latexit sha1_base64="YFCHK6WsItiBx7hYztqr3rYTJRk=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnorePFYwX5Au5Rsmm1Ds0lIsmJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfj25nffqTaMCke7ETRMMFDwWJGsHVSu4eV0vKpX674VX8OtEqCnFQgR6Nf/uoNJEkTKizh2Jhu4CsbZlhbRjidlnqpoQqTMR7SrqMCJ9SE2fzcKTpzygDFUrsSFs3V3xMZToyZJJHrTLAdmWVvJv7ndVMbX4cZEyq1VJDFojjlyEo0+x0NmKbE8okjmGjmbkVkhDUm1iVUciEEyy+vktZFNbis+ve1Sv0mj6MIJ3AK5xDAFdThDhrQBAJjeIZXePOU9+K9ex+L1oKXzxzDH3ifP5FXj68=</latexit>

Layer

Layer

Layer

…
…

1<latexit sha1_base64="8jLNIv/S8WBvHtfFxahEaJPNMnU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVtXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe0eMtw==</latexit>

<̀latexit sha1_base64="tO8xm45MXnYyaIGHhHOD/E2+VfU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6y7D1e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA4Qjj0=</latexit>

L<latexit sha1_base64="9PF+tKjSQN8i8QYPTB/Bgp+YVSU=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKW78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6QzjNI=</latexit>

softmax

x
<latexit sha1_base64="DQivoxdGTcXKHyd2yP4tsN1A+g4=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZlRQd0V3LisYB/QDiWTSdvQTDIkGbEO/RI3LhRx66e482/MtLPQ1gMhh3PuJScnTDjTxvO+nZXVtfWNzdJWeXtnd6/i7h+0tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPxTe63H6jSTIp7M0loEOOhYANGsLFS3630QskjPYntlT1Oy3236tW8GdAy8QtShQKNvvvViyRJYyoM4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWChxTHWSz4FN0YpUIDaSyRxg0U39vZDjWeTY7GWMz0oteLv7ndVMzuAoyJpLUUEHmDw1SjoxEeQsoYooSwyeWYKKYzYrICCtMjO0qL8Ff/PIyaZ3V/POad3dRrV8XdZTgCI7hFHy4hDrcQgOaQCCFZ3iFN+fJeXHenY/56IpT7BzCHzifPwMuk0c=</latexit>

p(y|x)
<latexit sha1_base64="bJo+0U6EvP+XBvCn65GwURolgJI=">AAAB/XicbVA7T8MwGHR4lvIKj43FokIqS5UAErBVYmEsEn1IbVQ5jtNadezIdhAhVPwVFgYQYuV/sPFvcNoM0HKS5dPd98nn82NGlXacb2thcWl5ZbW0Vl7f2Nzatnd2W0okEpMmFkzIjo8UYZSTpqaakU4sCYp8Rtr+6Cr323dEKir4rU5j4kVowGlIMdJG6tv7cTV97PmCBSqNzJXdj4/Lfbvi1JwJ4DxxC1IBBRp9+6sXCJxEhGvMkFJd14m1lyGpKWZkXO4lisQIj9CAdA3lKCLKyybpx/DIKAEMhTSHazhRf29kKFJ5ODMZIT1Us14u/ud1Ex1eeBnlcaIJx9OHwoRBLWBeBQyoJFiz1BCEJTVZIR4iibA2heUluLNfnietk5p7WnNuzir1y6KOEjgAh6AKXHAO6uAaNEATYPAAnsEreLOerBfr3fqYji5Yxc4e+APr8wd195Uv</latexit>

H = E
⇥
r log p(y|x)r log p(y|x)T

⇤
<latexit sha1_base64="SW3ELSR7+xHVzy86YO9xy1POmGA=">AAACUXichVFNa9swGH7jrVvrdmu6HnsRC4PuEuxt0O0wKIxCjik0HxB7QVbkRESWjPR6LLj+izu0p/6PXnpoqZzm0CWDvSD08Dzvlx4luRQWg+Cm4b14ufXq9faOv7v35u1+8+Bd3+rCMN5jWmozTKjlUijeQ4GSD3PDaZZIPkjmP2p98IsbK7S6wEXO44xOlUgFo+iocXMWZRRnSVp2Kv+7f+ZHkqc48iNFE0kjqackP15cRomWE7vI3FX+rj7+R/5ZLpuarLyoKj8yYjrDeNxsBe1gGWQThCvQglV0x82raKJZkXGFTFJrR2GQY1xSg4JJ7voWlueUzemUjxxUNOM2LpeOVOSDYyYk1cYdhWTJPq8oaWbrhV1mvapd12ryX9qowPRrXAqVF8gVexqUFpKgJrW9ZCIMZygXDlBmhNuVsBk1lKH7BN+ZEK4/eRP0P7XDz+3g/Evr9NvKjm04gvdwDCGcwCl0oAs9YPAHbuEeHhrXjTsPPO8p1Wusag7hr/B2HwFwsrTl</latexit>

