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Abstract

Graph neural networks (GNNs) are effective models for many dynamical systems
consisting of entities and relations. Although most GNN applications assume
a single type of entity and relation, many situations involve multiple types of
interactions. Relational inference is the problem of inferring these interactions and
learning the dynamics from observational data. We frame relational inference as a
modular meta-learning problem, where neural modules are trained to be composed
in different ways to solve many tasks. This meta-learning framework allows us
to implicitly encode time invariance and infer relations in context of one another
rather than independently, which increases inference capacity. Framing inference
as the inner-loop optimization of meta-learning leads to a model-based approach
that is more data-efficient and capable of estimating the state of entities that we
do not observe directly, but whose existence can be inferred from their effect
on observed entities. To address the large search space of graph neural network
compositions, we meta-learn a proposal function that speeds up the inner-loop
simulated annealing search within the modular meta-learning algorithm, providing
two orders of magnitude increase in the size of problems that can be addressed.

1 Introduction

Many dynamical systems can be modeled in terms of entities interacting with each other, and can be
best described by a set of nodes and relations. Graph neural networks (GNNs) (Gori et al., 2005;
Battaglia et al., 2018) leverage the representational power of deep learning to model these relational
structures. However, most applications of GNNs to such systems only consider a single type of object
and interaction, which limits their applicability. In general there may be several types of interaction;
for example, charged particles of the same sign repel each other and particles of opposite charge
attract each other. Moreover, even when there is a single type of interaction, the graph of interactions
may be sparse, with only some object pairs interacting. Similarly, relational inference can be a useful
framework for a variety of applications such as modeling multi-agent systems (Sun et al., 2019; Wu
et al., 2019a), discovering causal relationships (Bengio et al., 2019b) or inferring goals and beliefs of
agents (Rabinowitz et al., 2018).

We would like to infer object types and their relations by observing the dynamical system. Kipf et al.
(2018) named this problem neural relational inference and approached it using a variational inference
framework. In contrast, we propose to approach this problem as a modular meta-learning problem:
after seeing many instances of dynamical systems with the same underlying dynamics but different
relational structures, we see a new instance for a short amount of time and have to predict how it will
evolve. Observing the behavior of the new instance allows us to infer its relational structure, and
therefore make better predictions of its future behavior.

Meta-learning, or learning to learn, aims at fast generalization. The premise is that, by training on a
distribution of tasks, we can learn a learning algorithm that, when given a new task, will learn from
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Figure 1: Modular meta-learning with graph networks; adapted from Alet et al. (2018). The system
meta-learns a library of node and edge modules, represented as small neural networks; at performance
(meta-test) time, it is only necessary to infer the combination of modules that best predict the observed
data for the system, and use that GNN to predict further system evolution.

very little data. Recent progress in meta-learning has been very promising; however, meta-learning
has rarely been applied to learn building blocks for a structured domain; more typically it is used to
adapt parameters such as neural network weights. Modular meta-learning (Alet et al., 2018), instead,
generalizes by learning a small set of neural network modules that can be composed in different
ways to solve a new task, without changing their weights. This representation allows us to generalize
to unseen data-sets by combining learned modules, exhibiting combinatorial generalization; i.e.,
"making infinite use of finite means" (von Humboldt, 1836/1999). In this work we show that modular
meta-learning is a promising approach to the neural relational inference problem.

We proposed the BounceGrad algorithm (Alet et al., 2018), which alternates between simulated
annealing steps, which improve the structure (the assignment of node and edge modules in the GNN)
for each dataset given the current neural modules, and gradient descent steps, which optimize the
module weights given the modular structure used in each dataset. This formulation of neural relational
inference offers several advantages over the variational formulation of Kipf et al. (2018). Primarily,
it allows joint inference of the GNN structure that best models the task data, rather than making
independent predictions of the types of each edge. In addition, since it is model-based, it is much
more data efficient and supports other inferences for which it was not trained. However, the fact that
the space of compositional hypotheses for GNNs is so large poses computational challenges for the
original modular meta-learning algorithm, which could only tackle small modular compositions and
a meta-datasets of only a few hundred tasks, instead of 50.000 in our current framework.

