
A Further Related Work

The framework of online convex optimization (OCO) dates back to [50], where a regret bound of
O(
√
T ) was attained. The regret bound was improved to log(T ) for strongly convex losses in [31].

The RFTL algorithm was proposed independently in [41, 42]. The projection-free algorithm Online
Conditional Gradient was proposed in [28, 32]. The model of Bandit Convex Optimization (BCO)
was introduced in [23], and followed by plenty of works [21, 3, 13, 11]. Various regret bounds were
achieved by adding extra assumptions (e.g., strong convexity) in [35, 2, 40, 29, 14, 22, 30, 15]. The
first computationally efficient projection-free BCO algorithm was proposed in [20]. For strongly
convex and smooth losses, a lower bound of Ω(

√
T ) for regret was proved in [43]. Bandit linear

optimization was studied in [1, 5, 12]. Interested readers are referred to [13] for a survey on BCO.

Bach [6] derived connections between continuous submodularity and convexity. Bian et al. [9] studied
the offline continuous DR-submodular maximization and proposed a variant of the Frank-Wolfe
algorithm to achieve the tight (1− 1/e) approximation ratio. In the online setting, maximization of
submodular set functions was studied in [44, 27]. Adaptive submodular bandit maximization was
analyzed in [25]. The linear submodular bandit problems were studied in [49, 48].

B Proof of Theorem 1

Proof. Since yt = xq = x
(K+1)
q , which is a convex combination of v(1)

q , v
(2)
q , · · · , v(K)

q , and
v

(k)
q ∈ K,∀k ∈ [K], we have yt ∈ K. Then we proceed to prove the theorem.

The key idea of Algorithm 1 is to use the average function of a bunch of functions in certain group
(e.g., the block) to represent the functions. Note the regret is calculated by the sum of all the reward
functions, and the sum of average functions is exactly the sum of all the functions divided by the
block size, so we can use the average function to analyze the regret.

Let

F̄q,k(x) =

∑K
i=k+1 Ftq,i(x)

K − k
, k ∈ {0, 1, · · · ,K − 1}

denotes the average function of the remaining (K − k) functions after round k in the q-th block.
Recall that (tq,1, . . . , tq,K) is a random permutation of ((q− 1)K, qK]∩Z, thus F̄q,k(x) is a random
function. Also, by definition, we have the expected regret

E[

T∑
t=1

(1− 1/e)Ft(x
∗)− Ft(xq)] = E[

Q∑
q=1

K[(1− 1/e)F̄q,0(x∗)− F̄q,0(xq)]], (4)

where x∗ = arg maxx∈K
∑T
t=1 Ft(x). We also note that on the left hand side of Eq. (4), q is actually

a function of t. Specifically , q is the index of the block which contains Ft.

Lemma 3 (Eq.(9) in [17]). If Ft is monotone continuous DR-submodular and L2-smooth, x(k+1)
t =

x
(k)
t + 1/K · v(k)

t for k ∈ [K], then

Ft(x
∗)− Ft(x(k+1)

t ) ≤(1− 1/K)[Ft(x
∗)− Ft(x(k)

t )]

− 1

K
[− 1

2β(k)
‖∇Ft(x(k)

t )− d(k)
t ‖2−

β(k)D2

2
+ 〈d(k)

t , v
(k)
t − x∗〉] +

L2D
2

2K2
,

where {β(k)} is a sequence of positive parameters to be determined.

Lemma 4. If Ft is monotone continuous DR-submodular and L2-smooth for all t, x(k+1)
q = x

(k)
q +

1/K · v(k)
q for k ∈ [K], and xq = x

(K+1)
q , then we have

E[(1− 1/e)F̄q,0(x∗)− F̄q,0(xq)] ≤E[
1

K

K∑
k=1

[
1

2β(k)
∆(k)
q +

β(k)D2

2
]] +

L2D
2

2K

+ 1/K

K∑
k=1

(1− 1/K)K−kE[〈d(k)
q , x∗ − v(k)

q 〉],
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where ∆
(k)
q = ‖∇F̄q,k−1(x

(k)
q )− d(k)

q ‖2.

Proof of Lemma 4. Since Ft is monotone continuous DR-Submodular and L2-smooth, then so is
F̄q,k−1. By Lemma 3, we have

E[F̄q,0(x∗)− F̄q,0(x(k+1)
q )] =E[F̄q,k−1(x∗)− F̄q,k−1(x(k+1)

q )]

≤E[(1− 1/K)[F̄q,k−1(x∗)− F̄q,k−1(x(k)
q )] +

L2D
2

2K2

− 1

K
[− 1

2β(k)
‖∇F̄q,k−1(x(k)

q )− d(k)
q ‖2−

β(k)D2

2
+ 〈d(k)

q , v(k)
q − x∗〉]].

(5)

Note that E
[
F̄q,k−1(x∗)− F̄q,k−1(x

(k)
q )
]

= E[F̄q,k−2(x∗)− F̄q,k−2(x
(k)
q )], so we can apply Eq. (5)

recursively for k ∈ {1, 2, · · · ,K}, and get

E[F̄q,0(x∗)− F̄q,0(xq)] ≤E[(1− 1/K)K [F̄q,0(x∗)− F̄q,0(x(1)
q )] +

1

K

K∑
k=1

[
1

2β(k)
∆(k)
q +

β(k)D2

2
]]

+
L2D

2

2K
+ 1/K

K∑
k=1

(1− 1/K)K−kE[〈d(k)
q , x∗ − v(k)

q 〉],

where ∆
(k)
q = ‖∇F̄q,k−1(x

(k)
q )− d(k)

q ‖2.

Recall that F̄q,0(x
(1)
q ) = F̄q,0(0) ≥ 0 and (1− 1/K)K ≤ 1/e,∀K ≥ 1, so we have

E[(1− 1/e)F̄q,0(x∗)− F̄q,0(xq)] ≤E[
1

K

K∑
k=1

[
1

2β(k)
∆(k)
q +

β(k)D2

2
]] +

L2D
2

2K

+ 1/K

K∑
k=1

(1− 1/K)K−kE[〈d(k)
q , x∗ − v(k)

q 〉].

Combine Eq. (4) and Lemma 4, we have that the expected regret of Algorithm 1 satisfies:

E[RT ] = E[

T∑
t=1

(1− 1/e)Ft(x
∗)− Ft(xq)]

= E[

Q∑
q=1

K[(1− 1/e)F̄q,0(x∗)− F̄q,0(xq)]]

≤ E[

Q∑
q=1

[

K∑
k=1

[
1

2β(k)
∆(k)
q +

β(k)D2

2
] +

L2D
2

2
]] +

Q∑
q=1

K∑
k=1

(1− 1/K)K−kE[〈d(k)
q , x∗ − v(k)

q 〉]

= E[

Q∑
q=1

K∑
k=1

1

2β(k)
∆(k)
q +

D2

2
Q

K∑
k=1

β(k)] +
L2D

2

2
Q

+

K∑
k=1

(1− 1/K)K−kE[

Q∑
q=1

〈d(k)
q , x∗ − v(k)

q 〉].

Since v(k)
q is the output of the online linear maximization oracle E(k) at round q, we have

Q∑
q=1

〈d(k)
q , x∗ − v(k)

q 〉 ≤ REQ,
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and thus we have
K∑
k=1

(1− 1/K)K−kE[

Q∑
q=1

〈d(k)
q , x∗ − v(k)

q 〉] ≤
K∑
k=1

1 · REQ = KREQ.

Therefore,

E[RT ] ≤ E[

Q∑
q=1

K∑
k=1

1

2β(k)
∆(k)
q ] +

D2

2
Q

K∑
k=1

β(k) +KREQ +
L2D

2

2
Q. (6)

NoteREQ is the regret of oracle E at horizon Q, which is of order O(
√
Q), so in order to get an upper

bound for the expected regret of Algorithm 1, the key is to bound E[∆
(k)
q ].

Lemma 5. Under the setting of Theorem 1, we have

E[∆(k)
q ] ≤ ρ2

kσ
2 + (1− ρk)2E[∆(k−1)

q ] + (1− ρk)2 G

(K − k + 2)2

+ (1− ρk)2

[
G

αk(K − k + 2)2
+ αkE[∆(k−1)

q ]

]
where {αk} is a sequence of positive parameters to be determined, σ2 = L2

1 + σ2
0 , and G =

(L2R+ 2L1)2.