Figure 6: Layer-wise block-diagonal Gauss-Newton approximation

s 2 Rd by,

µ E [a] 2 Rd
, (12)

�2 E

h
(a� µ)2

i
2 Rd

, (13)

â a� µp
�2
2 Rd

, (14)

s �â + � 2 Rd
, (15)

where E [·] is the average over the minibatch and â is the normalised input. We can find the gradient
with respect to parameters � and � per example by,

r�`(yi, fW (xi) rs`(yi, fW (xi) � â , (16)
r�`(yi, fW (xi) rs`(yi, fW (xi) . (17)

We can obtain the input a and the gradient rs`(yi, fW (xi) per example from the computational
graph in PyTorch in the same way as a convolutional layer.

B.3 Layer-wise block-diagonal Gauss-Newton approximation

Despite using the method above, it is still intractable to compute the Gauss-Newton matrix (and
its inverse) with respect to the weights of large-scale deep neural networks. We therefore apply
two further approximations (Figure 6). First, we view the Gauss-Newton matrix as a layer-wise
block-diagonal matrix. This corresponds to ignoring the correlation between the weights of different
layers. Hence for a network with L layers, there are L diagonal blocks, and H` is the diagonal block
corresponding to the `-th layer (` = 1, . . . , L). Second, we approximate each diagonal block H`

with H̃`, which is either a Kronecker-factored or diagonal matrix. Using a Kronecker-factored matrix
as H̃` corresponds to K-FAC; a diagonal matrix corresponds to a mean-field approximation in that
layer. By applying these two approximations, the update rule of the Gauss-Newton method can be
written in a layer-wise fashion:

W `,t+1 = W `,t � ↵tH̃`(✓t)
�1

g`(✓t) (` = 1, . . . , L) , (18)

where W ` is the weights in `-th layer, and

✓ =
�

vec(W 1)T · · · vec(W `)T · · · vec(W L)T
�T

. (19)

Since the cost of computing H̃
�1
`

is much cheaper compared to that of computing H
�1, our approxi-

mations make Gauss-Newton much more practical in deep learning.

In the distributed setting (see Figure 2), each parallel process (corresponding to 1 GPU) calculates
the GN matrix for its local minibatch. Then, one GPU adds them together and calculates the inverse.
This inversion step can also be parallelised after making the block-diagonal approximation to the GN
matrix. After inverting the GN matrix, the standard deviation � is updated (line 9 in Algorithm 1),
and sent to each parallel process, allowing each process to draw independently from the posterior.

15

In the Noisy K-FAC case, a similar distributed scheme is used, except each parallel process now has
both matrices S and A (see Appendix A). When using K-FAC approximations to the Gauss-Newton
blocks for other layers, Osawa et al. [44] empirically showed that the BatchNorm layer can be
approximated with a diagonal matrix without loss of accuracy, and we find the same. We therefore
use diagonal H̃` with K-FAC and Noisy K-FAC in BatchNorm layers (see Table 2). For further
details on how to efficiently parallelise K-FAC in the distributed setting, please see Osawa et al. [44].

optimiser convolution fully-connected Batch Normalisation

OGN diagonal diagonal diagonal
VOGN diagonal diagonal diagonal
K-FAC Kronecker-factored Kronecker-factored diagonal

Noisy K-FAC Kronecker-factored Kronecker-factored diagonal

Table 2: The approximation used for each layer type’s diagonal block H̃` for the different optimisers
tested this paper.

C OGN: A deterministic version of VOGN

To easily apply the tricks and techniques of deep-learning methods, we recommend to first test them
on a deterministic version of VOGN, which we call the online Gauss-Newton (OGN) method. In this
method, we approximate the gradients at the mean of the Gaussian, rather than using MC samples7.
This results in an update without any sampling, as shown below (we have replaced µ

t
by wt since

there is no distinction between them):

wt+1 wt � ↵t

ĝ(wt) + �̃wt

st+1 + �̃
, st+1 (1� ⌧�t)st + �t

1

M

X

i2Mt

(g
i
(wt))

2
. (20)

At each iteration, we still get a Gaussian N (w|wt, ⌃̂t) with ⌃̂t := diag(1/(N(st + �̃))). It is easy
to see that, like SG methods, this algorithm converges to a local minima of the loss function, thereby
obtaining a Laplace approximation instead of a variational approximation. The advantage of OGN is
that this can be used as a stepping stone, when switching from Adam to VOGN. Since it does not
involve sampling, the tricks and techniques applied to Adam are easier to apply to OGN than VOGN.
However, due to the lack of averaging over samples, this algorithm is less effective to preserve the
benefits of Bayesian principles, and gives slightly worse uncertainty estimates.