Our contributions are the following:

1. A model-based approach to neural relational inference by framing it as a modular
meta-learning problem. This leads to much higher data efficiency and enables the model
to make inferences for which it was not originally trained.

2. Speeding up modular meta-learning by two orders of magnitude, allowing it to scale
to big datasets and modular compositions. With respect to our previous work (Alet et al.,
2018), we increase the number of modules from 6 to 20 and the number of datasets from
a few hundreds to 50,000. We do so by showing we can batch computation over multiple
tasks (not possible with most gradient-based meta-learning methods) and learning a proposal
function that speeds up simulated annealing.

3. We propose to leverage meta-data coming from each inner optimization during meta-
training to simultaneously learn to learn and learn to optimize. Most meta-learning
algorithms only leverage loss function evaluations to propagate gradients back to a model
and discard other information created by the inner loop optimization. We can leverage
this “meta-data” to learn to perform these inner loop optimizations more efficiently; thus
speeding up both meta-training and meta-test optimizations.

2 Related Work

Graph neural networks (Battaglia et al., 2018) perform computations over a graph (see recent surveys
by Battaglia et al. (2018); Zhou et al. (2018); Wu et al. (2019b)), with the aim of incorporating
relational inductive biases: assuming the existence of a set of entities and relations between them.
Among their many uses, we are especially interested in their ability to model dynamical systems.
GNNs have been used to model objects (Chang et al., 2016; Battaglia et al., 2016; van Steenkiste et al.,

2



2018; Hamrick et al., 2018), parts of objects such as particles (Mrowca et al., 2018), links (Wang et al.,
2018a), or even fluids (Li et al., 2018b) and partial differential equations (Alet et al., 2019). However,
most of these models assume a fixed graph and a single relation type that governs all interactions.
We want to do without this assumption and infer the relations, as in neural relational inference
(NRI) (Kipf et al., 2018). Computationally, we build on the framework of message-passing neural
networks (MPNNs) (Gilmer et al., 2017), similar to graph convolutional networks (GCNs) (Kipf &
Welling, 2016; Battaglia et al., 2018).

In NRI, one infers the type of every edge pair based on node states or state trajectories. This problem
is related to generating graphs that follow some training distribution, as in applications such as
molecule design. Some approaches generate edges independently (Simonovsky & Komodakis, 2018;
Franceschi et al., 2019) or independently prune them from an over-complete graph (Selvan et al.,
2018), some generate them sequentially (Johnson, 2017; Li et al., 2018a; Liu et al., 2018) and others
generate graphs by first generating their junction tree (Jin et al., 2018) . In our approach to NRI, we
make iterative improvements to a hypothesized graph with a learned proposal function.

The literature in meta-learning (Schmidhuber, 1987; Thrun & Pratt, 2012; Lake et al., 2015) and
multi-task learning (Torrey & Shavlik, 2010) is very extensive. However, it mostly involves parametric
generalization; i.e., generalizing by changing parameters: either weights in a neural network, as in
MAML and others variants (Finn et al., 2017; Clavera et al., 2019; Nichol et al., 2018), or in the
inputs fed to the network by using LSTMs or similar methods (Ravi & Larochelle, 2017; Vinyals
et al., 2016; Mishra et al., 2018; Garcia & Bruna, 2017).

