
Correlation Clustering
with Adaptive Similarity Queries

(Supplementary Material)

1 Probability bounds

We give Chernoff-type probability bounds that can be found in e.g. [2] and that we repeatedly use in
our proofs. Let X1, . . . , Xn be binary random variables. We say that X1, . . . , Xn are non-positively
correlated if for all I ⊆ {1, . . . , n} we have:

P[∀i ∈ I : Xi = 0] ≤
∏
i∈I

P[Xi = 0] and P[∀i ∈ I : Xi = 1] ≤
∏
i∈I

P[Xi = 1] (1)

The following holds:

Lemma 1. Let X1, . . . , Xn be independent or, more generally, non-positively correlated binary
random variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any δ > 0, we have:

P[X < (1− δ)E[X]] < e−
δ2

2 E[X] (2)

P[X > (1 + δ)E[X]] < e−
δ2

2+δE[X] (3)

2 Supplementary Material for Section 3

2.1 Pseudocode of ACC

For ease of reference we report the pseudocode of ACC below.

Algorithm 1 ACC with query rate f

Parameters: residual node set Vr, round index r
1: if |Vr| = 0 then RETURN
2: if |Vr| = 1 then output singleton cluster Vr and RETURN
3: if r > df(|V1| − 1)e then RETURN
4: Draw pivot πr u.a.r. from Vr
5: Cr ← {πr} . Create new cluster and add the pivot to it
6: Draw a random subset Sr of df(|Vr| − 1)e nodes from Vr \ {πr}
7: for each u ∈ Sr do query σ(πr, u)

8: if ∃u ∈ Sr such that σ(πr, u) = +1 then . Check if there is at least a positive edge
9: Query all remaining pairs (πr, u) for u ∈ Vr \

(
{πr} ∪ Sr

)
10: Cr ← Cr ∪ {u : σ(πr, u) = +1} . Populate cluster based on queries
11: Output cluster Cr
12: ACC(Vr \ Cr, r + 1) . Recursive call on the remaining nodes

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2.2 Proof of Theorem 1

We refer to the pseudocode above (Algorithm 1). We use Vr to denote the set of remaining nodes at
the beginning of the r-th recursive call, and we let nr = |Vr| − 1. Hence V1 = V and n1 = n− 1. If
the condition in the if statement on line 8 is not true, then Cr is a singleton cluster. We denote by
Vsing the set nodes that are output as singleton clusters.

Let ΓA be the set of mistaken edges for the clustering output by ACC and let ∆A =
∣∣ΓA∣∣ be the cost

of this clustering. Note that, in any recursive call, ACC misclassifies an edge e = {u,w} if and only
if e is part of a bad triangle whose third node v is chosen as pivot and does not become a singleton
cluster, or if σ(e) = +1 and at least one of u,w becomes a singleton cluster. More formally, ACC
misclassifies an edge e = {u,w} if and only if one of the following three disjoint events holds:

B1(e): There exists r ≤ df(n− 1)e and a bad triangle T ≡ {u, v, w} ⊆ Vr such that πr = v and
v 6∈ Vsing.

B2(e): There exists r ≤ df(n− 1)e such that u,w ∈ Vr with σ(u,w) = +1 and πr ∈ {u,w} ∩
Vsing.

B3(e): ACC stops after df(n− 1)e rounds without removing neither u nor w, and σ(u,w) = +1.

Therefore the indicator variable for the event “e is mistaken” is:

I {e ∈ ΓA} = I {B1(e)}+ I {B2(e)}+ I {B3(e)}
The expected cost of the clustering is therefore:

E[∆A] =
∑
e∈E

P(B1(e)) +
∑
e∈E

P(B2(e)) +
∑
e∈E

P(B3(e)) (4)

We proceed to bound the three terms separately.