D Hyperparameter settings

Hyperparameters for all results shown in Table 1 are given in Table 4. The settings for distributed VI
training are given in Table 5. Please see Goyal et al. [13] and Osawa et al. [44] for best practice on
these hyperparameter values.

D.1 Bayes by Backprop for CIFAR-10/LeNet-5 training

We use hyperparameter settings and training procedure for Bayes by Backprop (BBB) [4] as suggested
by Swaroop et al. [52]. This includes using the local reparameterisation trick, initialising means and
variances at small values, using 10 MC samples per minibatch during training for linear layers (1 MC
sample per minibatch for convolutional layers) and 100 MC samples per minibatch during testing for
linear layers (10 MC samples per minibatch for convolutional layers). Note that BBB has twice as
many parameters to optimise than Adam or SGD (means and variances for each weight in the deep
neural network). The fewer MC samples per minibatch for convolutional layers speed up training
time per epoch while empirically not reducing convergence rate.

7This gradient approximation used here is referred to as the zeroth-order delta approximation where
Eq[ĝ(w)] ⇡ ĝ(µ) (see Appendix A.6 in Khan [21] for details).

16

D
at

as
et

/
A

rc
hi

te
ct

ur
e

O
pt

im
is

er
Tr

ai
n

A
cc

(%
)

Tr
ai

n
N

LL
Va

lid
at

io
n

A
cc

(%
)

Va
lid

at
io

n
N

LL
EC

E
A

U
RO

C
Ep

oc
hs

Ti
m

e/
ep

oc
h

(s
)

C
IF

A
R

-1
0/

Le
N

et
-5

(n
o

D
A

)

A
da

m
71

.9
8
±

0.
11

7
0.

73
3
±

0.
02

1
67

.6
7
±

0.
51

3
0.

93
7
±

0.
01

2
0.

02
1
±

0.
00

2
0.

79
4
±

0.
00

1
21

0
6.

96
B

B
B

66
.8

4
±

0.
00

3
0.

95
7
±

0.
00

6
64

.6
1
±

0.
33

1
1.

01
8
±

0.
00

6
0.

04
5
±

0.
00

5
0.

78
4
±

0.
00

3
80

0
11

.4
3

M
C

-d
ro

po
ut

68
.4

1
±

0.
58

1
0.

87
0
±

0.
10

1
67

.6
5
±

1.
31

7
0.

99
±

0.
02

6
0.

08
7
±

0.
00

9
0.

79
7
±

0.
00

6
21

0
6.

95
V

O
G

N
70

.7
9
±

0.
76

3
0.

88
0
±

0.
02

67
.3

2
±

1.
31

0
0.

93
8
±

0.
02

4
0.

04
6
±

0.
00

2
0.

8
±

0.
00

2
21

0
18

.3
3

C
IF

A
R

-1
0/

A
le

xN
et

(n
o

D
A

)

A
da

m
10

0.
0
±

0
0.

00
1
±

0
67

.9
4
±

0.
53

7
2.

83
±

0.
02

0.
26

2
±

0.
00

5
0.

79
3
±

0.
00

1
16

1
3.

12
M

C
-d

ro
po

ut
97

.5
6
±

0.
27

8
0.

05
8
±

0.
01

4
72

.2
0
±

0.
17

7
1.

07
7
±

0.
01

2
0.

14
0
±

0.
00

4
0.

81
8
±

0.
00

2
16

0
3.

25
V

O
G

N
79

.0
7
±

0.
24

8
0.

69
6
±

0.
02

0
69

.0
3
±

0.
41

9
0.

93
1
±

0.
01

7
0.

02
4
±

0.
01

0
0.

79
6
±

0
16

0
9.

98

C
IF

A
R

-1
0/

A
le

xN
et

A
da

m
97

.9
2
±

0.
14

0
0.

05
7
±

0.
00

6
73

.5
9
±

0.
29

6
1.

48
0
±

0.
01

5
0.

26
2
±

0.
00

5
0.

79
3
±

0.
00

1
16

1
3.

08
M

C
-d

ro
po

ut
80

.6
5
±

0.
61

5
0.