Proof of Lemma 5. By the definition of d(k)
q , we have

∆(k)
q = ‖∇F̄q,k−1(x(k)

q )− (1− ρk)d(k−1)
q − ρk∇̃Ftq,k(x(k)

q )‖2

= ‖ρk[∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q )] + (1− ρk)[∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q )]

+ (1− ρk)[∇F̄q,k−2(x(k−1)
q )− d(k−1)

q ]‖2

= ρ2
k‖∇F̄q,k−1(x(k)

q )− ∇̃Ftq,k(x(k)
q )‖2+(1− ρk)2∆(k−1)

q

+ (1− ρk)2‖∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q )‖2

+ 2ρk(1− ρk)〈∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q ),∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q )〉

+ 2ρk(1− ρk)〈∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q ),∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉

+ 2(1− ρk)2〈∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q ),∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉.
(7)

For further analysis, we first denote Fq,k to be the σ-field generated by tq,1, tq,2, · · · , tq,k. Then by
law of iterated expectations,

E[‖∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2]

=E[E[‖∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2|Fq,k−1]]

=E[E[‖∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q )‖2+‖∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2

+ 2〈∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q ),∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )〉|Fq,k−1]].

(8)

By Assumption 2, and Ft is L1-Lipschitz implies that supx∈K‖∇Ft(x)‖≤ L1, we have

E[E[‖∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q )‖2|Fq,k−1]] =E[Var(∇Ftq,k(x(k)
q )|Fq,k−1)]

≤E[‖∇Ftq,k(x(k)
q )‖2]

≤L2
1.

(9)

By Assumption 3, we have

E[E[‖∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2|Fq,k−1]] =E[‖∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2]

=E[E[‖∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2|Fq,k]]

≤σ2
0 .

(10)
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Moreover, we have

E[E[〈∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q ),∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )〉|Fq,k−1]]

=E[〈∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q ),∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )〉]

=E[E[〈∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q ),∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )〉|Fq,k]]

=E[〈∇F̄q,k−1(x(k)
q )−∇Ftq,k(x(k)

q ),E[∇Ftq,k(x(k)
q )− ∇̃Ftq,k(x(k)

q )|Fq,k]〉]
=0

(11)

where the last equation holds because ∇̃Ft is an unbiased estimator of∇Ft for all t.

By Eqs. (8) to (11), we have

E[‖∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q )‖2] ≤ L2
1 + σ2

0 , σ2. (12)

Similarly, by law of iterated expectations and the unbiasedness of ∇̃Ft, we have

E[〈∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q ),∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q )〉]

=E[E[〈∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q ),∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q )〉|Fq,k−1]]

=E[〈E[∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q )|Fq,k−1],∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q )〉]
=0

(13)

and

E[〈∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q ),∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉]

=E[E[〈∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q ),∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉|Fq,k−1, d
(k−1)
q ]]

=E[〈E[∇F̄q,k−1(x(k)
q )− ∇̃Ftq,k(x(k)

q )|Fq,k−1, d
(k−1)
q ],∇F̄q,k−2(x(k−1)

q )− d(k−1)
q 〉]

=0.

(14)

Also, by Young’s Inequality, we have

〈∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q ),∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉

≤ 1

2αk
‖∇F̄q,k−1(x(k)

q )−∇F̄q,k−2(x(k−1)
q )‖2+

αk
2

∆(k−1)
q .

(15)

Now we turn to bound ‖∇F̄q,k−1(x
(k)
q )−∇F̄q,k−2(x

(k−1)
q )‖2, z2

q,k. In fact, we have

E[z2
q,k] = E[E[‖∇F̄q,k−1(x(k)

q )−∇F̄q,k−2(x(k−1)
q )‖2|Fq,k−2]]

= E[E[‖
∑K
i=k∇Ftq,i(x

(k)
q )

K − k + 1
−
∑K
i=k−1∇Ftq,i(x

(k−1)
q )

K − k + 2
‖2|Fq,k−2]]

= E[E[‖
∑K
i=k∇Ftq,i(x

(k)
q )−∇Ftq,i(x

(k−1)
q )

K − k + 2
+

∑K
i=k∇Ftq,i(x

(k)
q )

(K − k + 1)(K − k + 2)

−
∇Ftq,k−1

(x
(k−1)
q )

K − k + 2
‖2|Fq,k−2]]

≤ E[E[(

K∑
i=k

‖
∇Ftq,i(x

(k)
q )−∇Ftq,i(x

(k−1)
q )

K − k + 2
‖+

K∑
i=k

‖
∇Ftq,i(x

(k)
q )

(K − k + 1)(K − k + 2)
‖

+ ‖
∇Ftq,k−1

(x
(k−1)
q )

K − k + 2
‖)2|Fq,k−2]].

where the inequality comes from the Triangle Inequality of norms.
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Recall the update rule where x(k)
q = x

(k−1)
q + 1

K v
(k−1)
q and the assumption that Ft is L2-smooth,

we have

‖∇Ftq,i(x(k)
q )−∇Ftq,i(x(k−1)

q )‖≤ L2
‖v(k)
q ‖
K

=
L2R

K
.

Also by Assumption 2, ‖∇Ftq,i(x
(k−1)
q )‖≤ L1. Therefore, we have

E[z2
q,k] ≤ [(K − k + 1)

L2R

K

1

K − k + 2
+

L1

K − k + 2
+ (K − k + 1)

L1

(K − k + 1)(K − k + 2)
]2

≤
(
L2R+ 2L1

K − k + 2

)2

,
G

(K − k + 2)2
.

(16)

Combining Eqs. (7), (12), (13), (14), (15) and (16), we have

E[∆(k)
q ] ≤ ρ2

kσ
2 + (1− ρk)2E[∆(k−1)

q ] + (1− ρk)2 G

(K − k + 2)2

+ (1− ρk)2

[
G

αk(K − k + 2)2
+ αkE[∆(k−1)

q ]

]
.

Applying Lemma 5 and setting αk = ρk
2 ,∀k ∈ 1, 2, · · · ,K, we have

E[∆(k)
q ] ≤ ρ2

kσ
2 +

G

(K − k + 2)2
(1− ρk)2

(
1 +

2

ρk

)
+ E[∆(k−1)

q ](1− ρk)2
(

1 +
ρk
2

)
.

Note that if 0 < ρk ≤ 1, then we have

(1− ρk)2

(
1 +

2

ρk

)
≤
(

1 +
2

ρk

)
and

(1− ρk)2
(

1 +
ρk
2

)
≤ (1− ρk).

So in this case, we have

E[∆(k)
q ] ≤ ρ2

kσ
2 +

G

(K − k + 2)2

(
1 +

2

ρk

)
+ E[∆(k−1)

q ](1− ρk). (17)

Lemma 6. Under the setting of Theorem 1, we have

E[∆(k)
q ] ≤

{
N

(k+4)2/3
, when 1 ≤ k ≤ K

2 .
N

(K−k+1)2/3
, when K

2 + 1 ≤ k ≤ K.

where N = max{52/3(L1 +M0)2, 4σ2 + 32G, 2.25σ2 + 7G/3}.
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Proof of Lemma 6. When 1 ≤ k ≤ K
2 + 1, since ρk = 2

(k+3)2/3
, we have 0 < ρk ≤ 1, and by

Eq. (17)

E[∆(k)
q ] ≤ 4σ2

(k + 3)4/3
+
G

k2
[1 + (k + 3)2/3] + E[∆(k−1)

q ]

(
1− 2

(k + 3)2/3

)
=

4σ2

(k + 3)4/3
+

G

(k + 3)2

(
k + 3

k

)2

[1 + (k + 3)2/3] + E[∆(k−1)
q ]

(
1− 2

(k + 3)2/3

)
≤ 4σ2

(k + 3)4/3
+
G(1 + 3)2

(k + 3)2
[1 + (k + 3)2/3] + E[∆(k−1)

q ]

(
1− 2

(k + 3)2/3

)
≤ 4σ2

(k + 3)4/3
+

16G

(k + 3)4/3
+

16G

(k + 3)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 3)2/3

)
=

4σ2 + 32G

(k + 3)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 3)2/3

)
,

N0

(k + 3)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 3)2/3

)
.

Recall that ∆
(k)
q = ‖∇F̄q,k−1(x

(k)
q )− d(k)

q ‖2, and thus

∆(1)
q = ‖∇F̄q,0(0)− d(1)

q ‖2

= ‖
∑K
i=1∇Ftq,i(0)

K
− 2

(1 + 3)2/3
∇̃Fq,1(0)‖2

≤

(
K∑
i=1

‖
∇Ftq,i(0)

K
‖+‖ 2

42/3
∇̃Fq,1(0)‖

)2

≤
(
K
L1

K
+M0

)2

= (L1 +M0)2.