Bounding
∑
e∈E P(B1(e)). Fix an arbitrary edge e = {u,w}. Note that, if B1(e) occurs, then T

is unique, i.e. exactly one bad triangle T in V satisfies the definition of B1(e). Each occurrence of
B1(e) can thus be charged to a single bad triangle T . We may thus write∑

e∈E
I {B1(e)} =

∑
e∈E

I {(∃ r)(∃T ∈ T) : T ⊆ Vr ∧ e ⊂ T ∧ πr ∈ T \ e ∧ πr 6∈ Vsing}

=
∑
T∈T

I {(∃ r) : T ⊆ Vr ∧ πr ∈ T ∧ πr 6∈ Vsing}

≤
∑
T∈T

I {AT }

where AT ≡
{

(∃ r) : T ⊆ Vr ∧ πr ∈ T
}

. Let us then bound
∑
T∈T P(AT). Let T (e) ≡

{T ′ ∈ T : e ∈ T ′}. We use the following fact extracted from the proof of [1, Theorem 6.1]. If
{βT ≥ 0 : T ∈ T } is a set of weights on the bad triangles such that

∑
T∈T (e) βT ≤ 1 for all e ∈ E ,

then
∑
T∈T βT ≤ OPT. Given e ∈ E and T ∈ T , let FT (e) be the event corresponding to T being

the first triangle in the set T (e) such that T ∈ Vr and πr ∈ T \ e for some r. Now if FT (e) holds
then AT holds and no other AT ′ for T ′ ∈ T (e) \ {T} holds. Therefore∑

T∈T (e)

I {AT ∧ FT (e)} = 1 .

If AT holds for some r0, then it cannot hold for any other r > r0 because πr0 ∈ T implies that for
all r > r0 we have πr0 6∈ Vr implying T 6⊆ Vr. Hence, given that AT holds for r0, if FT (e) holds
too, then it holds for the same r0 by construction. This implies that P

(
FT (e) | AT

)
= 1

3 because
ACC chooses the pivot u.a.r. from the nodes in Vr0 . Thus, for each e ∈ E we can write

1 =
∑

T∈T (e)

P
(
AT ∧ FT (e)

)
=

∑
T∈T (e)

P
(
FT (e) | AT

)
P(AT) =

∑
T∈T (e)

1

3
P(AT) . (5)

Choosing βT = 1
3P(AT) we get

∑
T∈T P(AT) ≤ 3OPT.

In the proof of KwikCluster, the condition
∑
T∈T (e) βT ≤ 1 was ensured by considering events

GT (e) = AT ∧ e ∈ ΓA. Indeed, in KwikCluster the events {GT (e) : T ∈ T (e)} are disjoint,

2

because GT (e) holds iff T is the first and only triangle in T (e) whose node opposite to e is chosen
as pivot. For ACC this is not true because a pivot can become a singleton cluster, which does not
cause e ∈ ΓA necessarily to hold.

Bounding
∑
e∈E P(B2(e)). For any u ∈ Vr, let d+

r (u) =
∣∣ {v ∈ Vr : σ(u, v) = +1}

∣∣. We have:

∑
e∈E

I {B2(e)} =
1

2

∑
u∈V

df(n−1)e∑
r=1

I {πr = u ∧ πr ∈ Vsing} d+
r (u) .

Taking expectations with respect to the randomization of ACC,

∑
e∈E

P
(
B2(e)

)
=

1

2

∑
u∈V

df(n−1)e∑
r=1

E
[
I {πr = u ∧ πr ∈ Vsing} d+

r (u)
]

=
1

2

∑
u∈V

df(n−1)e∑
r=1

E
[
I {πr ∈ Vsing} d+

r (u)
∣∣∣πr = u

]
P(πr = u)

For any round r, let Hr−1 be the sequence of random draws made by the algorithm before round
r. Then P

(
πr ∈ Vsing

∣∣πr = u, Hr−1

)
d+
r (u) = 0 if either d+

r (u) = 0, or d+
r (u) ≥ 1 and

d−r (u) < df(nr)e. Otherwise,

P
(
πr ∈ Vsing

∣∣πr = u, Hr−1

)
=

df(nr)e−1∏
j=0

d−r (u)− j
nr − j

≤
(
d−r (u)

nr

)df(nr)e

=

(
1− d+

r (u)

nr

)df(nr)e

(6)
where the inequality holds because d−r (u) ≤ nr. Therefore, when d+

r (u) ≥ 1 and d−r (u) ≥ df(nr)e,

E
[
I {πr ∈ Vsing} d+

r (u)
∣∣∣πr = u, Hr−1

]
= P

(
πr ∈ Vsing

∣∣πr = u, Hr−1

)
d+
r (u)

=

(
1− d+

r (u)

nr

)df(nr)e

d+
r (u)

=

(
1− d+

r (u)

nr

)df(nr)e

d+
r (u)

≤ exp

(
−d

+
r (u)df(nr)e

nr

)
d+
r (u)

≤ max
z>0

exp

(
−z df(nr)e

nr

)
z

≤ nr
edf(nr)e

≤ nr
ef(nr)

.