47
±

0.
05

2
77

.0
4
±

0.
34

3
0.

66
7
±

0.
01

2
0.

11
4
±

0.
00

2
0.

82
8
±

0.
00

2
16

0
3.

20
V

O
G

N
81

.1
5
±

0.
25

9
0.

51
1
±

0.
03

9
75

.4
8
±

0.
47

8
0.

70
3
±

0.
00

6
0.

01
6
±

0.
00

1
0.

83
2
±

0.
00

2
16

0
10

.0
2

C
IF

A
R

-1
0/

R
es

N
et

-1
8

A
da

m
97

.7
4
±

0.
14

0
0.

05
9
±

0.
01

2
86

.0
0
±

0.
25

7
0.

55
±

0.
01

0.
08

2
±

0.
00

2
0.

87
7
±

0.
00

1
16

0
11

.9
7

M
C

-d
ro

po
ut

88
.2

3
±

0.
24

3
0.

31
7
±

0.
04

5
82

.8
5
±

0.
20

8
0.

51
±

0
0.

16
6
±

0.
02

5
0.

76
8
±

0.
00

4
16

1
12

.5
1

V
O

G
N

91
.6

2
±

0.
07

0.
26

3
±

0.
05

1
84

.2
7
±

0.
19

5
0.

47
7
±

0.
00

6
0.

04
0
±

0.
00

2
0.

87
6
±

0.
00

2
16

1
53

.1
4

Im
ag

eN
et

/
R

es
N

et
-1

8

SG
D

82
.6

3
±

0.
05

8
0.

67
5
±

0.
01

7
67

.7
9
±

0.
01

7
1.

38
±

0
0.

06
7

0.
85

6
90

44
.1

3
A

da
m

80
.9

6
±

0.
09

8
0.

72
3
±

0.
01

5
66

.3
9
±

0.
16

8
1.

44
±

0.
01

0.
06

4
0.

85
5

90
44

.4
0

M
C

-d
ro

po
ut

72
.9

6
1.

12
65

.6
4

1.
43

0.
01

2
0.

85
6

90
45

.8
6

O
G

N
85

.3
3
±

0.
05

7
0.

52
6
±

0.
00

5
65

.7
6
±

0.
11

5
1.

60
±

0.
00

0.
12

8
±

0.
00

4
0.

85
43

±
0.

00
1

90
63

.1
3

V
O

G
N

73
.8

7
±

0.
06

1
1.

02
±

0.
01

67
.3

8
±

0.
26

3
1.

37
±

0.
01

0.
02

93
±

0.
00

1
0.

85
43

±
0

90
76

.0
4

K
-F

A
C

83
.7

3
±

0.
05

8
0.

57
1
±

0.
01

6
66

.5
8
±

0.
17

6
1.

49
3
±

0.
00

6
0.

15
8
±

0.
00

5
0.

84
2
±

0.
00

5
60

13
3.

69
N

oi
sy

K
-F

A
C

72
.2

8
1.

07
5

66
.4

4
1.

44
0.

08
0

0.
85

2
60

17
9.

27

Ta
bl

e
3:

C
om

pa
rin

g
op

tim
is

er
s

on
di

ff
er

en
td

at
as

et
/a

rc
hi

te
ct

ur
e

co
m

bi
na

tio
ns

,m
ea

ns
an

d
st

an
da

rd
de

vi
at

io
ns

ov
er

th
re

e
ru

ns
.

D
A

:D
at

a
A

ug
m

en
ta

tio
n,

A
cc

.:
A

cc
ur

ac
y

(h
ig

he
ri

s
be

tte
r)

,N
LL

:N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

(lo
w

er
is

be
tte

r)
,E

C
E:

Ex
pe

ct
ed

C
al

ib
ra

tio
n

Er
ro

r(
lo

w
er

is
be

tte
r)

,A
U

RO
C

:A
re

a
U

nd
er

R
O

C
cu

rv
e

(h
ig

he
ri

s
be

tte
r)

,B
B

B
:B

ay
es

B
y

B
ac

kp
ro

p.
Fo

rI
m

ag
eN

et
re

su
lts

,t
he

re
po

rte
d

ac
cu

ra
cy

an
d

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
ar

e
th

e
m

ed
ia

n
va

lu
e

fr
om

th
e

fin
al

5
ep

oc
hs

.