Set N1 = max{52/3(L1 +M0)2, N0}, then we claim that E[∆
(k)
q ] ≤ N1

(k+4)2/3
for any k satisfying

1 ≤ k ≤ K
2 +1. We prove it by induction. It holds for k = 1 because of the definition ofN1. Assume

it holds for k − 1, i.e., E[∆
(k−1)
q ] ≤ N1

(k+3)2/3
, then

E[∆(k)
q ] ≤ N1

(k + 3)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 3)2/3

)
≤ N1

(k + 3)4/3
+

N1

(k + 3)2/3

(
1− 2

(k + 3)2/3

)
=
N1[(k + 3)2/3 − 1]

(k + 3)4/3
.

Since (k+4)2 = k2 +8k+16 ≤ k2 +6k+9+1+3(k+3) ≤ k2 +6k+9+1+3(k+3)4/3 +3(k+
3)2/3 = [(k+3)2/3 +1]3, by taking the cube roots of both sides, we have (k+4)2/3 ≤ (k+3)2/3 +1,
which implies that [(k+ 3)2/3 − 1](k+ 4)2/3 ≤ [(k+ 3)2/3 − 1][(k+ 3)2/3 + 1] ≤ (k+ 3)4/3, i.e.,
(k+3)2/3−1

(k+3)4/3
≤ 1

(k+4)2/3
. So we have E[∆

(k)
q ] ≤ N1

(k+4)2/3
. By induction, we have

E[∆(k)
q ] ≤ N1

(k + 4)2/3
,∀k ∈ [

K

2
+ 1]. (18)
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Now we turn to consider the case where K
2 + 2 ≤ k ≤ K. Here we set ρk = 1.5

(K−k+2)2/3
, note that

0 < ρk ≤ 1.5
22/3 < 1, then we have

E[∆(k)
q ] ≤ 2.25σ2

(K − k + 2)4/3
+

G

(K − k + 2)2

[
1 +

4

3
(K − k + 2)2/3

]
+ E[∆(k−1)

q ]

[
1− 1.5

(K − k + 2)2/3

]
≤ 2.25σ2

(K − k + 2)4/3
+

G

(K − k + 2)4/3
+

4

3

G

(K − k + 2)4/3

+ E[∆(k−1)
q ]

[
1− 1.5

(K − k + 2)2/3

]
=

2.25σ2 + 7G/3

(K − k + 2)4/3
+ E[∆(k−1)

q ]

[
1− 1.5

(K − k + 2)2/3

]
,

N2

(K − k + 2)4/3
+ E[∆(k−1)

q ]

[
1− 1.5

(K − k + 2)2/3

]
.

DefineN = max{N1, N2}, then we claim that E[∆
(k)
q ] ≤ N

(K−k+1)2/3
, for any k satisfying K

2 +1 ≤
k ≤ K, we will prove it by induction. When k = K

2 + 1, by Eq. (18), we have

E[∆(K/2+1)
q ] ≤ N1

(K/2 + 1 + 4)2/3
≤ N

(K/2)2/3
=

N

(K − (K/2 + 1) + 1)2/3
.

When it holds for k − 1, i.e., E[∆
(k−1)
q ] ≤ N

(K−k+2)2/3
, we have

E[∆(k)
q ] ≤ N

(K − k + 2)4/3
+

N

(K − k + 2)2/3

(K − k + 2)2/3 − 1.5

(K − k + 2)2/3

=
N [(K − k + 2)2/3 − 0.5]

(K − k + 2)4/3
.

Since [(K − k + 2)2/3 − 0.5](K − k + 1)2/3 ≤ [(K − k + 2)2/3 − 0.5][(K − k + 2)2/3 + 0.5] ≤
(K − k + 2)4/3, i.e., (K−k+2)2/3−0.5

(K−k+2)4/3
≤ 1

(K−k+1)2/3
, so we have E[∆

(k)
q ] ≤ N

(K−k+1)2/3
. By

induction, we have

E[∆(k)
q ] ≤ N

(K − k + 1)2/3
,∀k ∈ {K/2 + 1,K/2 + 2, · · · ,K}.

Since N1 ≤ N , by Eq. (18), we also have

E[∆(k)
q ] ≤ N

(k + 4)2/3
,∀k ∈ [

K

2
+ 1].

Recall that in Eq. (6), we have

E[RT ] ≤
Q∑
q=1

K∑
k=1

1

2β(k)
E[∆(k)

q ] +
D2

2
Q

K∑
k=1

β(k) +KREQ +
L2D

2

2
Q.

So if we set

β(k) =

{
(k + 4)−1/3, when 1 ≤ k ≤ K

2 ;

(K − k + 1)−1/3, when K
2 + 1 ≤ k ≤ K;

then by Lemma 6, we have
K/2∑
k=1

E[∆
(k)
q ]

β(k)
≤
K/2∑
k=1

N

(k + 4)1/3
≤
K/2∑
k=1

N

k1/3
≤
∫ K/2

0

N

x1/3
dx =

3N

2

(
K

2

)2/3

≤ NK2/3,
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and
K∑

k=K/2+1

E[∆
(k)
q ]

β(k)
≤

K∑
k=K/2+1

N

(K − k + 1)1/3
=

K/2∑
i=1

N

i1/3
≤ NK2/3.

Similarly, we have
K/2∑
k=1

β(k) =

K/2∑
k=1

1

(k + 4)1/3
≤ K2/3

and
K∑

k=K/2+1

β(k) =

K∑
k=K/2+1

1

(K − k + 1)1/3
≤ K2/3.

Therefore, we have

E[RT ] ≤
Q∑
q=1

NK2/3 +
D2

2
Q · 2K2/3 +KREQ +

L2D
2

2
Q

= (N +D2)QK2/3 +KREQ +
L2D

2

2
Q.

Set Q = T 2/5,K = T 3/5, and recall thatREQ ≤ C
√
Q = CT 1/5, we have

E[RT ] ≤ (N + C +D2)T 4/5 +
L2D

2

2
T 2/5.

C Properties of Smoothed Functions

Lemma 7. If F is monotone, continuous DR-submodular, L1-Lipschitz, and L2-smooth, then so is
F̂δ , and for all x we have |F̂δ(x)− F (x)|≤ L1δ.

Proof. By Lemmas 1 and 2 of [19], we conclude that F̂δ is also monotone continuous DR-submodular,
L1-Lipschitz and it holds that

|F̂δ(x)− F (x)|≤ L1δ.

For any x, y in the domain of F̂δ , we have

‖∇F̂δ(x)−∇F̂δ(y)‖ = ‖∇E[F (x+ δv)]−∇E[F (y + δv)]‖
= ‖E[∇F (x+ δv)]− E[∇F (y + δv)]‖
= ‖E[∇F (x+ δv)−∇F (y + δv)]‖
≤ E[‖∇F (x+ δv)−∇F (y + δv)‖]
≤ E[L2‖x− y‖]
= L2‖x− y‖.

So F̂δ is also L2-smooth.

D Construction of δ-Interior

Fig. 1 is the illustrations of δ-interior and the construction method as discussed in Lemma 1.

Now we turn to prove Lemma 1. We first show the following auxiliary lemma.
Lemma 8. Consider a ball centered at the origin o. If point a resides on the sphere but not in the
non-negative orthant, there must exist a point b on the sphere such that all the components of

−→
ab are

positive and all the components of
−→
ob are non-negative.
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(a) Example of δ-interior (b) Construction of δ-interior

Figure 1: δ-interior

Proof of Lemma 8. Without loss of generality, we assume the Cartesian coordinates of a are
(−ε1,−ε2, · · · ,−εk, εk+1, · · · , εd), where εi > 0,∀i ∈ [k], εj ≥ 0,∀j ∈ {k+1, · · · , d}, and k ∈ [d].
In order to find a point b, we first define the symmetric point b′ = (ε1, ε2, · · · , εk, εk+1, · · · , εd).

If k = d, we can set b = b′, then b is on the sphere, bi − ai = 2εi > 0, and bi = εi > 0,∀i ∈ [d].

If k < d, we can add some perturbations on b′. Let ε = min{ε1, ε2, · · · , εk} > 0, A =
2ε

∑k
i=1 εi−kε

2

d−k > 0, and set b = b′ + (−ε,−ε, · · · ,−ε,
√
A+ ε2k+1 − εk+1, · · · ,

√
A+ ε2d − εd) =

(ε1−ε, ε2−ε, · · · , εk−ε,
√
A+ ε2k+1, · · · ,

√
A+ ε2d). Note that |ob|2=

∑k
i=1(εi−ε)2+

∑d
j=k+1(A+

ε2j ) =
∑k
i=1 ε

2
i − 2ε

∑k
i=1 εi + kε2 + 2ε

∑k
i=1 εi − kε2 +

∑d
j=k+1 ε

2
j =

∑d
l=1 ε

2
l = |oa|2, so b is

also on the sphere. Moreover, bi − ai = 2εi − ε > 0,∀i ∈ [k], bj − aj =
√
A+ ε2j − εj > 0,∀j ∈

{k + 1, · · · , d}, and bi = εi − ε ≥ 0,∀i ∈ [k], bj =
√
A+ ε2j > 0,∀j ∈ {k + 1, · · · , d}.