Combining with the above, this implies

∑
e∈E

P
(
B2(e)

)
≤ 1

2e

df(n−1)e∑
r=1

E
[

nr
f(nr)

]
≤ 1

2e

df(n−1)e∑
r=1

n

f(n)
≤ n

e

where we used the facts that nr ≤ n and the properties of f .

Bounding
∑
e∈E P(B3(e)). Let Vfin be the remaining vertices in Vr after the algorithm stops and

assume |Vfin| > 1 (so that there is at least a query left). Let nfin = |Vfin| − 1 and, for any u ∈ Vfin,
let d+

fin(u) =
∣∣ {v ∈ Vfin : σ(u, v) = +1}

∣∣. In what follows, we conventionally assume Vr ≡ Vfin

for any r > df(n− 1)e, and similarly for nfin and d+
fin. We have∑

e∈E
I {B3(e)} =

1

2

∑
u∈Vfin

d+
fin(u) ≤ 1

2

(∑
u∈Vfin

nfin

df(nfin)e
+
∑
u∈Vfin

I
{
d+

fin(u) >
nfin

df(nfin)e

}
d+

fin(u)

)
.

3

Fix some r ≤ df(n− 1)e. Given any vertex v ∈ Vr with d+
r (v) ≥ nr

df(nr)e , let Er(v) be the
event that, at round r, ACC queries σ(v, u) for all u ∈ Vr \ {v}. Introduce the notation Sr =∑
u∈Vr I

{
d+
r (u) > nr

df(nr)e

}
d+
r (u) with Sr = Sfin for all r > df(n)e, and let δr = nr − nr+1 be

the number of nodes that are removed from Vr at the end of the r-th recursive call. Then

δr ≥ I {Er(πr)} d+
r (πr) ≥ I

{
d+
r (πr) >

nr
df(nr)e

}
I {Er(πr)} d+

r (πr)

and

E[δr | Hr−1] ≥
∑
v∈Vr

I
{
d+
r (v) >

nr
df(nr)e

}
P
(
Er(v) | πr = v, Hr−1

)
P(πr = v | Hr−1)d+

r (v) .

Using the same argument as the one we used to bound (6),

P
(
Er(v) | πr = v, Hr−1

)
≥ 1−

(
1− d+

r (v)

nr

)df(nr)e

≥ 1−
(

1− 1

df(nr)e

)df(nr)e

≥ 1− 1

e

and P(πr = v | Hr−1) = 1
nr+1 for any v ∈ Vr, we may write

E[δr | Hr−1] ≥
(

1− 1

e

)
E[Sr | Hr−1]

nr + 1
≥
(

1− 1

e

)
E[Sr | Hr−1]

n
.

Observe now that
∑df(n−1)e
r=1 δr ≤ n1 − nfin ≤ n− 1 and Sr is monotonically nonincreasing in r.

Thus

n− 1 ≥
df(n−1)e∑
r=1

E[δr] ≥
1

n

(
1− 1

e

) df(n)e∑
r=1

E[Sr] ≥
df(n− 1)e

n

(
1− 1

e

)
E[Sfin]

which implies E[Sfin] ≤
(

e
e−1

) n(n−1)
df(n−1)e ≤

(
e
e−1

)n(n−1)
f(n−1) . By the properties of f , however,(

e
e−1

)n(n−1)
f(n−1) ≤

(
e
e−1

)
n2

f(n) . So we have∑
e∈E

P
(
B3(e)

)
≤ 1

2

(∑
u∈Vfin

E
[

nfin

f(nfin)

]
+ E[Sfin]

)
≤ 1

2

(
n2

f(n)
+

e

e− 1

n2

f(n)

)
as claimed.

Bounding the number of queries. In any given round, ACC asks less than n queries. Since the
number of rounds is at most df(n)e, the overall number of queries is less than ndf(n)e.

KwikCluster as special case. One can immediately see that, if f(n) = n for all n, then ACC
coincides with KwikCluster and therefore the bound E[∆] ≤ 3OPT applies [1].

2.3 Pseudocode of ACCESS

2.4 Proof of Theorem 2

We refer to the pseudocode of ACCESS (Algorithm 2).