17

Dataset/
Architecture Optimiser ↵init ↵ Epochs to decay ↵ �1 �2

Weight
decay L2 reg

CIFAR-10/
LeNet-5
(no DA)

Adam - 1e-3 - 0.1 0.001 1e-2 -
BBB - 1e-3 - 0.1 0.001 - -
MC-dropout - 1e-3 - 0.9 - - 1e-4
VOGN - 1e-2 - 0.9 0.999 - -

CIFAR-10/
AlexNet
(no DA)

Adam - 1e-3 [80, 120] 0.1 0.001 1e-4 -
MC-dropout - 1e-1 [80, 120] 0.9 - - 1e-4
VOGN - 1e-4 [80, 120] 0.9 0.999 - -

CIFAR-10/
AlexNet

Adam - 1e-3 [80, 120] 0.1 0.001 1e-4 -
MC-dropout - 1e-1 [80, 120] 0.9 - - 1e-4
VOGN - 1e-4 [80, 120] 0.9 0.999 - -

CIFAR-10/
ResNet-18

Adam - 1e-3 [80, 120] 0.1 0.001 5e-4 -
MC-dropout - 1e-1 [80, 120] 0.9 - - 1e-4
VOGN - 1e-4 [80, 120] 0.9 0.999 - -

ImageNet/
ResNet-18

SGD 1.25e-2 1.6 [30, 60, 80] 0.9 - - 1e-4
Adam 1.25e-5 1.6e-3 [30, 60, 80] 0.1 0.001 1e-4 -
MC-dropout 1.25e-2 1.6 [30, 60, 80] 0.9 - - 1e-4
OGN 1.25e-5 1.6e-3 [30, 60, 80] 0.9 0.9 - 1e-5
VOGN 1.25e-5 1.6e-3 [30, 60, 80] 0.9 0.999 - -
K-FAC 1.25e-5 1.6e-3 [15, 30, 45] 0.9 0.9 - 1e-4
Noisy K-FAC 1.25e-5 1.6e-3 [15, 30, 45] 0.9 0.9 - -

Table 4: Hyperparameters for all results in Table 1

Optimiser Dataset/
Architecture M # GPUs K ⌧ ⇢ Norig � �̃ �

VOGN

CIFAR-10/
LeNet-5
(no DA)

128 4 6 0.1 ! 1 1 50,000 100 2e-4 ! 2e-3 1e-3

CIFAR-10/
AlexNet
(no DA)

128 8 3 0.05 ! 1 1 50,000 0.5 5e-7 ! 1e-5 1e-3

CIFAR-10/
AlexNet 128 8 3 0.5 ! 1 10 50,000 0.5 5e-7 ! 1e-5 1e-3

CIFAR-10/
ResNet-18 256 8 5 1 10 50,000 50 1e-3 1e-3

ImageNet/
ResNet-18 4096 128 1 1 5 1,281,167 133.3 2e-5 1e-4

Noisy K-FAC ImageNet/
ResNet-18 4096 128 1 1 5 1,281,167 133.3 2e-5 1e-4

Table 5: Settings for distributed VI training

D.2 Continual learning experiment

Following the setup of Swaroop et al. [52], all models are run with two hidden layers, of 100 hidden
units each, with ReLU activation functions. VCL is run with the same hyperparameter settings as in
Swaroop et al. [52]. We perform a grid search over EWC’s � hyperparameter, finding that � = 100
performs the best, exactly like in Nguyen et al. [43].

VOGN is run for 100 epochs per task. Parameters are initialised before training with the default
PyTorch initialisation for linear layers. The initial precision is 1e6. A standard normal initial prior is
used, just like in VCL. Between tasks, the mean and precision are initialised in the same way as for
the first task. The learning rate ↵ = 1e� 3, the batch size M = 256, �1 = 0, �2 = 1e� 3, 10 MC
samples are used during training and 100 for testing. We run each method 20 times, with different
random seeds for both the benchmark’s permutation and for model training.

E Effect of prior variance and dataset size reweighting factor

We show the effect of changing the prior variance (��1 in Algorithm 1) in Figures 8 and 9. We can
see that increasing the prior variance improves validation performance (accuracy and log likelihood).
However, increasing prior variance also always increases the train-test gap, without exceptions, when

18

the other hyperparameters are held constant. As an example, training VOGN on ResNet-18 on
ImageNet with a prior variance of 7.5e� 4 has train-test accuracy and log likelihood gaps of 2.29
and 0.12 respectively. When the prior variance is increased to 7.5e� 3, the respective train-test gaps
increase to 6.38 and 0.34 (validation accuracy and validation log likelihood also increase, see Figure
8).

With increased prior variance, VOGN (and Noisy K-FAC) reach converged solutions more like
their non-Bayesian counterparts, where overfitting is an issue. This is as expected from Bayesian
principles.