Therefore, all the scalar components of
−→
ab are positive, and all the scalar components of

−→
ob are

non-negative.

(a) (b)

(c) (d)

Figure 2: Illustrations for Proof of Lemma 1

Proof of Lemma 1. SinceK is convex, compact, and down-closed, and only shrinkage and translation
are involved, so K′ is also convex, compact, and down-closed. In order to prove that K′ is a δ-interior
of K, note that thanks to the δ1 translation, the distance between K′ and the face which contains 0
(i.e., the set ∂0K = {x ∈ ∂K|∃i ∈ [d] such that xi = 0}), is no less than δ. In other words, for every
a∗ ∈ K′, we have infx∈∂0K d(x, a∗) ≥ δ.

So we only need to consider the remaining points on ∂K, which we denote as ∂∗K = ∂K \ ∂0K =
{x ∈ ∂K|∀i ∈ [d], xi > 0}. We also denote the closure of ∂∗K as cl(∂∗K), which is a subset of ∂K.
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Since for every point a∗ ∈ K′, there is a point a′ = a∗ − δ1 ∈ Kα, and |a′a∗|=
√
dδ, we can first

analyze infs∈∂∗K d(s, a′), and then upper bound infs∈∂∗K d(s, a∗) by triangle inequality.

For any point a′ ∈ Kα, suppose the point a ∈ cl(∂∗K) satisfies |aa′|= infx∈∂∗K d(x, a′) (Fig. 2a).

We claim that all the scalar components of the vector
−→
a′a are non-negative. We will prove it by

contradiction. Consider a ball with a′ as the center and |a′a| as the radius. If we regard a′ as the

origin o, then the assumption that
−→
a′a has negative scalar component is equivalent to that a is not in

the non-negative orthant.

By Lemma 8, there exists a point b, such that |a′b|= |a′a|, all the scalar components of
−→
ab are positive,

and all the scalar components of
−→
a′b are non-negative (Fig. 2b). Then we claim b ∈ K, which will be

also proved by contradiction. If b /∈ K, since a ∈ cl(∂∗K) implies ai ≥ 0,∀i, the fact that all the
scalar components of

−→
ab are positive implies bi > 0,∀i.

Since a′ ∈ Kα, there must be a point c 6= a′ in the line segment a′b such that c ∈ ∂K. To
prove it, note that a′ ∈ Kα =⇒ a′ ∈ (1 − α)K, and (

√
d + 1)δBd≥0 = αrBd≥0 ⊆ αK. So,

a′ + (
√
d + 1)δBd≥0 ⊆ (1 − α)K + αK = K by the convexity of K. On the other hand, since

all the scalar components of
−→
a′b are non-negative, the intersection between the line segment a′b

and the set a′ + (
√
d+ 1)δBd≥0 must contains point other than a′. We denote this point as c′, then

c′ ∈ a′ + (
√
d+ 1)δBd≥0 ⊆ K. By the convexity of K, the continuity of the line segment a′b, and the

assumption that b /∈ K, there must be a point c 6= a′ in a′b such that c ∈ ∂K.

Then c 6= a′, a′i ≥ 0, bi > 0, c ∈ a′b imply that ci > 0,∀i, thus c ∈ ∂∗K. Moreover, since
we assume b /∈ K, we have |a′c|< |a′b|= |a′a|, which is contradictory with the assumption that
|a′a|= infx∈∂∗K d(x, a′).

So we must have b ∈ K. Since the scalar components of
−→
ab all all positive, and K is down-closed

(0 ≤ x ≤ y, y ∈ K =⇒ x ∈ K), we conclude that a is an interior point of K (Fig. 2c), which is
contradictory to the assumption that a ∈ cl(∂∗K). So we have proved that all the scalar components

of the vector
−→
a′a are non-negative.

Then we proceed to show |a′a|≥ (
√
d+ 1)δ. Let v be the vector (

√
d+1)δ
|a′a|

−→
a′a, and p be the point such

that
−→
a′p = v (Fig. 2a). Then |v|= (

√
d+ 1)δ and all the scalar components of v are non-negative, i.e.,

v ∈ (
√
d+1)δBd≥0 = αrBd≥0 ⊆ αK. We also have a′ ∈ Kα = (1−α)K, thus p ∈ (1−α)K+αK =

K by the convexity of K. Since a ∈ cl(∂∗K), we have |a′a|≥ |a′p|= |v|= (
√
d+ 1)δ.

Let a∗ = a′ + δ1 be the translated point of a′. Then for any point s ∈ ∂∗K, by trian-
gle inequality, we have |a∗s|≥ |a′s|−|a′a∗|≥ |a′a|−|a′a∗|≥ (

√
d + 1)δ −

√
dδ = δ. So

infx∈∂∗K d(x, a∗) ≥ δ. Since a′ can be arbitrary point in Kα, the inequality holds for every
point a∗ ∈ K′. Recall that we have proved that for every a∗ ∈ K′, infx∈∂0K d(x, a∗) ≥ δ, where
∂0K = {x ∈ ∂K|∃i ∈ [d] such that xi = 0} = ∂K \ ∂∗K. Therefore, we conclude that for every
point a∗ ∈ K′, infx∈∂K d(x, a∗) ≥ δ.

So we only need to prove K′ ⊆ K. For every a∗ ∈ K′, since a′ = a∗ − δ1 ∈ Kα, there must be
a positive β, such that ã = a′ + β1 ∈ ∂∗K (Fig. 2d). We have shown that infx∈∂∗K d(x, a′) ≥
(
√
d + 1)δ, so β ≥

√
d+1√
d
δ > δ. So a∗ = a′ + δ1 must be in the segment of a′ã. Then we have

a∗ ∈ K, by the fact that a′, ã ∈ K, and the convexity of K. Therefore, K′ ⊆ K, and thus K′ is a
δ-interior of K.

Now we turn to analyze d(K,K′). For any point x ∈ K, we define x′ = (1 − α)x ∈ Kα, and
have |xx′|= α|ox|≤ αR. Let x∗ = x′ + δ1 ∈ K′, then |xx∗|≤ |xx′|+|x′x∗|≤ αR +

√
dδ =

[
√
d(Rr + 1) + R

r ]δ. Thus d(K,K′) ≤ [
√
d(Rr + 1) + R

r ]δ.

22



E Analysis of Algorithm 2

E.1 General Constraint Set

We first state a necessary assumption on the δ-interior K′.

Assumption 8. For sufficiently small δ > 0, the δ-interior K′ is convex and compact, and has lower
bound u such that ∀x ∈ K′, x ≥ u. We also assume that the discrepancy satisfies d(K,K′) ≤ c1δγ ,
where c1, γ > 0.

Note that we have supx,y∈K′‖x− y‖≤ D, supx∈K′‖x− u‖≤ R, where D,R are the diameter and
radius of K. In other words, the bounds for K also hold for K′.
Also, if the constraint set K satisfies Assumption 1 and is down-closed, Lemma 1 shows that one can
construct a δ-interior K′ that obeys Assumption 8.

Now with the assumption on the reward functions Ft (Assumptions 2 and 6), and those on K and
K′ (Assumptions 1 and 8), we show Algorithm 2 achieves a sublinear (1 − 1/e)-regret bound of

O(T
3+5min{1,γ}
3+6min{1,γ} ).

Theorem 4. Under Assumptions 1, 2, 4, 6 and 8, if we set δ = c2T
− 1

3+6min{1,γ} , Q =

T
2min{1,γ}

3+6min{1,γ} , L = T
3+4min{1,γ}
3+6min{1,γ} ,K = T

1+min{1,γ}
1+2min{1,γ} , ηk = 1

K , ρk = 2
(k+2)2/3

, where c2 > 0 is
a constant such that δ is sufficiently small as required by Assumption 8, then the expected (1− 1/e)-
regret of Algorithm 2 is at most

E[RT ] ≤
[
(1− 1/e)c1c

γ
2L1 + (2− 1/e)c2L1 + 2M1 +

3 · 41/6d2M2
1

c2
+

3D2

4c2
+ C

]
T

3+5min{1,γ}
3+6min{1,γ}

+
3c2[2L2

1 + (3L2R+ 2L1)2]

41/3
T

1+5min{1,γ}
3+6min{1,γ} +

L2D
2

2
T

min{1,γ}
1+2min{1,γ} .