Bounding E[∆A]. Let Gr be the residual graph at round r. The total clustering cost ∆A of
ACCESS can be bounded by the sum of two terms: the clustering cost ∆1 of ACC without round
restriction (i.e. ACC terminating only when the residual graph is empty), and the number of edges
∆2 in the residual graph Gr if r is the round at which ACCESS stops. Concerning ∆1, the proof
of Theorem 1 shows that E[∆1] ≤ 3OPT + n/e. Concerning ∆2, we have two cases. If ACCESS
stops at line 1, then obviously ∆2 ≤ 2n2/f(n). If instead ACCESS stops at line 4, then note that
for any k ≥ 0 the probability that such an event happens given that ∆2 = k is at most:(

1− k(|Vr|
2

))
⌈
(|Vr|2)f(n)/n2

⌉
≤ e−kf(n)/n2

Thus E[∆2] ≤ maxk≥1(ke−kf(n)/n2

) ≤ n2

ef(n) < 2n2/f(n).

4

Algorithm 2 ACCESS with query rate f

Parameters: residual node set Vr, round index r
1: if

(|Vr|
2

)
≤ 2n2/f(n) then STOP and declare every v ∈ Vr as singleton

2: Sample the labels of d
(|Vr|

2

)
f(n)/n2e pairs chosen u.a.r. from

(
Vr
2

)
3: if no label is positive then
4: STOP and declare every v ∈ Vr as singleton
5: Draw pivot πr u.a.r. from Vr
6: Cr ← {πr} . Create new cluster and add the pivot to it
7: Draw a random subset Sr of df(|Vr| − 1)e nodes from Vr \ {πr}
8: for each u ∈ Sr do query σ(πr, u)

9: if ∃u ∈ Sr such that σ(πr, u) = +1 then . Check if there is at least an edge
10: Query all remaining pairs (πr, u) for u ∈ Vr \

(
{πr} ∪ Sr

)
11: Cr ← Cr ∪ {u : σ(πr, u) = +1} . Populate cluster based on queries
12: Output cluster Cr
13: ACCESS(Vr \ Cr, r + 1) . Recursive call on the remaining nodes

Bounding E[Q]. The queries performed at line 1 are deterministically at most ndf(n)e. Concerning
the other queries (line 8 and line 10), we divide the algorithm in two phases: the “heavy” rounds
r where Gr still contains at least n2/(2f(n)) edges, and the remaining “light” rounds where Gr
contains less than n2/(2f(n)) edges.

Consider first a “heavy” round r. We see Gr as an arbitrary fixed graph: for all random variables
mentioned below, the distribution is thought solely as a function of the choices of the algorithm in the
current round (i.e., the pivot node πr and the queried edges). Now, let Qr be the number of queries
performed at lines 8 and 10), and Rr = |Vr| − |Vr+1| be the number of nodes removed. Let πr be
the pivot, and let Dr be its degree in Gr. Let Xr be the indicator random variable of the event that
σ(πr, u) = +1 for some u ∈ Sr. Observe that:

Qr ≤ df(|Vr| − 1)e+Xr(|Vr| − 1) and Rr = 1 +XrDr

Thus E[Qr] ≤ df(|Vr| − 1)e+ E[Xr]|Vr|, while E[Rr] = 1 + E[XrDr]. However, Xr is monotoni-
cally increasing in Dr, so E[XrDr] = E[Xr]E[Dr] + Cov(Xr, Dr) ≥ E[Xr]E[Dr]. Moreover, by
hypothesis E[Dr] ≥ 2

(
n2/(2f(n))

)
/|Vr| ≥ n/f(n). Thus:

E[Rr] ≥ 1 + E[Xr]E[Dr]

≥ 1 + E[Xr]
n

f(n)

≥ 1 + E[Xr]
|Vr|

f(|Vr|)

≥ 1 + E[Xr]
|Vr|

df(|Vr|)e

≥ E[Qr]

df(|Vr|)e

≥ E[Qr]

df(n)e
But then, since obviously

∑
r Rr ≤ n:

E

 ∑
r heavy

Qr

 ≤ df(n)eE

 ∑
r heavy

Rr

 ≤ ndf(n)e

Consider now the “light” rounds, where Gr contains less than n2/(2f(n)) edges. In any such round
the expected number of edges found at line 2 is less than:

n2/f(n)