Figure 10 shows the combined effect of the dataset reweighting factor ⇢ and prior variance. When ⇢

is set to a value in the correct order of magnitude, it does not affect performance so much: instead,
we should tune �. This is our methodology when dealing with ⇢. Note that we set ⇢ for ImageNet to
be smaller than that for CIFAR-10 because the data augmentation cropping step uses a higher portion
of the initial image than in CIFAR-10: we crop images of size 224x224 from images of size 256x256.

F Effect of number of Monte Carlo samples on ImageNet

In the paper, we report results for training ResNet-18 on ImageNet using 128 GPUs, with 1 inde-
pendent Monte-Carlo (MC) sample per process during training (mc=128x1), and 10 MC samples
per validation image (val_mc= 10). We now show that increasing either of training or testing MC
samples improves performance (validation accuracy and log likelihood) at the cost of increased
computation time. See Figure 11.

Increasing the number of training MC samples per process reduces noise during training. This effect
is observed when training on CIFAR-10, where multiple MC samples per process are required to
stabilise training. On ImageNet, we have much larger minibatch size (4,096 instead of 256) and more
parallel processes (128 not 8), and so training with 1 MC sample per process is still stable. However,
as shown in Figure 11, increasing the number of training MC samples per process to from 1 to 2
speeds up convergence per epoch, and reaches a better converged solution. The time per epoch (and
hence total runtime) also increases by approximately a factor of 1.5. Increasing the number of train
MC samples per process to 3 does not increase final test performance significantly.

Increasing the number of testing MC samples from 10 to 100 (on the same trained model) also results
in better generalisation: the train accuracy and log likelihood are unchanged, but the validation
accuracy and log likelihood increase. However, as we run an entire validation on each epoch,
increasing validation MC samples also increases run-time.

These results show that, if more compute is available to the user, they can improve VOGN’s per-
formance by improving the MC approximation at either (or both) train-time or test-time (up to a
limit).

G MC-dropout’s sensitivity to dropout rate

We show MC-dropout’s sensitivity to dropout rate, p, in this Appendix. We tune MC-dropout as best
as we can, finding that p = 0.1 works best for all architectures trained on CIFAR-10 (see Figure 12
for the dropout rate’s sensitivity on LeNet-5 as an example). On ResNet-18 trained on ImageNet, we
find that MC-dropout is extremely sensitive to dropout rate, with even p = 0.1 performing badly. We
therefore use p = 0.05 for MC-dropout experiments on ImageNet. This high sensitivity to dropout
rate is an issue with MC-dropout as a method.

19

Figure 12: Effect of changing the dropout rate in MC-dropout, training LeNet-5 on CIFAR-10. When
p = 0.01, the train-test gap on accuracy and log likelihood is very high (10.3% and 0.34 respectively).
When p = 0.1, gaps are 1.4% and 0.04 respectively. When p = 0.2, the gaps are -7.71% and -0.02
respectively. We therefore choose p = 0.1 as it has high accuracy and log likelihood, and small
train-test gap.

Figure 13: Effect of changing the dropout rate in MC-dropout, training Resnet-18 on ImageNet. We
use p = 0.05 for our results.

H Uncertainty metrics

We use several approaches to compare uncertainty estimates obtained by each optimiser. We follow
the same methodology for all optimisers: first, tune hyperparameters to obtain good accuracy on
the validation set. Then, test on uncertainty metrics. For multi-class classification problems, all
of these are based on the predictive probabilities. For non-Bayesian approaches, we compute the
probabilities for a validation input xi as p̂ik := p(yi = k|xi,w⇤), where w⇤ is the weight vector of
the DNN whose uncertainty we are estimating. For Bayesian methods, we can compute the predictive
probabilities for each validation example xi as follows:

p̂ik :=

Z
p(yi = k|xi,w)p(w|D)dw ⇡

Z
p(yi = k|xi,w)q(w)dw ⇡ 1

C

CX

c=1

p(yi = k|xi,w
(c)),

where w
(c) ⇠ q(w) are samples from the Gaussian approximation returned by a variational method.

We use 10 MC samples at validation-time for VOGN and MC-dropout (the effect of changing number
of validation MC samples is shown in Appendix F). This increases the computational cost during
testing for these methods when compared to Adam or SGD.

20

Using the estimates p̂ik, we use three methods to compare uncertainties: validation log loss, AUROC
and calibration curves. We also compare uncertainty performance by looking at model outputs when
exposed to out-of-distribution data.