Proof of Theorem 4. Since x(1)
q = u and ηk = 1/K, x(k)

q is actually a convex combination of
u, v

(1)
q , v

(2)
q , · · · , v(k−1)

q . Then u ∈ K′, v(i)
q ∈ K′,∀i ∈ [K] implies x(k)

q ∈ K′,∀k ∈ [K + 1].
So for k ∈ [K], ytq,k = x

(k)
q + δuq,k ∈ K; for t ∈ {(q − 1)L + 1, · · · , qL} \ {tq,1, · · · , tq,K},

yt = xq = x
(K+1)
q ∈ K′ ⊆ K. In other words, all the points that we play fall on the constraint set K.

We also note that as discussed before, the regret bound for online linear oracle,REt ≤ C
√
t can be

achieved by algorithms such as Online Gradient Descent.

Then we define

F̂t,δ(x) = Ev∼Bd [Ft(x+ δv)]

as the δ-smoothed version of Ft. We omit the δ in the subscript for simplicity in the rest of the proof.
Since Ft is L1-Lipschitz, by Lemma 7 in Appendix C, we have

|F̂t(x)− Ft(x)|≤ L1δ.
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Therefore, if we define x∗ = arg maxx∈K
∑T
t=1 Ft(x), x∗δ = arg maxx∈K′

∑T
t=1 Ft(x), the (1 −

1/e)-regret with horizon T is

RT =

T∑
t=1

[(1− 1/e)Ft(x
∗)− Ft(yt)]

=

T∑
t=1

[(1− 1/e)Ft(x
∗)− (1− 1/e)Ft(x

∗
δ) + (1− 1/e)Ft(x

∗
δ)− Ft(yt)]

= (1− 1/e)

T∑
t=1

[Ft(x
∗)− Ft(x∗δ)] +

T∑
t=1

[(1− 1/e)F̂t(x
∗
δ)− F̂t(yt)]

+

T∑
t=1

(1− 1/e)[Ft(x
∗
δ)− F̂t(x∗δ)]−

T∑
t=1

[Ft(yt)− F̂t(yt)]

≤ (1− 1/e)

T∑
t=1

[Ft(x
∗)− Ft(x∗δ)] +

T∑
t=1

[(1− 1/e)F̂t(x
∗
δ)− F̂t(yt)] + T (1− 1/e)L1δ + TL1δ

= (1− 1/e)

T∑
t=1

[Ft(x
∗)− Ft(x∗δ)] +

T∑
t=1

[(1− 1/e)F̂t(x
∗
δ)− F̂t(yt)] + (2− 1/e)L1Tδ.

]

Suppose x′ ∈ K′ such that ‖x∗ − x′‖= d(x∗, x′) = d(x∗,K′) ≤ d(K,K′) ≤ c1δγ , then we have
T∑
t=1

[Ft(x
∗)− Ft(x∗δ)] =

T∑
t=1

[Ft(x
∗)− Ft(x′) + Ft(x

′)− Ft(x∗δ)]

=

T∑
t=1

[Ft(x
∗)− Ft(x′)] + [

T∑
t=1

Ft(x
′)−

T∑
t=1

Ft(x
∗
δ)]

≤
T∑
t=1

[L1‖x∗ − x′‖] + 0

≤ c1L1Tδ
γ ,

where the first inequality holds thanks to the optimality of x∗δ and the assumption that Ft is L1-
Lipschitz.

Moreover, we have

R̂T ,
T∑
t=1

[(1− 1/e)F̂t(x
∗
δ)− F̂t(yt)]

=

Q∑
q=1

L∑
i=1

[(1− 1/e)F̂tq,i(x
∗
δ)− F̂tq,i(xq)] +

Q∑
q=1

K∑
k=1

[F̂tq,k(xq)− F̂tq,k(ytq,k)]

≤
Q∑
q=1

L∑
i=1

[(1− 1/e)F̂tq,i(x
∗
δ)− F̂tq,i(xq)] +

Q∑
q=1

K∑
k=1

[2M1]

=

Q∑
q=1

L∑
i=1

[(1− 1/e)F̂tq,i(x
∗
δ)− F̂tq,i(xq)] + 2M1QK

where the inequality holds since

|F̂q,tk(x)|= |Ev∼Bn [Fq,tk(x+ δv)]|≤ E[|Fq,tk(x+ δv)|] ≤M1.

So by now, we have

RT ≤ (1− 1/e)c1L1Tδ
γ + (2− 1/e)L1Tδ+ 2M1QK +

Q∑
q=1

L∑
i=1

[(1− 1/e)F̂tq,i(x
∗
δ)− F̂tq,i(xq)].
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In order to upper bound
∑Q
q=1

∑L
i=1[(1 − 1/e)F̂tq,i(x

∗
δ) − F̂tq,i(xq)], we first define the average

function:

F̄q,k(x) =

∑L
i=k+1 F̂tq,i(x)

L− k
.

Recall that (tq,1, · · · , tq,K) is a random sub-sequence of {(q − 1)L + 1, · · · , qL}, and is used for
“exploration”.

We first claim that similar result to Lemma 3 in Appendix B still holds for Algorithm 2.

Lemma 9. If Ft is monotone continuous DR-submodular and L2-smooth, x(k+1)
t = x

(k)
t + 1

K (v
(k)
t −

u) for k ∈ [K], where v(k)
t , x

(k)
t ∈ K′, u is the lower bound of K′, then

Ft(x
∗
δ)− Ft(x

(k+1)
t ) ≤(1− 1/K)[Ft(x

∗
δ)− Ft(x

(k)
t )]

− 1

K
[− 1

2β(k)
‖∇Ft(x(k)

t )− d(k)
t ‖2−

β(k)D2

2
+ 〈d(k)

t , v
(k)
t − x∗δ〉] +

L2D
2

2K2
,

where {β(k)} is a sequence of positive parameters to be determined.

Proof of Lemma 9. Since Ft is L2-smooth and x(k+1)
t = x

(k)
t + 1

K (v
(k)
t − u), we have

Ft(x
(k+1)
t ) ≥ Ft(x(k)

t ) + 〈∇Ft(x(k)
t ), x

(k+1)
t − x(k)

t 〉 −
L2

2
‖x(k+1)

t − x(k)
t ‖2

= Ft(x
(k)
t ) + 〈 1

K
∇Ft(x(k)

t ), v
(k)
t − u〉 −

L2

2K2
‖v(k)
t − u‖2

≥ Ft(x(k)
t ) +

1

K
〈∇Ft(x(k)

t ), v
(k)
t − u〉 −

L2D
2

2K2
.

(19)

We can rewrite the term 〈∇Ft(x(k)
t ), v

(k)
t − u〉 as

〈∇Ft(x(k)
t ), v

(k)
t − u〉 = 〈∇Ft(x(k)

t )− d(k)
t , v

(k)
t 〉+ 〈d(k)

t , v
(k)
t 〉 − 〈∇Ft(x

(k)
t ), u〉

= 〈∇Ft(x(k)
t )− d(k)

t , v
(k)
t − x∗δ〉+ 〈∇Ft(x(k)

t )− d(k)
t , x∗δ〉

+ 〈d(k)
t , v

(k)
t 〉 − 〈∇Ft(x

(k)
t ), u〉

= 〈∇Ft(x(k)
t )− d(k)

t , v
(k)
t − x∗δ〉+ 〈∇Ft(x(k)

t ), x∗δ − u〉+ 〈d(k)
t , v

(k)
t − x∗δ〉.

(20)

Denote y∗δ = x∗δ −u, y
(k)
t = x

(k)
t −u, then y∗δ ≥ 0, y

(k)
t ≥ 0, by the definition of lower bound u, and

the fact x∗δ , x
(k)
t ∈ K′. Since Ft is monotone and is concave along non-negative directions, we have

Ft(x
∗
δ)− Ft(x

(k)
t ) = Ft(y

∗
δ + u)− Ft(y(k)

t + u)

≤ Ft[(y∗δ + u) ∨ (y
(k)
t + u)]− Ft(y(k)

t + u)

≤ 〈∇Ft(y(k)
t + u), [(y∗δ + u) ∨ (y

(k)
t + u)]− (y

(k)
t + u)〉

= 〈∇Ft(y(k)
t + u), [(y∗δ + u)− (y

(k)
t + u)] ∨ 0〉

= 〈∇Ft(y(k)
t + u), (y∗δ − y

(k)
t ) ∨ 0〉

≤ 〈∇Ft(y(k)
t + u), y∗δ 〉

= 〈∇Ft(x(k)
t ), x∗δ − u〉.

(21)

Combine Eqs. (20) and (21), we have

〈∇Ft(x(k)
t ), v

(k)
t −u〉 ≥ 〈∇Ft(x

(k)
t )−d(k)

t , v
(k)
t −x∗δ〉+[Ft(x

∗
δ)−Ft(x

(k)
t )]+〈d(k)

t , v
(k)
t −x∗δ〉. (22)

25



By Young’s ineqaulity, we have

〈∇Ft(x(k)
t )− d(k)

t , v
(k)
t − x∗δ〉 ≥ −

1

2β(k)
‖∇Ft(x(k)

t )− d(k)
t ‖2−

β(k)

2
‖v(k)
t − x∗δ‖2

≥ − 1

2β(k)
‖∇Ft(x(k)

t )− d(k)
t ‖2−

β(k)D2

2
.