In contrast, we build on our method of modular meta-learning which aims at combinatorial general-
ization by reusing modules in different structures. This framework is a better fit for GNNs, which
also heavily exploit module reuse. Combinatorial generalization plays a key role within a growing
community that aims to merge the best aspects of deep learning with structured solution spaces in
order to obtain broader generalizations (Tenenbaum et al., 2011; Reed & De Freitas, 2015; Andreas
et al., 2016; Fernando et al., 2017; Ellis et al., 2018; Pierrot et al., 2019). This and similar ideas
in multi-task learning (Fernando et al., 2017; Meyerson & Miikkulainen, 2017), have been used to
plan efficiently (Chitnis et al., 2018) or find causal structures (Bengio et al., 2019a). Notably, Chang
et al. (2018) learn to tackle a single task using an input-dependent modular composition, with a
neural network trained with PPO (Schulman et al., 2017), a variant of policy gradients, deciding the
composition. This has similarities to our bottom-up proposal approach in section 4, except we train
the proposal function via supervised learning on data from the slower simulated annealing search.

3 Methods

First, we describe the original approaches to neural relational inference and modular meta-learning,
then we detail our strategy for meta-learning the modules for a GNN model.

3.1 Neural relational inference

Figure 2: Task setup, taken from Kipf et al.
(2018): we want to predict the evolution of a
dynamical system by inferring the set of rela-
tions between the entities, such as attraction
and repulsion between charged particles.

Consider a set of n known entities with states that
evolve over T time steps: s1:T

1 , . . . , s1:T
n . Assume

that each pair of entities is related according to one
of a small set of unknown relations, which govern the
dynamics of the system. For instance, these entities
could be charged particles that can either attract or
repel each other. Our goal is to predict the evolution
of the dynamical system; i.e., given sT1 , . . . , s

T
n ,

predict values of sT+1:T+k
1 , . . . , sT+1:T+k

n . If we
knew the true relations between the entities (which
pairs of particles attract or repel) it would be easy to
predict the evolution of the system. However, instead
of being given those relations we have to infer them
from the raw observational data.

More formally, let G be a graph, with nodes
v1, . . . , vn and edges e1, . . . , er′ . Let S be a struc-
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ture detailing a mapping from each node to its corresponding node module and from each edge to its
corresponding edge module. We can now run several steps of message passing: in each step, nodes
read incoming messages from their neighbors and sum them, to then update their own states. The
message µij from node i to j is computed using the edge module determined by S, mSij

, which takes
the states of nodes i and j as input, so µt

ij = mSij

(
sti, s

t
j

)
. The state of each node is then updated

using its own neural network module mSi (in our experiments, this module is the same across all
nodes), which takes as input the sum of its incoming messages, so

st+1
i = sti +mSi

sti, ∑
j∈neigh(vi)

µt
ji

 .

We apply this procedure T times to get st+1, . . . , sT ; the whole process is differentiable, allowing us
to train the parameters of mSi ,mSij end-to-end based on predictive loss.

In the neural relational inference (NRI) setting, the structure S is latent, and must be inferred from
observations of the state sequence. In particular, NRI requires both learning the edge and node
modules, m, and determining which module is used in which position (finding structure S for each
scene). Kipf et al. (2018) propose using a variational auto-encoder with a GNN encoder and decoder,
and using the Gumbel softmax representation to obtain categorical distributions. The encoder is a
graph neural network that takes an embedding of the trajectory of every particle and outputs, for each
node pair, a distribution over possible edge modules. The decoder samples from this factored graph
distribution to get a graph representing a GNN that can be run to obtain output data. However, the
probability distribution over structures is completely factored (each edge is chosen independently),
which can be a poor approximation when the effects of several edges are interdependent or the graph
is known a priori to have some structural property (such as being symmetric, a tree, or bipartite).

3.2 Modular meta-learning

Meta-learning can be seen as learning a learning algorithm. In the context of supervised learning,
instead of learning a regressor f with parameters Θ with the objective that f(xtest,Θ) ≈ ytest, we
aim to learn an algorithm A that takes a small training set Dtrain = (xtrain,ytrain) and returns a
hypothesis h that performs well on the test set:

h = A(Dtrain ,Θ) s.t. h(xtest) ≈ ytest; i.e. A minimizes L(A(Dtrain ,Θ)(xtest),ytest) for loss L.