2
(|Vr|

2

) ⌈(|Vr|
2

)
f(n)/n2

⌉
(7)

5

However,
(|Vr|

2

)
> 2n2/f(n) otherwise ACCESS would have stopped at line 1, hence:⌈(

|Vr|
2

)
f(n)/n2

⌉
≤ 3

2

(
|Vr|
2

)
f(n)/n2 (8)

which implies that the expression in (7) is bounded by 3
4 . By Markov’s inequality this is also an upper

bound on the probability that ACCESS finds some edge at line 2, so in every light round ACCESS
stops at line 4 with probability at least 1

4 . Hence ACCESS completes at most 4 light rounds in
expectation; the corresponding expected number of queries is then at most 4n.

2.5 Proof of Theorem 3

First of all, note that if the residual graph Gr contains O(n2/f(n)) edges, from r onward ACCESS
stops at each round independently with constant probability. The expected number of queries
performed before stopping is therefore O(n), and the expected error incurred is obviously at most
O(n2/f(n)).

We shall then bound the expected number of queries required before the residual graph contains
O(n2/f(n)) edges. In fact, by definition of i′, if ACCESS removes Ci′ , . . . , C`, then the residual
graph contains O(n2/f(n)) edges. We therefore bound the expected number of queries before
Ci′ , . . . , C` are removed.

First of all recall that, when pivoting on a cluster of size c, the probability that the cluster is not
removed is at most e−cf(n)/n. Thus the probability that the cluster is not removed after Ω(c) of
its nodes have been used as pivot is e−Ω(c2)f(n)/n. Hence the probability that any of Ci′ , . . . , C`
is not removed after Ω(c) of its nodes are used as pivot is, setting c = Ω

(
h(n)

)
and using a

union bound, at most p = ne−Ω(h(n)2)f(n)/n. Observe that h(n) = Ω
(
n/f(n)

)
, for otherwise∑i′

j=1

(
Cj
2

)
= o

(
n2/f(n)

)
, a contradiction. Therefore p ≤ ne−Ω(h(n)). Note also that we can

assume h(n) = ω(lnn), else the theorem bound is trivially O(n2). This gives p = O
(
ne−ω(lnn)

)
=

o
(
1/poly(n)

)
. We can thus condition on the events that, at any point along the algorithm, every

cluster among Ci′ , . . . , C` that is still in the residual graph has size Ω
(
h(n)

)
; the probability of any

other event changes by an additive O(p), which can be ignored.

Let now k = ` − i′ + 1, and suppose at a generic point k′ ≤ k of the clusters Ci′ , . . . , C` are
in the residual graph. Their total size is therefore Ω

(
k′h(n)

)
. Therefore O

(
n/k′h(n)

)
rounds in

expectation are needed for the pivot to fall among those clusters. Each time this happens, with
probability 1 − e−Ω(h(n))f(n)/n = Ω(1) the cluster containing the pivot is removed. Hence, in
expectation a new cluster among Ci′ , . . . , C` is removed after O

(
n/k′h(n)

)
rounds. By summing

over all values of k′, the number of expected rounds to remove all of Ci′ , . . . , C` is

O

(
k∑

k′=1

n

k′h(n)

)
= O

(
n(lnn)/h(n)

)
Since each round involves O(n) queries, the bound follows.

3 Supplementary Material for Section 4

3.1 Proof of Theorem 4

Fix any C that is (1− ε)-knit. We show that ACC outputs a Ĉ such that

E
[
|Ĉ ∩C|

]
≥ max

{(
1− 5

2
ε

)
|C| − 2

n

f(n)
,

(
f(n)

n
− 5

2
ε

)
|C|
}

and E
[
|Ĉ ∩C|

]
≤ ε

2
|C| (9)

One can check that these two conditions together imply the first two terms in the bound. We start by
deriving a lower bound on E

[
|Ĉ ∩ C|

]
for KwikCluster assuming |EC | =

(|C|
2

)
. Along the way we

introduce most of the technical machinery. We then port the bound to ACC, relax the assumption to
|EC | ≥ (1− ε)

(|C|
2

)
, and bound E

[
|Ĉ ∩ C|

]
from above. Finally, we add the |C|e−|C|f(n)/5n part

of the bound. To lighten the notation, from now on C denotes both the cluster and its cardinality |C|.