(23)

Now combine Eqs. (19), (22) and (23), we have

Ft(x
(k+1)
t ) ≥ 1

K
[− 1

2β(k)
‖∇Ft(x(k)

t )− d(k)
t ‖2−

β(k)D2

2
+ [Ft(x

∗
δ)− Ft(x

(k)
t )] + 〈d(k)

t , v
(k)
t − x∗δ〉]

+ Ft(x
(k)
t )− L2D

2

2K2
.

Or, equivalently,

Ft(x
∗
δ)− Ft(x

(k+1)
t ) ≤(1− 1/K)[Ft(x

∗
δ)− Ft(x

(k)
t )]

− 1

K
[− 1

2β(k)
‖∇Ft(x(k)

t )− d(k)
t ‖2−

β(k)D2

2
+ 〈d(k)

t , v
(k)
t − x∗δ〉] +

L2D
2

2K2
,

Since F̂t is monotone continuous DR-submodular and L2-smooth for all t, with Lemma 9, and
repeating the proof of Lemma 4 in Appendix B, we have

E[(1− 1/e)F̄q,0(x∗δ)− F̄q,0(xq)] ≤E[
1

K

K∑
k=1

[
1

2β(k)
∆(k)
q +

β(k)D2

2
]] +

L2D
2

2K

+ 1/K

K∑
k=1

(1− 1/K)K−kE[〈d(k)
q , x∗δ − v(k)

q 〉]

where ∆
(k)
q = ‖∇F̄q,k−1(x

(k)
q )− d(k)

q ‖2.

Therefore, we have

E[

Q∑
q=1

L∑
i=1

[(1− 1/e)F̂tq,i(x
∗
δ)− F̂tq,i(xq)]]

=

Q∑
q=1

LE[(1− 1/e)F̄q,0(x∗δ)− F̄q,0(xq)]

=E[
L

K

Q∑
q=1

K∑
k=1

∆
(k)
q

2β(k)
] +

LQ

K

K∑
k=1

β(k)D2

2
+
LQL2D

2

2K

+
L

K

K∑
k=1

(1− 1/K)K−k
Q∑
q=1

E[〈d(k)
q , x∗δ − v(k)

q 〉]

≤E[
L

K

Q∑
q=1

K∑
k=1

∆
(k)
q

2β(k)
] +

LQ

K

K∑
k=1

β(k)D2

2
+
LQL2D

2

2K

+
L

K

K∑
k=1

1 · REQ

≤E[
L

K

Q∑
q=1

K∑
k=1

∆
(k)
q

2β(k)
] +

LQ

K

K∑
k=1

β(k)D2

2
+
LQL2D

2

2K
+ LREQ.

(24)

26



Then we have

E[RT ] ≤ (1− 1/e)c1L1Tδ
γ + (2− 1/e)L1Tδ + 2M1QK

+ E[
L

K

Q∑
q=1

K∑
k=1

∆
(k)
q

2β(k)
] +

LQ

K

K∑
k=1

β(k)D2

2
+
LQL2D

2

2K
+ LREQ.

(25)

Note REQ is the regret of the online linear maximization oracle E at horizon Q, which is of order
O(
√
Q). So in order to get an upper bound for the expected regret of Algorithm 2, the key is to bound

E[∆
(k)
q ]. Here, we have an analogue of Lemma 5 in Appendix B:

Lemma 10. Under the setting of Theorem 4, we have

E[∆(k)
q ] ≤ ρ2

kσ
2+(1−ρk)2E[∆(k−1)

q ]+(1−ρk)2 G

(k + 2)2
+(1−ρk)2

[
G

αk(k + 2)2
+ αkE[∆(k−1)

q ]

]
,

where {αk} is a sequence of positive parameters to be determined, σ2 = L2
1 +

d2M2
1

δ2 , G =

[3L2R+ 2L1]2.

Proof of Lemma 10. First, the decomposition of ∆
(k)
q Eq. (7) still holds, with ∇̃Ftq,k(x

(k)
q ) replaced

by gq,k.

We also denote Fq,k to be the σ-field generated by tq,1, tq,2, · · · , tq,k. Since E[gq,k|Fq,k] =

∇F̂tq,k(x
(k)
q )|Fq,k, we have E[gq,k|Fq,k−1] = ∇F̄q,k−1(x

(k)
q )|Fq,k−1. Then by law of iterated

expectations, we can get the results similar to Eqs. (8) to (12).

Precisely, we have:

E[E[‖∇F̄q,k−1(x(k)
q )−∇F̂tq,k(x(k)

q )‖2|Fq,k−1]] = E[Var(∇F̂tq,k(x(k)
q )|Fq,k−1)]

≤ E[‖∇F̂tq,k(x(k)
q )‖2]

≤ L2
1,

E[E[‖∇F̂tq,k(x(k)
q )− gq,k‖2|Fq,k−1]] =E[‖∇F̂tq,k(x(k)

q )− gq,k‖2]

=E[E[‖∇F̂tq,k(x(k)
q )− gq,k‖2|Fq,k]]

=E[Var(gq,k|Fq,k)]

≤d
2M2

1

δ2
,

and
E[E[〈∇F̄q,k−1(x(k)

q )−∇F̂tq,k(x(k)
q ),∇F̂tq,k(x(k)

q )− gq,k〉|Fq,k−1]] = 0.

Thus we have

E[‖∇F̄q,k−1(x(k)
q )− gq,k‖2]

=E[E[‖∇F̄q,k−1(x(k)
q )− gq,k‖2|Fq,k−1]]

=E[E[‖∇F̄q,k−1(x(k)
q )−∇F̂tq,k(x(k)

q )‖2+‖∇F̂tq,k(x(k)
q )− gq,k‖2

+ 2〈∇F̄q,k−1(x(k)
q )−∇F̂tq,k(x(k)

q ),∇F̂tq,k(x(k)
q )− gq,k〉|Fq,k−1]]

≤L2
1 +

d2M2
1

δ2

,σ2.

(26)

We also have the results similar to Eqs. (13) and (14):

E[〈∇F̄q,k−1(x(k)
q )− gq,k,∇F̄q,k−1(x(k)

q )−∇F̄q,k−2(x(k−1)
q )〉] = 0, (27)

and
E[〈∇F̄q,k−1(x(k)

q )− gq,k,∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉] = 0. (28)

27



Also, by Young’s Inequality, we have

〈∇F̄q,k−1(x(k)
q )−∇F̄q,k−2(x(k−1)

q ),∇F̄q,k−2(x(k−1)
q )− d(k−1)

q 〉

≤ 1

2αk
‖∇F̄q,k−1(x(k)

q )−∇F̄q,k−2(x(k−1)
q )‖2+

αk
2

∆(k−1)
q .

(29)

Now we turn to bound ‖∇F̄q,k−1(x
(k)
q )−∇F̄q,k−2(x

(k−1)
q )‖2, z2

q,k. Actually, we have

E[z2
q,k] = E[E[‖∇F̄q,k−1(x(k)

q )−∇F̄q,k−2(x(k−1)
q )‖2|Fq,k−2]]

= E[E[‖
∑L
i=k∇F̂tq,i(x

(k)
q )

L− k + 1
−
∑L
i=k−1∇F̂tq,i(x

(k−1)
q )

L− k + 2
‖2|Fq,k−2]]

= E[E[‖
∑L
i=k∇F̂tq,i(x

(k)
q )−∇F̂tq,i(x

(k−1)
q )

L− k + 2
+

∑L
i=k∇F̂tq,i(x

(k)
q )

(L− k + 1)(L− k + 2)

−
∇F̂tq,k−1

(x
(k−1)
q )

L− k + 2
‖2|Fq,k−2]]

≤ E[E[(

L∑
i=k

‖
∇F̂tq,i(x

(k)
q )−∇F̂tq,i(x

(k−1)
q )

L− k + 2
‖+

L∑
i=k

‖
∇F̂tq,i(x

(k)
q )

(L− k + 1)(L− k + 2)
‖

+ ‖
∇F̂tq,k−1

(x
(k−1)
q )

L− k + 2
‖)2|Fq,k−2]],

where the inequality comes from the Triangle Inequality of norms.

Recall the update rule where x(k)
q = x

(k−1)
q + 1

K (v
(k−1)
q − u) and that F̂t is L2-smooth, we have

‖∇F̂tq,i(x(k)
q )−∇F̂tq,i(x(k−1)

q )‖≤ L2
‖v(k−1)
q − u‖
K

≤ L2R

K
.

