
Appendix for Visualizing the PHATE of Neural
Networks

Scott Gigante
Computational Biology and Bioinformatics Program

Yale University
New Haven, CT 06511

scott.gigante@yale.edu

Adam S. Charles
Princeton Neuroscience Institute

Princeton University
Princeton, NJ, 08544

adamsc@princeton.edu

Smita Krishnaswamy
Departments of Genetics and Computer Science

Yale University
New Haven, CT 06520

smita.krishnaswamy@yale.edu

Gal Mishne
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, CA 92093
gmishne@ucsd.edu

S1 Multislice graph construction

In Section 3, we describe a multislice affinity kernelK built from an intraslice kernel, which connects
hidden units in the same epoch, and an interslice kernel, which connects each hidden unit to itself at
different epochs. We further clarify the intuition behind such an affinity kernel in two schematics.

Figure S1 displays a graph of 10 hidden units in a dynamically changing graph structure over
the course of four time slices. Each hidden unit’s local neighborhood within its own time slice
(its intraslice affinities) changes as the system evolves, with connectivity shown as black lines.
Additionally, each hidden unit is connected to itself across different epochs, with strength of these
interslice connections (shown as dotted lines) also dependent on similarities (rather than simply a
fixed-weight connection).

Figure S2 displays the top left corner of an example of a multislice affinity kernel. The full multislice
kernel (K((τ, i), (υ, j)), left) is composed on the intraslice kernels placed down the block diagonal
(K(1)

intraslice(i, j), . . . ,K
(τ)
intraslice(i, j), middle) and the interslice kernels forming the diagonals of each

off-diagonal block (K(1)
interslice(τ, υ), . . . ,K

(i)
interslice(τ, υ), right).

S2 Selection of representative subset Y

In Section 3, we state that the representative subset Y is taken from points not used in training.
However, there is no reason why this should be the case. To demonstrate that M-PHATE can be used
successfully without accessing data external to the training set, we show in Figure S3 a repetition of
the generalization experiment, using only training data to build the visualization. Using the same
quantification of variance and memorization as in Section 4.4, we obtain an equally strong correlation
(Spearman’s ρ = −0.95, Table S1). Further, we note that the visualizations are qualitatively very
similar to those obtained using training data, indicating that M-PHATE can be used to understand the
generalization performance of a network without having access to an external validation set.

S3 Parameters for visualization methods comparison

In Section 4.2, we compare M-PHATE to Diffusion Maps, t-SNE and Isomap in both a standard
and multiscale context. Since t-SNE and Isomap require distance matrices, not affinity matrices, we

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Tim
e (slice)

Figure S1: Example schematic of the multislice graph used in M-PHATE. The intra- and interslice
kernels represent the similarities between the graph nodes at different time-points, providing PHATE
with a time-aware distance to visualize the data with.

Table S1: Summed variance per epoch of the PHATE visualization is associated with the difference
between a network that is memorizing and a network that is generalizing, where the visualization
is built using only training data. Memorization error refers to the difference between train loss and
validation loss.

Kernel Activity Random

Dropout L1 L2 Vanilla L1 L2 Labels Pixels

Memorization -0.09 0.02 0.04 0.05 0.10 0.12 0.13 0.53
Variance 59 77 35 28 0.66 0.34 0.37 0.03

convert the multislice kernel to geodesic distances by computing the shortest-path over the graph
with the distance D = − logK ′. For standard application of Isomap and t-SNE, we use the default
parameters in sklearn [1]. Since diffusion maps can be applied to any symmetric non-negative
affinity kernel and does not have a reference implementation, we apply diffusion maps to the adaptive
bandwidth kernel built in PHATE.

S4 Continual Learning

Continual Learning Schemes

Hsu et al. [2] describe three schemes of continual learning commonly used in the literature.

2



Epoch 1 Epoch 2 Epoch 3

…

……

Epoch 1

Epoch 2

Epoch 3

= +…

……

…

……

Figure S2: Example schematic of the multislice kernel used in M-PHATE. This kernel is a sum of
intaslice and interslice affinities.