Validation log likelihood. Log likelihood (or log loss) is a common uncertainty metric. We consider
a validation set of NV a examples. For an input xi, denote the true label by y

i
, a 1-of-K encoded

vector with 1 at the true label and 0 elsewhere. Denote the full vector of all validation outputs by y.
Similarly, denote the vector of all probabilities p̂ik by p, where k 2 {1, ..., K}. The validation log
likelihood is defined as `(y, p̂) := 1

NV a

P
NV a

i=1

P
K

k=1 yik log p̂ik.

Tables 1 and 3 show final validation (negative) log likelihood. VOGN performs very well on this
metric (aside from on CIFAR-10/AlexNet, with or without DA, where MC-dropout performs the
best). All final validation log likelihoods are very similar, with VOGN usually performing similarly
to the other best-performing optimisers (usually MC-dropout).

Area Under ROC curves (AUROC). We consider Receiver Operating Characteristic (ROC) curves
for our multi-way classification tasks. A potential way that we may care about uncertainty mea-
surements would be to discard uncertain examples by thresholding each validation input’s predicted
class’ softmax output, marking them as too ambiguous to belong to a class. We can then consider
the remaining validation inputs to either be correctly or incorrectly classified, and calculate the True
Positive Rate (TPR) and False Positive Rate (FPR) accordingly. The ROC curve is summarised
by its Area Under Curve (AUROC), reported in Table 1. This metric is useful to compare uncer-
tainty performance in conjunction with the other metrics we use. The AUROC results are very
similar between optimisers, particularly on ImageNet, although MC-dropout performs marginally
better than the others, including VOGN. On all but one CIFAR-10 experiment (AlexNet, without
DA), VOGN performs the best, or tied best. Adam performs the worst, but is surprisingly good in
CIFAR-10/ResNet-18.

Calibration Curves. Calibration curves [7] test how well-calibrated a model is by plotting true
accuracy as a function of the model’s predicted accuracy p̂ik (we only consider the predicted class’
p̂ik). Perfectly calibrated models would follow the y = x diagonal line on a calibration curve. We
approximate this curve by binning the model’s predictions into M = 20 bins, as is often done.
We show calibration curves in Figures 1 and 14. We can also consider the Expected Calibration
Error (ECE) metric [40, 15], reported in Table 1. ECE calculates the expected error between the
true accuracy and the model’s predicted accuracy, averaged over all validation examples, again
approximated by using M bins. Across all datasets and architectures, with the exception of LeNet-5
(which we have argued causes underfitting), VOGN usually has better calibration curves and better
ECE than competing optimisers. Adam is consistently over-confident, with the calibration curve
below the diagonal. Conversely, MC-dropout is usually under-confident, with too much noise, as
mentioned earlier. The exception to this is on ImageNet, where MC-dropout performs well: we
excessively tuned the MC-dropout rate to achieve this (see Appendix G).

I Out-of-distribution experimental setup and additional results

We use experiments from the out-of-distribution tests literature [16, 31, 8, 32], comparing VOGN to
Adam and MC-dropout. Using trained architectures (LeNet-5, AlexNet and ResNet-18) on CIFAR-
10, we test on SVHN, LSUN (crop) and LSUN (re-size) as out-of-distribution datasets, with the
in-distribution data given by the validation set of CIFAR-10 (10,000 images). The entire training
set of SVHN (73,257 examples, 10 classes) [42] is used. The test set of LSUN (Large-scale Scene
UNderstanding dataset [55], 10,000 images from 10 different scenes) is randomly cropped to obtain
LSUN (crop), and is down-sampled to obtain LSUN (re-size). These out-of-distribution datasets have
no similar classes to CIFAR-10.

Similar to the literature [16, 30], we use 3 metrics to test performance on out-of-distribution data.
Firstly, we plot histograms of predictive entropy for the in-distribution and out-of-distribution datasets,
seen in Figure 5, 15, 16 and 17. Predictive entropy is given by

P
K

k=1�p̂ik log p̂ik. Ideally, on out-
of-distribution data, a model would have high predictive entropy, indicating it is unsure of which
class the input image belongs to. In contrast, for in-distribution data, good models should have many
examples with low entropy, as they should be confident of many input examples’ (correct) class. We
also compare AUROC and FPR at 95% TPR, also reported in the figures. By thresholding the most

21

likely class’ softmax output, we assign high uncertainty images to belong to an unknown class. This
allows us to calculate the FPR and TPR, allowing the ROC curve to be plotted, and the AUROC to be
calculated.

We show results on AlexNet in Figure 15 and 16 (trained on CIFAR-10 with DA and without DA
respectively) and on LeNet-5 in Figure 17. Results on ResNet-18 is in Figure 5. These results are
discussed in Section 4.2.