Also by Assumption 2, ‖∇Ftq,i(x)‖≤ L1 for all x ∈ K, thus ‖∇F̂tq,i(x
(k)
q )‖≤ L1,

‖∇F̂tq,k−1
(x

(k−1)
q )‖≤ L1. Therefore, we have

E[z2
q,k] ≤ [(L− k + 1)

L2R

K

1

L− k + 2
+ (L− k + 1)

L1

(L− k + 1)(L− k + 2)
+

L1

L− k + 2
]2

≤
(
L− k + 1

L− k + 2

L2R

K
+

2L1

L− k + 2

)2

.

Since we assume L � K, we can always choose L,K such that L ≥ 2K. So we have 2L1

L−k+2 ≤
2L1

2K−k+2 ≤
2L1

K+2 ≤
2L1

k+2 . Also, L−k+1
L−k+2

L2R
K ≤ L2R

K = K+2
K

L2R
K+2 ≤ 3 L2R

K+2 ≤
3L2R
k+2 .

Therefore, we have

E[z2
q,k] ≤

(
3L2R

k + 2
+

2L1

k + 2

)2

=

(
3L2R+ 2L1

k + 2

)2

,
G

(k + 2)2
.

(30)

Combining Eqs. (26) to (30), we have

E[∆(k)
q ] ≤ ρ2

kσ
2+(1−ρk)2E[∆(k−1)

q ]+(1−ρk)2 G

(k + 2)2
+(1−ρk)2

[
G

αk(k + 2)2
+ αkE[∆(k−1)

q ]

]
.

28



Applying Lemma 10 and setting αk = ρk
2 ,∀k ∈ 1, 2, · · · ,K, we have

E[∆(k)
q ] ≤ ρ2

kσ
2 + (1− ρk)2E[∆(k−1)

q ] + (1− ρk)2 G

(k + 2)2

+ (1− ρk)2

[
G

αk(k + 2)2
+ αkE[∆(k−1)

q ]

]
= ρ2

kσ
2 +

G

(k + 2)2
(1− ρk)2

(
1 +

2

ρk

)
+ E[∆(k−1)

q ](1− ρk)2
(

1 +
ρk
2

)
.

Note that if 0 < ρk ≤ 1, then we have

(1− ρk)2

(
1 +

2

ρk

)
≤
(

1 +
2

ρk

)
and

(1− ρk)2
(

1 +
ρk
2

)
≤ (1− ρk).

So in this case, we have

E[∆(k)
q ] ≤ ρ2

kσ
2 +

G

(k + 2)2

(
1 +

2

ρk

)
+ E[∆(k−1)

q ](1− ρk). (31)

Lemma 11. Under the setting of Theorem 4, we have

E[∆(k)
q ] ≤ N0

(k + 3)2/3
,∀k ∈ [K],

where N0 = 42/3(2σ2 +G).

Proof of Lemma 11. Since ρk = 2
(k+2)2/3

, we have 0 < ρk ≤ 1, and

E[∆(k)
q ] ≤ 4σ2

(k + 2)4/3
+

G

(k + 2)2
[1 + (k + 2)2/3] + E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
≤ 4σ2

(k + 2)4/3
+

G

(k + 2)4/3
+

G

(k + 2)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
=

4σ2 + 2G

(k + 2)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
≤

42/3

2 (4σ2 + 2G)

(k + 2)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
=

42/3(2σ2 +G)

(k + 2)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
,

N0

(k + 2)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
.

Recall that ∆
(k)
q = ‖∇F̄q,k−1(x

(k)
q )− d(k)

q ‖2, and thus

∆(1)
q = ‖∇F̄q,0(u)− d(1)

q ‖2

= ‖
∑L
i=1∇F̂tq,i(u)

L
− 2

32/3
gq,1)‖2

≤

(
L∑
i=1

‖
∇F̂tq,i(u)

L
‖+‖ 2

32/3
gq,1‖

)2

≤
(
L
L1

L
+

2

32/3

d

δ
M1

)2

≤ (L1 +
d

δ
M1)2.
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Now we claim that E[∆
(k)
q ] ≤ N0

(k+3)2/3
for any k ∈ [K]. We prove it by induction. When k = 1, we

have
N0

(1 + 3)2/3
= 2σ2 +G ≥ 2σ2 = 2(L2

1 +
d2M2

1

δ2
) ≥ (L1 +

dM1

δ
)2 ≥ ∆(1)

q ,

where the second inequality holds since 2(a2 + b2) ≥ (a+ b)2.

Assume the statement holds for k − 1, i.e., E[∆
(k−1)
q ] ≤ N0

(k+2)2/3
, then

E[∆(k)
q ] ≤ N0

(k + 2)4/3
+ E[∆(k−1)

q ]

(
1− 2

(k + 2)2/3

)
≤ N0

(k + 2)4/3
+

N0

(k + 2)2/3

(
1− 2

(k + 2)2/3

)
=
N0[(k + 2)2/3 − 1]

(k + 2)4/3
.

Since (k+3)2 = k2+6k+9 ≤ k2+4k+4+1+3(k+2) ≤ (k+2)2+1+3(k+2)4/3+3(k+2)2/3 =
[(k + 2)2/3 + 1]3, by taking the cube roots of both sides, we have (k + 3)2/3 ≤ (k + 2)2/3 + 1,
which implies that [(k+ 2)2/3 − 1](k+ 3)2/3 ≤ [(k+ 2)2/3 − 1][(k+ 2)2/3 + 1] ≤ (k+ 2)4/3, i.e.,
(k+2)2/3−1

(k+2)4/3
≤ 1

(k+3)2/3
. Thus we have

E[∆(k)
q ] ≤ N0

(k + 3)2/3
,∀k ∈ [K].

Recall that in Eq. (25), we have

E[RT ] ≤ (1− 1/e)c1L1Tδ
γ + (2− 1/e)L1Tδ + 2M1QK

+ E[
L

K

Q∑
q=1

K∑
k=1

∆
(k)
q

2β(k)
] +

LQ

K

K∑
k=1

β(k)D2

2
+
LQL2D

2

2K
+ LREQ.

So if we set β(k) = 1
δ(k+3)1/3

, then by Lemma 11, we have

K∑
k=1

E[∆
(k)
q ]

β(k)
≤

K∑
k=1

δN0

(k + 3)1/3
≤

K∑
k=1

δN0

k1/3
≤
∫ K

0

δN0

x1/3
dx =

3δN0

2
K2/3.

Similarly,
K∑
k=1

β(k) =

K∑
k=1

1

δ(k + 3)1/3
≤ 3K2/3

2δ
.

Therefore, we have

E[RT ] ≤ (1−1/e)c1L1Tδ
γ+(2−1/e)L1Tδ+2M1QK+

3δN0LQ

4K1/3
+

3D2LQ

4δK1/3
+
LQL2D

2

2K
+LREQ.

By setting δ = c2T
− 1

3+6min{1,γ} , Q = T
2min{1,γ}

3+6min{1,γ} , L = T
3+4min{1,γ}
3+6min{1,γ} ,K = T

1+min{1,γ}
1+2min{1,γ} , and

recall thatREQ ≤ C
√
Q = CT

min{1,γ}
3+6min{1,γ} , N0 = 42/3(2σ2 +G) = 42/3(2L2

1 +
2d2M2

1

δ2 +G), where
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G = (3L2R+ 2L1)2 is a constant, we have

E[RT ] ≤(1− 1/e)c1c
γ
2L1T

1− γ
3+6min{1,γ} + (2− 1/e)c2L1T

1− 1
3+6min{1,γ} + 2M1T

3+5min{1,γ}
3+6min{1,γ}

+
3 · 42/3c2(2L2

1 +G)

4
T

1+5min{1,γ}
3+6min{1,γ} +

3 · 42/3d2M2
1

2c2
T

3+5min{1,γ}
3+6min{1,γ} +

3D2

4c2
T

3+5min{1,γ}
3+6min{1,γ}

+
L2D

2

2
T

min{1,γ}
1+2min{1,γ} + CT

3+5min{1,γ}
3+6min{1,γ}

≤(1− 1/e)c1c
γ
2L1T

1− min{1,γ}
3+6min{1,γ} + (2− 1/e)c2L1T

1− min{1,γ}
3+6min{1,γ}

+

[
2M1 +

3 · 42/3d2M2
1

2c2
+

3D2

4c2
+ C

]
T

3+5min{1,γ}
3+6min{1,γ}

+
3 · 42/3c2(2L2

1 +G)

4
T

1+5min{1,γ}
3+6min{1,γ} +

L2D
2

2
T

min{1,γ}
1+2min{1,γ}

=

[
(1− 1/e)c1c

γ
2L1 + (2− 1/e)c2L1 + 2M1 +

3 · 41/6d2M2
1

c2
+

3D2

4c2
+ C

]
T

3+5min{1,γ}
3+6min{1,γ}

+
3c2[2L2

1 + (3L2R+ 2L1)2]

41/3
T

1+5min{1,γ}
3+6min{1,γ} +

L2D
2

2
T

min{1,γ}
1+2min{1,γ} .