Similar to conventional learning algorithms, we optimize Θ, the parameters of A, to perform well.

Modular meta-learning learns a set of small neural network modules and forms hypotheses by
composing them into different structures. In particular, let m1, . . . ,mk be the set of modules, with
parameters θ1, . . . , θk and S be a set of structures that describes how modules are composed. For
example, simple compositions can be adding the modules’ outputs, concatenating them, or using the
output of several modules to guide attention over the results of other modules.

For modular meta-learning, Θ = (θ1, . . . , θk) are the weights of modules m1, . . . ,mk, and the
algorithm A operates by searching over the set of possible structures S to find the one that best fits
Dtrain , and applies it to xtest. Let hS,Θ be the function that predicts the output using the modular
structure S and parameters Θ. Then

A(Dtrain ,Θ) = hS∗,Θ where S∗ = arg min
S∈S
L(hS,Θ(xtrain),ytrain) .

Note that, in contrast to many meta-learning algorithms, Θ is constant when learning a new task.

At meta-training time we have to find module weights θ1, . . . , θm that compose well. To do this,
we proposed the BOUNCEGRAD algorithm (Alet et al., 2018) to optimize the modules and find the
structure for each task. It works by alternating steps of simulated annealing and gradient descent. Sim-
ulated annealing (a stochastic combinatorial optimization algorithm) optimizes the structure of each
task using its train split. Gradient descent steps optimize module weights with the test split, pooling
gradients from each instance of a module applied to different tasks. At meta-test time, it has access
to the final training data set, which it uses to perform structure search to arrive at a final hypothesis.
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4 Modular meta-learning graph neural networks

To apply modular meta-learning to GNNs, we let G be the set of node modules g1, . . . , g|G|, where
gi is a network with weights θgi , and let H be the set of edge modules h1, . . . , h|H|, where hi has
weights θhi . We then apply a version of the BOUNCEGRAD method, described in the appendix.
Both modular meta-learning and GNNs exhibit combinatorial generalization, combining small
components in flexible ways to solve new problem instances, making modular meta-learning a
particularly appropriate strategy for meta-learning in GNNs.

To use modular meta-learning for NRI, we create a number of edge modules that is greater or equal to
the potential number of types of interactions; then with modular meta-learning we learn specialized
edge modules that can span many types of behaviors with different graphs. For a new scene we
infer relations by optimizing the edge modules that best fit the data and then classifying the relation
according to the module used for that edge slot. This formulation of neural relational inference has a
number of advantages.

First, the simulated annealing (SA) step in the BOUNCEGRAD algorithm searches the space of struc-
tures, tackling the problem directly in its combinatorial form rather than via differentiable variational
approximations. Moreover, with SA, relations are inferred as a whole instead of independently; this
is critical for inferring the correct relationships from short observation sequences of complex scenes,
where there could be many first-order candidate explanations that roughly approximate the scene
and one has to use higher-order dependencies to obtain an accurate model. For instance, if we are
trying to infer the causal relationship between two variables A and B and we have 40% probability
of A→ B and 60% of B → A, we want to express that these choices are mutually exclusive and the
probability of having both edges is 0% and not 24%.

Second, our formulation is a more direct, model-based approach. Given observational data from a
new scene (task from the meta-learning perspective), we infer an underlying latent model (types of
relations among the entities) by directly optimizing the ability of the inferred model to predict the
observed data. This framework allows facts about the underlying model to improve inference, which
improves generalization performance with small amounts of data. For example, the fact that the
model class is GNNs means that the constraint of an underlying time-invariant dynamics is built into
the learning algorithm. The original feed-forward inference method for NRI cannot take advantage of
this important inductive bias. Another consequence of the model-based approach is that we can ask
and answer other inference questions. An important example is that we can infer the existence and
relational structure of unobserved entities based only on their observable effects on other entities.