Figure S3: Visualization of a 3-layer MLP trained to classify MNIST with different regularizations or
manipulations applied to affect generalization performance, where the visualization is built using
only training data.

Incremental task learning describes the process of learning shared hidden units for separated output
layers for each task; the output units for task i are therefore protected from gradient signals during
the training of task j 6= i. This is akin to the standard model of transfer learning, in which all but the
final layer of a network are copied for a new task, with a fresh output layer attached for the new task.

Incremental domain learning describes the process of learning an entirely shared network which
learns to perform all tasks separately, but with the same units; in this case the output units for task i
are the same units that are used in task j and must learn to correctly classify training examples from
separate tasks as though they were the same class.

Incremental class learning describes the process of learning an entirely shared network which learns
to perform all tasks at once, with no knowledge of which task is currently being performed. The
network contains separate output units for each task, but must select which output units to use, in
contrast to incremental task learning in which the task is specified. This is by far the most difficult
setting, since in training any one task, the optimal solution is to never predict the output classes of
any other task; this strongly encourages catastrophic forgetting.

Figure S4 demonstrates these three architectures on Split MNIST.

3



Figure S4: Architectures for incremental learning scenarios. Reproduced with permission from Hsu
et al. [2].

Network Parameters

The networks in Section 4.3 are trained as follows. Input data is scaled from 0 to 1. All networks
consist of a MLP with 2 layers of 400 units with ReLU activation, and a softmax classification output
layer. All networks are trained with a batch size of 128, split to batches of 64 new data and 64
rehearsal data in the case of Naive Rehearsal. For the Adam optimizer, we use a learning rate of 1e−5.
For the Adagrad optimizer, we use a learning rate of 1e−4. For Naive Rehearsal, we use the Adam
optimizer. All networks are built and trained in Keras using a Tensorflow backend.

MNIST Full Results

Figure 3 shows the visualizations of the continual learning networks for a subset of 100 hidden units
from each layer of the MLP with 2 layers of 400 units. Figures S5 and S6 show the full embedding
of layers 1 and 2 respectively. In all cases, the visualizations are computed on all hidden units and
subsampled for plotting purposes only.

We note the striking difference between layer 1 and layer 2 in all visualizations. In each case, there
is a strong vertical pattern in layer 2, indicating that layer 2 is undergoing very large changes in
hidden representation such that successive time-slices of the network are largely disconnected from
one another. This can be most clearly seen in ADAM Incremental Class learning, in which the
network appears to entirely forget the learned representations in layer 2, which is corroborated by the
validation loss, which resets to the same point after each task. In comparison, the Naive Rehearsal
visualizations remain connected at each task switch, which is consistent with the improved capacity
of the network to retain the performance achieved on previous tasks.

CIFAR10 Results

To show that the results shown above generalize beyond one specific dataset, we repeated the same
experiment with CIFAR10. Since this continual learning task is substantially more difficult with
CIFAR10 than with MNIST, we doubled the number of epochs per task to 8. The layer-wise M-
PHATE embeddings of the learning process are shown in Figures S7 and S8. As with MNIST,
we see that the simpler tasks retain more structure in the visualization at the point of task switch.
Additionally, the vertical patterning observed in layer 2 is seen here once again, indicating that this is
a feature of the network, rather than the task.

4



Figure S5: Visualization of layer 1 of a 2 layer MLP trained on Split MNIST for five-task continual
learning of binary classification. Accuracy is reported on a test set consisting of an even number of
samples from all tasks.

Table S2: Adjusted Rand Index of cluster assignments computed on the subset of the PHATE
visualization corresponding to the hidden units pre- and post-task switch on networks trained on
Split CIFAR10 for 8 epochs on each task. ARI is averaged across all four task switches, 6 different
choices of clustering parameter (between 3–8 clusters) and 20 random seeds. Loss refers to average
validation loss averaged over all tasks after completion of training.