E.2 Down-closed Constraint Set

Proof of Theorem 2. Since K satisfies Assumption 1 and is down-closed, α = (
√
d+1)δ
r =

√
d+1√
d+2

T−1/9 < 1, by Lemma 1, we have Assumption 8 holds with c1 =
√
d(Rr + 1) + R

r , γ =

1, u = δ1. Then by applying Theorem 4 directly, we can prove Theorem 2.

F Proof of Lemma 2

Proof of Lemma 2. We give an example of the matroids which satisfy Lemma 2. Let Ω = {1, 2}, the
matroid I = {∅, {1}, {2}}. Define set function

f(X) =


0, X = ∅;

a, X = {1};
b, X = {2}, or X = {1, 2};

where b > a > 0. It can be verified that f is submodular and its multilinear extension F (x) =
ax1 + bx2 − ax1x2, where x = (x1, x2) ∈ [0, 1]2.

Suppose that

round(x) =


{1}, with probability p1(x);

{2}, with probability p2(x);

∅, with probability p3(x).

Then the assumption F (x) = E[f(round(x)] implies F (x) = p1(x) · a+ p2(x) · b,∀b > a > 0. So
we have p1(x) = x1 − x1x2, p2(x) = x2.

However, if we define f in another way:

f(X) =


0, X = ∅;

b, X = {2};
a, X = {1}, or X = {1, 2};

where a > b > 0. Then it can be also verified that f is submodular and its multilinear extension
F (x) = ax1 + bx2 − bx1x2, where x = (x1, x2) ∈ [0, 1]2.

Again, suppose that

round(x) =


{1}, with probability p1(x);

{2}, with probability p2(x);

∅, with probability p3(x).
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Then the assumption F (x) = E[f(round(x)] implies F (x) = p1(x) · a+ p2(x) · b,∀a > b > 0. So
we have p1(x) = x1, p2(x) = x2 − x1x2.

Therefore, for different functions f ’s, we have different sampling schemes round(·)’s, which are
subject to the matroid I constraint, and satisfy F (x) = E[f(round(x)], i.e., the sampling scheme
does depend on the function. So there does not exist a sampling scheme round : [0, 1]d → I, which
satisfies E[f(round(x))] = F (x),∀x ∈ [0, 1]d, and does not depend on the submodular set function
f ,

G Proof of Theorem 3

Since Algorithm 3 applies Algorithm 2 on the multilinear extension Ft of ft, a prerequisite is
that Assumptions 1, 2 and 4 to 6 all hold. The constraint set K is a polytope in [0, 1]d that is
convex and compact and contains 0. So Assumption 1 holds. Additionally, we have the diameter
D = supx,y∈K‖x− y‖≤

√
d and the radius R = supx∈K‖x‖≤

√
d.

Since each objective function ft is monotone submodular, its multilinear extension Ft is monotone
and continuous DR-submodular [16]. If supX⊆Ω|ft(X)|≤ M , then Assumption 6 holds for Ft
automatically, and the following lemma shows that its multilinear extension Ft is Lipschitz and
smooth, which entails Assumption 2.
Lemma 12 (Lemma 4 in [19]). For a submodular set function f with supX⊆Ω|f(X)|≤ M , its
multilinear extension F is (2M

√
d)-Lipschitz and (4M

√
d(d− 1))-smooth.

In summary, we only need Assumptions 4, 5 and 7. Now we turn to prove Theorem 3.

Proof of Theorem 3. We first define X∗ = arg maxX∈I
∑T
t=1 ft(X), the corresponding fractional

solution is x̃ ∈ K, i.e.,
ft(X

∗) = Ft(x̃), (32)
where Ft is the multilinear extension of ft. We also define x∗ = arg maxx∈K

∑T
t=1 Ft(x), x∗δ =

arg maxx∈K′
∑T
t=1 Ft(x). The (1− 1/e)-regret with horizon T is

RT =

T∑
t=1

[(1− 1/e)ft(X
∗)− ft(Yt)1Yt∈I ]. (33)

We have
T∑
t=1

ft(Yt)1Yt∈I =

Q∑
q=1

L∑
i=1

ftq,i(Ytq,i)1Ytq,i∈I

=

Q∑
q=1

L∑
i=K+1

ftq,i(Ytq,i) +

Q∑
q=1

K∑
k=1

Ftq,k(ytq,k)−
Q∑
q=1

K∑
k=1

Ftq,k(ytq,k)

+

Q∑
q=1

K∑
k=1

ftq,k(Ytq,k)1Ytq,k∈I

≥
Q∑
q=1

L∑
i=K+1

Ftq,i(ytq,i) +

Q∑
q=1

K∑
k=1

Ftq,k(ytq,k)−
Q∑
q=1

K∑
k=1

M1 +

Q∑
q=1

K∑
k=1

0

=

T∑
t=1

Ft(yt)−QKM1,

(34)

where the second equation holds since for t ∈ {(q − 1)L + 1, · · · , qL} \ {tq,1, · · · , tq,K}, Yt =
LosslessRound(xq) ∈ I, and the inequality holds because of the fact that the rounding is lossless
and Assumption 7.

Therefore, by Eqs. (32) to (34) and the optimality of x∗, we have

RT ≤
T∑
t=1

[(1− 1/e)Ft(x̃)−Ft(yt)] +QKM1 ≤
T∑
t=1

[(1− 1/e)Ft(x
∗)−Ft(yt)] +QKM1. (35)

32



Now we can repeat the proof of Theorem 4 (Appendix E.1) to upper bound
∑T
t=1[(1− 1/e)Ft(x

∗)−∑T
t=1 Ft(yt), with L1 = 2M1

√
d, L2 = 4M1

√
d(d− 1) by Lemma 12. The only difference is

when we turn to bound E[∆
(k)
q ] = E[‖∇F̄q,k−1(x

(k)
q )− d(k)

q ‖2], where F̄q,k(x) =
∑L
i=k+1 F̂tq,i (x)

L−k ,

we have a larger upper bound for E[‖∇F̄q,k−1(x
(k)
q ) − gq,k‖2], where gq,k = d

δ ftq,k(Ytq,k)uq,k.
Precisely, we have

E[‖∇F̄q,k−1(x(k)
q )− gq,k‖2]

=E[‖∇F̄q,k−1(x(k)
q )−∇F̂tq,k(x(k)

q ) +∇F̂tq,k(x(k)
q )− d

δ
Ftq,k(ytq,k)uq,k +

d

δ
Ftq,k(ytq,k)uq,k − gq,k‖2]

=E[E[‖∇F̄q,k−1(x(k)
q )−∇F̂tq,k(x(k)

q )‖2+‖∇F̂tq,k(x(k)
q )− d

δ
Ftq,k(ytq,k)uq,k‖2

+ ‖d
δ
Ftq,k(ytq,k)uq,k − gq,k‖2

≤L2
1 +

d2M2
1

δ2
+
d2M2

1

δ2

=L2
1 +

2d2M2
1

δ2

,σ2.

Plug in the new upper bound for σ2, and repeat the analysis of Theorem 4, we have

E[

T∑
t=1

[(1− 1/e)Ft(x
∗)− Ft(yt)]] ≤ NT

8
9 +

3r[2L2
1 + (3L2R+ 2L1)2]

41/3(
√
d+ 2)

T
2
3 +

L2D
2

2
T

1
3 , (36)

whereN = (1−1/e)r√
d+2

[
√
d(Rr +1)+ R

r ]L1+ (2−1/e)r√
d+2

L1+2M1+
3·42/3(

√
d+2)d2M2

1

r + 3(
√
d+2)D2

4r +C,
C is a constant satisfyingREQ ≤ C

√
Q.

Combine Eqs. (35) and (36), and using QKM1 = M1T
8/9, D ≤

√
d,R ≤

√
d, we conclude

E[RT ] ≤ NT 8
9 +

3r[2L2
1 + (3

√
dL2 + 2L1)2]

41/3(
√
d+ 2)

T
2
3 +

L2d

2
T

1
3 ,

where N = (1−1/e)r√
d+2

[dr +
√
d(1 + 1

r )]L1 + (2−1/e)r√
d+2

L1 + 3M1 +
3·42/3(

√
d+2)d2M2

1

r + 3(
√
d+2)d
4r +C,

C is a constant satisfyingREQ ≤ C
√
Q.
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