6

For the sake of analysis, we see KwikCluster as the following equivalent process. First, we draw a
random permutation π of V . This is the ordered sequence of candidate pivots. Then, we set G1 = G,
and for each i = 1, . . . , n we proceed as follows. If πi ∈ Gi, then πi is used as an actual pivot; in
this case we let Gi+1 = Gi \ (πi ∪Nπi) where Nv is the set of neighbors of v. If instead πi /∈ Gi,
then we let Gi+1 = Gi. Hence, Gi is the residual graph just before the i-th candidate pivot πi is
processed. We indicate the event πi ∈ Gi by the random variable Pi:

Pi = I {πi ∈ Gi} = I {πi is used as pivot} (10)

More in general, we define a random variable indicating whether node v is “alive” in Gi:

X(v, i) = I {v ∈ Gi} = I
{
v /∈ ∪j<i :Pj=1 (πj ∪Nπj)

}
(11)

Let iC = min{i : πi ∈ C} be the index of the first candidate pivot of C. Define the random variable:

SC = |C ∩GiC | =
∑
v∈C

X(v, iC) (12)

In words, SC counts the nodes of C still alive in GiC . Now consider the following random variable:

S = PiC · SC (13)

Let Ĉ be the cluster that contains πiC in the output of KwikCluster. It is easy to see that |C ∩ Ĉ| ≥ S.
Indeed, if PiC = 1 then Ĉ includes C ∩GiC , so |C ∩ Ĉ| ≥ PiCSC = S. If instead PiC = 0, then
S = 0 and obviously |C ∩ Ĉ| ≥ 0. Hence in any case |C ∩ Ĉ| ≥ S, and E

[
|C ∩ Ĉ|

]
≥ E[S].

Therefore we can bound E
[
|C ∩ Ĉ|

]
from below by bounding E[S] from below.

Before continuing, we simplify the analysis by assuming KwikCluster runs on the graph G after
all edges not incident on C have been deleted. We can easily show that this does not increase S.
First, by (11) each X(v, iC) is a nonincreasing function of {Pi : i < iC}. Second, by (12) and (13),
S is a nondecreasing function of {X(v, iC) : v ∈ C}. Hence, S is a nonincreasing function of
{Pi : i < iC}. Now, the edge deletion forces Pi = 1 for all i < iC , since any πi : i < iC has no
neighbor πj : j < i. Thus the edge deletion does not increase S (and, obviously, E[S]). We can then
assume G[V \ C] is an independent set. At this point, any node not adjacent to C is isolated and
can be ignored. We can thus restrict the analysis to C and its neighborhood in G. Therefore we let
C = {v : {u, v} ∈ E, u ∈ C, v /∈ C} denote both the neighborhood and the complement of C.

We turn to bounding E[S]. For now we assume G[C] is a clique; we will then relax the assumption to
|EC | ≥ (1− ε)

(
C
2

)
. Since by hypothesis cut(C,C) < εC2, the average degree of the nodes in C is

less than εC2/C. This is also a bound on the expected number of edges between C and a node drawn
u.a.r. from C. But, for any given i, conditioned on iC − 1 = i the nodes π1, . . . , πiC−1 are indeed
drawn u.a.r. from C, and so have a total of at most iεC2/C edges towards C in expectation. Thus,
over the distribution of π, the expected number of edges between C and π1, . . . , πiC−1 is at most:

n∑
i=0

iεC2

C
P(iC − 1 = i) =

εC2

C
E[iC − 1] =

εC2

C

C

C + 1
< εC (14)

where we used the fact that E[iC−1] = C/(C+1). Now note that (14) is a bound on C−E[SC], the
expected number of nodes of C that are adjacent to π1, . . . , πiC−1. Therefore, E[SC] ≥ (1− ε)C.

Recall that PiC indicates whether πiC is not adjacent to any of π1, . . . , πiC−1. Since the distribution
of πiC is uniform over C, P(PiC | SC) = SC/C. But S = PiCSC , hence E[S | SC] = (SC)2/C,
and thus E[S] = E

[
(SC)2

]
/C. Using E[SC] ≥ (1− ε)C and invoking Jensen’s inequality we obtain

E[S] ≥ E[SC]2

C
≥ (1− ε)2C ≥ (1− 2ε)C (15)

which is our bound on E
[
|C ∩ Ĉ|

]
for KwikCluster.