J Author contributions statement

List of Authors: Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E.
Turner, Rio Yokota, Mohammad Emtiyaz Khan.

M.E.K., A.J., and R.E. conceived the original idea. This was also discussed with R.Y. and K.O. and
then with S.S. and R.T. Eventually, all authors discussed and agreed with the main focus and ideas of
this paper.

The first proof-of-concept was done by A.J. using LeNet-5 on CIFAR-10. This was then extended
by K.O. who wrote the main PyTorch implementation, including the distributed version. R.E.
fixed multiple issues in the implementation, and also pointed out an important issue regarding data
augmentation. S.S., A.J., K.O., and R.E. together fixed this issue. K.O. conducted most of the large
experiments (shown in Fig. 1 and 4). The results shown in Fig. 3a was done by both K.O. and A.J.
The BBB implementation was written by S.S.

The experiments in Section 4.2 were performed by A.J. and S.S. The main ideas behind the exper-
iments were conceived by S.S., A.J., and M.E.K. with many helpful suggestions from R.T. R.E.
performed the permuted MNIST experiment using VOGN for the continual-learning experiments,
and S.S. obtained the baseline results for the same.

The main text of the paper was written by M.E.K. and S.S. The section on experiments was first
written by S.S. and subsequently improved by A.J., K.O., and M.E.K. R.T. helped edit the manuscript.
R.E. also helped in writing parts of the paper.

M.E.K. led the project with a significant help from S.S.. Computing resources and access to the HPCI
systems were provided by R.Y.

K Changes in the camera-ready version compared to the submitted version
• We added an additional experiment on a continual learning task to show the effectiveness of

VOGN (Figure 3b).
• In our experiments, we were using a damping factor �. This was unfortunately missed in

the submitted version, and we have now added it in Section 3.
• We modified the notation for Noisy K-FAC algorithm at Appendix A.
• We updated the description of our implementation of the Gauss-Newton approximation at

Appendix B. Previous description had some missing parts and was a bit unclear.
• We added a description on a new method OGN which we were using to tune hyperparameters

of VOGN. We have added its results in Table 1 and Table 3. The method details are in
Appendix C.

• We added a description on how to tune VOGN to get good performance.
• We listed all training curves (epoch/time vs accuracy), including K-FAC, Noisy K-FAC, and

OGN, along with the corresponding calibration curves in Figure 7.

22

(a) LeNet-5 on CIFAR-10 (no DA)

(b) AlexNet on CIFAR-10 (no DA)

(c) AlexNet on CIFAR-10

(d) ResNet-18 on CIFAR-10

(e) ResNet-18 on ImageNet

Figure 7: All results in Table 1

23

Figure 8: Effect of prior variance on VOGN training ResNet-18 on ImageNet.

Figure 9: Effect of prior variance on Noisy K-FAC training ResNet-18 on ImageNet.

Figure 10: Effect of changing the dataset size reweighting factor ⇢ and prior variance on VOGN
training ResNet-18 on ImageNet.

24

Figure 11: Effect of number of training and testing Monte Carlo samples on validation accuracy and
log loss for VOGN on ResNet-18 on ImageNet.

25

Figure 14: Calibration curves comparing VOGN, Adam and MC-dropout for final trained models
trained on CIFAR-10. VOGN is extremely well-calibrated compared to the other two optimisers
(except for LeNet-5, where all optimisers peform well). The calibration curve for ResNet-18 trained
on ImageNet is in Figure 1.

Figure 15: Histograms of predictive entropy for out-of-distribution tests for AlexNet trained on
CIFAR-10 with data augmentation. Going from left to right, the inputs are: the in-distribution dataset
(CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize). Also shown
are the AUROC metric (higher is better) and FPR at 95% TPR metric (lower is better), averaged over
3 runs. The standard deviations are very small and so not reported here.

26

Figure 16: Histograms of predictive entropy for out-of-distribution tests for AlexNet trained on
CIFAR-10 without data augmentation. Going from left to right, the inputs are: the in-distribution
dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize).
Also shown are the AUROC metric (higher is better) and FPR at 95% TPR metric (lower is better),
averaged over 3 runs. The standard deviations are very small and so not reported here.

Figure 17: Histograms of predictive entropy for out-of-distribution tests for LeNet-5 trained on
CIFAR-10 without data augmentation. Going from left to right, the inputs are: the in-distribution
dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize).
Also shown are the AUROC metric (higher is better) and FPR at 95% TPR metric (lower is better),
averaged over 3 runs. The standard deviations are very small and so not reported here.

27