However, our modular meta-learning formulation poses a substantial computational challenge. Choos-
ing the module type for each edge in a fully connected graph requires

(
n
2

)
= O(n2) decisions; thus

the search space increases as |H|O(n2), which too large even for small graphs. We address this
problem by proposing two improvements to the BOUNCEGRAD algorithm, which together result in
order-of-magnitude improvements in running time.

Meta-learning a proposal function One way to improve stochastic search methods, including
simulated annealing, is to improve the proposal distribution, so that many fewer proposed moves
are rejected. Similar proposals have been made in the context of particle filters (Doucet et al., 2000;
Mahendran et al., 2012; Andrieu & Thoms, 2008). One strategy is to improve the proposal distribution
by treating it as another parameter to be meta-learned (Wang et al., 2018b); this can be effective,
but only at meta-test time. We take a different approach, which is to treat the current structures
in simulated annealing as training examples for a new proposal function. Note that to train this
proposal function we have plenty of data coming from search at meta-training time. In particular,
after we evaluate a batch of tasks we take them and their respective structures as ground truth for
a batch update to the proposal function. As the algorithm learns to learn, it also learns to optimize
faster since the proposal function will suggest changes that tend to be accepted more often, making
meta-training (and not only meta-testing) faster, making simulated annealing structures better, which
in turn improves proposal functions. This virtuous cycle is similar to the relationship between the
fast policy network and the slow MCTS planner in AlphaZero (Silver et al., 2017), analogous to our
proposal function and simulated annealing optimization, respectively.

Our proposal function takes a dataset D of state transitions and outputs a factored probability
distribution over the modules for every edge. This predictor is structurally equivalent to the encoder
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of Kipf et al. (2018). We use this function to generate a proposal for SA by sampling a random node,
and then using the predicted distribution to resample modules for each of the incoming edges. This
blocked Gibbs sampler is very efficient because edges going to the same node are highly correlated
and it is better to propose a coherent set of changes all at once. To train the proposal function, it
would be ideal to know the true structures associated with the training data. Since we do not have
access to the true structures, we use the best proxy for them: the current structure in the simulated
annealing search. Therefore, for each batch of datasets we do a simulated annealing step on the
training data to decide whether to update the structure. Then, we use the current batch of structures
as target for the current batch of datasets, providing a batch of training data for the proposal function.

Mixtures of learning-to-learn and learning-to-optimize (Li & Malik, 2016) have been made before
in meta-learning in the context of meta-learning loss functions (Yu et al., 2018; Bechtle et al.,
2019). Similarly, we think that other metadata generated by the inner-loop optimizations during
meta-training could be useful to other few-shot learning algorithms, which could be more efficient by
simultaneously learning to optimize. In doing so, we could get could get meta-learning algorithms
with expressive and non-local, but also fast, inner-loop adaptations.

Batched modular meta-learning From an implementation standpoint, it is important to note that,
in contrast to most gradient-based meta-learning algorithms ( Zintgraf et al. (2018) being a notable
exception), modular meta-learning does not need to change the weights of the neural network modules
in its inner loop. This enables us to run the same network for many different datasets in a batch,
exploiting the parallelization capabilities of GPUs and with constant memory cost for the network
parameters. Doing so is especially convenient for GNN structures. We use a common parallelization
in graph neural network training, by creating a super-graph composed of many graphs, one per
dataset. Creating this graph only involves minor book-keeping, by renaming vertex and edges. Since
both edge and node modules can run all their instances in the same graph in parallel, they will
parallelize the execution of all the datasets in the batch. Moreover, since the graphs of the different
datasets are disconnected, their dynamics will not affect one another. In practice, this implementation
speeds up both the training and evaluation time by an order of magnitude. Similar book-keeping
methods are applicable to speed up modular meta-learning for structures other than GNNs.