Task Domain Class

Rehears. Adagr. Adam Rehears. Adagr. Adam Rehears. Adagr. Adam

Val. Loss 0.483 0.673 0.675 0.568 0.644 0.723 5.403 6.724 8.407
ARI 0.478 0.571 0.372 0.541 0.605 0.356 0.265 0.259 0.140

Once again, we quantify the effect of structural collapse in the visualization by calculating the
Adjusted Rand Index (ARI) on cluster assignments computed on the subset of the visualization
corresponding to the hidden units pre- and post-task switch, and find that the average ARI is strongly
negatively correlated with the network’s final validation loss averaged over all tasks (ρ = 0.86,
Table S3), as it was with the MNIST experiment.

5



Figure S6: Visualization of layer 2 of a 2 layer MLP trained on Split MNIST for five-task continual
learning of binary classification. Accuracy is reported on a test set consisting of an even number of
samples from all tasks.

S5 Generalization

Network Parameters

The networks in Section 4.4 are trained as follows. Input data is scaled from 0 to 1. All networks
consist of a MLP with 3 layers of 128 units with Leaky ReLU activation with α = 0.1, and a softmax
classification output layer. All networks are trained with a batch size of 256 with the Adam optimizer
and a learning rate of 1e−5. All regularizations are applied with a weight of 1e−4. Dropout is applied
with p = 0.5. For the random labels network, we randomly permute the output labels of the training
data, leaving the validation data intact. For the random pixels network, we randomly assign all pixel
values from a standard normal distribution. All networks are built and trained in Keras [3] using a
Tensorflow [4] backend.

CIFAR10 Results

To show that the results shown above generalize beyond one specific dataset, we repeated the same
experiment with CIFAR10 (Figure S9). Once again, there is a strong association between entropy
of the visualization and the final difference between training loss and validation loss (ρ = −0.97,
Table S3), indicating that this representation of network generalization performance is a feature of
the network, rather than the specific dataset used.

6



Figure S7: Visualization of layer 1 of a 2 layer MLP trained on Split CIFAR10 for five-task continual
learning of binary classification. Training loss and accuracy are reported on the current task. Vali-
dation loss and accuracy is reported on a test set consisting of an even number of samples from all
tasks.

Table S3: Summed variance per epoch of the PHATE visualization is associated with the difference
between a network that is memorizing and a network that is generalizing when trained on CIFAR10.
Memorization error refers to the difference between train loss and validation loss.

Kernel Activity Random

Dropout L1 L2 Vanilla L1 L2 Labels Pixels

Memorization -0.12 0.12 0.15 0.15 0.38 0.46 0.23 8.71
Variance 74 61 42 28 0.45 0.18 0.41 0.02

S6 M-PHATE parameters

All multislice graphs are built with k = 2, α = 5 and κ = 25. We apply PHATE on the multislice
affinity matrix with PHATE parameters γ = 0 and n_landmark = 3000, and use the automatically
selected parameter of t provided by the PHATE algorithm.

S7 Computing infrastructure

All computation was done on a single 36-core workstation running Arch Linux with a NVIDIA
TITAN X graphics card and 512GB of RAM.

7



Figure S8: Visualization of layer 2 of a 2 layer MLP trained on Split CIFAR10 for five-task continual
learning of binary classification. Training loss and accuracy are reported on the current task. Vali-
dation loss and accuracy is reported on a test set consisting of an even number of samples from all
tasks.

S8 Validation data selection

Training and validation data were separated into pre-defined groups as given in Keras [3].

References
[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[2] Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-evaluating continual learning scenarios:
A categorization and case for strong baselines. CoRR, abs/1810.12488, 2018. URL http:
//arxiv.org/abs/1810.12488.

[3] François Chollet et al. Keras. https://keras.io, 2015.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A
system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 265–
283, 2016. URL https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi.

8

http://arxiv.org/abs/1810.12488
http://arxiv.org/abs/1810.12488
https://keras.io
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi


Figure S9: Visualization of a 3-layer MLP trained to classify CIFAR10 with different regularizations
or manipulations applied to affect generalization performance.

9


	Multislice graph construction
	Selection of representative subset Y
	Parameters for visualization methods comparison
	Continual Learning
	Generalization
	M-PHATE parameters
	Computing infrastructure
	Validation data selection