5 Experiments

We implement our solution in PyTorch (Paszke et al., 2017), using the Adam optimizer (Kingma
& Ba, 2014); details and pseudo-code can be found in the appendix and code can be found at
https://github.com/FerranAlet/modular-metalearning. We follow the choices
of Kipf et al. (2018) whenever possible to make results comparable. Please see the arxiv version for
complete results.

We begin by addressing two problems on which NRI was originally demonstrated, then show that our
approach can be applied to the novel problem of inferring the existence of unobserved nodes.

5.1 Predicting physical systems

Two datasets from Kipf et al. (2018) are available online (https://github.com/
ethanfetaya/NRI/); in each one, we observe the state of dynamical system for 50
time steps and are asked both to infer the relations between object pairs and to predict their states
for the next 10 time steps.

Springs: a set of 5 particles move in a box with elastic collisions with the walls. Each pair of particles
is connected with a spring with probability 0.5. The spring will exert forces following Hooke’s law.
We observe that the graph of forces is symmetric, but none of the algorithms hard-code this fact.

Charged particles: similar to springs, a set of 5 particles move in a box, but now all particles
interact. A particle is set to have positive charge with probability 0.5 and negative charge otherwise.
Particles of opposite charges attract and particles of the same charge repel, both following Coulomb’s
law. This behavior can be modeled using two edge modules, one which will pull a particle i closer
to j and another that pushes it away. We observe that the graph of attraction is both symmetric and
bipartite, but none of the algorithms hard-codes this fact.
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Springs Charged

Prediction steps 1 10 1 10

Static 7.93e-5 7.59e-3 5.09e-3 2.26e-2
LSTM(single) 2.27e-6 4.69e-4 2.71e-3 7.05e-3
LSTM(joint) 4.13e-8 2.19e-5 1.68e-3 6.45e-3

NRI (full graph) 1.66e-5 1.64e-3 1.09e-3 3.78e-3
(Kipf et al., 2018) 3.12e-8 3.29e-6 1.05e-3 3.21e-3
Modular meta-l. 3.13e-8 3.25e-6 1.03e-3 3.11e-3
NRI (true graph) 1.69e-11 1.32e-9 1.04e-3 3.03e-3

Table 1: Prediction results evalu-
ated on datasets from Kipf et al.
(2018), including their baselines for
comparison. Mean-squared error
in prediction after T steps; lower
is better. We observe that our
method is able to either match or
improve the performance of the
auto-encoder based approach, de-
spite it being close to optimal.

Model Springs Charged

Correlation(data) 52.4 55.8
Correlation(LSTM) 52.7 54.2
(Kipf et al., 2018) 99.9 82.1
Modular meta-l. 99.9 88.4

Supervised 99.9 95.0

Table 2: Edge type prediction accuracy. Cor-
relation baselines try to infer the pairwise
relation between two particles on a simple
classifier built upon the correlation between
the temporal sequence of raw states or LSTM
hidden states, respectively. The supervised
gold standard trains the encoder alone with
the ground truth edges. Our work matches
the gold standard on the springs dataset and
halves the distance between the variational
approach and the gold standard in the charged
particles domain.

Figure 3: Accuracy as a function of the training set
size (note the logarithmic axis). By being model-
based, modular meta-learning is around 3-5 times
more data efficient than the variational approach.

Our main goal is to recover the relations accurately just from observational data from the trajectories,
despite having no labels for the relations. To do so we minimize the surrogate goal of trajectory
prediction error, as our model has to discover the underlying relations in order to make good
predictions. We compare to 4 baselines and the novel method used by Kipf et al. (2018). Two of
these baselines resemble other popular meta-learning algorithms that do not properly exploit the
modularity of the problem: feeding the data to LSTMs (either a single trajectory or the trajectory
of all particles) is analogous to recurrent networks used for few-shot learning (Ravi & Larochelle,
2017) and using a graph neural network with only one edge to do predictions is similar to the work
of Garcia & Bruna (2017) to classify images by creating fully connected graphs of the entire dataset.
To make the comparisons as fair as possible, all the neural network architectures (with the encoder in
the auto-encoder framework being our proposal function) are exactly the same.

Prediction error results (table 1) for training on the full dataset indicate that our approach performs
as well as or better than all other methods on both problems. This in turn leads to better edge
predictions, shown in table 2, with our method substantially more accurately predicting the edge types
for the charged particle domain. By optimizing the edge-choices jointly instead of independently,
our method has higher capacity, thus reaching higher accuracies for charged particles. Note that the
higher capacity also comes with higher computational cost, but not higher number of parameters
(since the architectures are the same). In addition, we compare generalization performance of our
method and the VAE approach of Kipf et al. (2018) by plotting predictive accuracy as a function of
the number of meta-training tasks in figure 3. Our more model-based strategy has a built-in inductive
bias that makes it perform significantly better in the low-data regime.
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Figure 4: We observe the trajectories shown in the black box and notice that they differ from the
predictions of our model (red box). We can then hypothesize models with an additional, unseen,
entity (red particle in green box) that is pulling the cyan particle higher and the black and blue particle
towards the right. Conditioning the trajectory of the particle on those predicted by our model, we
make a good estimate of the position of the unseen particle.

5.2 Inferring unseen nodes

In many structured learning problems, we can improve the quality of our predictions by adding
additional latent state. For example, in graphical models, adding "hidden cause" nodes can substan-
tially reduce model complexity and improve generalization performance. In NRI, we may improve
predictive accuracy by adding an additional latent object to the model, represented as a latent node in
the GNN. A famous illustrative example is the discovery of Neptune in 1846 thanks to mathemat-
ical predictions based on its gravitational pull on Uranus, which modified its trajectory. Based on
the deviations of Uranus’ trajectory from its theoretical trajectory had there been no other planets,
mathematicians were able to guess the existence of an unobserved planet and estimate its location.

By casting NRI as modular meta-learning, we have developed a model-based approach that allows
us to infer properties beyond the edge relations. More concretely, we can add a node to the graph
and optimize its trajectory as part of the inner-loop optimization of the meta-learning algorithm. We
only need to add the predicted positions at every time-step t for the new particle and keep the same
self-supervised prediction loss. This loss will be both for the unseen object, ensuring it has a realistic
trajectory, and for the observed objects, which will optimize the node state to influence the observed
nodes appropriately.

In practice, optimizing the trajectory is a very non-smooth problem in R4×T (T is the length of
the predicted trajecories) which is difficult to search. Instead of searching for an optimal trajec-
tory, we optimize only the initial state and determine the following states by running our learned
predictive model. However, since small perturbations can lead to large deviations in the long run,
the optimization is highly non-linear. We thus resort to a combination of random sampling and
gradient descent, where we optimize our current best guess by gradient descent, but keep sampling
for radically different solutions. Detailed pseudo-code for this optimization can be found in the
appendix. We illustrate this capability in the springs dataset, by first training a good model with the
true edges and then finding the trajectory of one of the particles given the other four, where we are
able to predict the state with an MSE of 1.09e-3, which is less than the error of some baselines that
saw the entire dynamical system up to 10 timesteps prior, as seen in table 1.

6 Conclusion

We proposed to frame relational inference as a modular meta-learning problem, where neural modules
are trained to be composed in different ways to solve many tasks. We demonstrated that this approach
leads to improved performance with less training data. We also showed how this framing enables us
to estimate the state of entities that we do not observe directly. To address the large search space of
graph neural network compositions within modular meta-learning, we meta-learn a proposal function
that speeds up the inner-loop simulated annealing search within the modular meta-learning algorithm,
providing one or two orders of magnitude increase in the size of problems that can be addressed.
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