Let us now move to ACC. We have to take into account the facts that ACC performs f(|Gr| − 1)
queries on the pivot before deciding whether to perform |Gr| − 1 queries, and that ACC stops after
f(n − 1) rounds. We start by addressing the first issue, assuming for the moment ACC has no
restriction on the number of rounds.

7

Recall that P(PiC | SC) = SC/C. Now, if PiC = 1, then we have SC − 1 edges incident on πiC .
It is easy to check that, if nr + 1 is the number of nodes at the round when πiC is used, then the
probability that ACC finds some edge incident on πiC is at least:

1−
(

1− SC − 1

nr

)df(nr)e
≥ 1− e−f(nr)

SC−1

nr ≥ 1− e−f(n)
SC−1

n (16)

and, if this event occurs, then S = SC . Thus

E[S | SC] = P(PiC | SC)SC ≥
(

1− e−f(n)
SC−1

n

) S2
C

C
≥ S2

C

C
− SC

2n

f(n)C
(17)

where we used the facts that for SC ≤ 1 the middle expression in (17) vanishes, that e−x < 1/x
for x > 0, and that 1/x < 2/(x + 1) for all x ≥ 2. Simple manipulations, followed by Jensen’s
inequality and an application of E[SC] ≥ (1− ε)C, give

E[S] ≥ (1− ε)2C − (1− ε)C 2n

f(n)C
≥ (1− 2ε)C − 2

n

f(n)
(18)

We next generalize the bound to the case EC ≥ (1− ε)
(
C
2

)
. To this end note that, since at most ε

(
C
2

)
edges are missing from any subset of C, then any subset of SC nodes of C has average degree at least

max

{
0, SC − 1−

(
C

2

)
2ε

SC

}
≥ SC −

εC(C − 1)

2SC
− 1 (19)

We can thus re-write (17) as

E[S | SC] ≥ SC
C

(
1− e−f(n)

SC−1

n

)(
SC −

εC(C − 1)

2SC

)
(20)

Standard calculations show that this expression is bounded from below by S2
C

C − SC
2n

f(n)C −
εC
2 ,

which by calculations akin to the ones above leads to E[S] ≥ (1− 5
2ε)C − 2 n

f(n) .

Similarly, we can show that E[S] ≥
(f(n)

n −
5
2ε
)
C. To this end note that when ACC pivots on πiC all

the remaining cluster nodes are found with probability at least f(n)
n (this includes the cases SC ≤ 1,

when such a probability is indeed 1). In (17), we can then replace 1− e−f(n)
SC−1

n with f(n)
n , which

leads to E[S] ≥
(f(n)

n − 5
2ε
)
C. This proves the first inequality in (9).

For the second inequality in (9), note that any subset of SC nodes has cut(C,C) ≤ ε
(
C
2

)
. Thus, πiC

is be incident to at most ε
SC

(
C
2

)
such edges in expectation. The expected number of nodes of C that

ACC assigns to Ĉ, as a function of SC , can thus be bounded by SC
C

ε
SC

(
C
2

)
< ε

2C.

As far as theO(Ce−Cf(n)/n) part of the bound is concerned, simply note that the bounds obtained so
far hold unless iC > df(n− 1)e, in which case ACC stops before ever reaching the first node of C.
If this happens, Ĉ = {πiC} and |Ĉ⊕C| < |C|. The event iC > df(n− 1)e is the event that no node
of C is drawn when sampling df(n− 1)e nodes from V without replacement. We can therefore apply
Chernoff-type bounds to the random variable X counting the number of draws of nodes of C and get
P
(
X < (1 − β)E[X]) ≤ exp(−β2E[X]/2

)
for all β > 0. In our case E[X] = df(n− 1)e|C|/n,

and we have to bound the probability that X equals 0 < (1− β)E[X]. Thus

P(X = 0) ≤ exp

(
−β

2E[X]

2

)
= exp

(
−β

2df(n− 1)e|C|
2n

)
Note however that df(n− 1)e ≥ f(n)/2 unless n = 1 (in which case V is trivial). Then, choosing
e.g. β >

√
4/5 yields P(X = 0) < exp

(
− |C|f(n)/5n

)
. This case therefore adds at most

|C| exp(−|C|f(n)/5n) to E[|Ĉ ⊕ C|].

3.2 Proof of Theorem 5

Before moving to the actual proof, we need some ancillary results. The next lemma bounds the
probability that ACC does not pivot on a node of C in the first k rounds.

8

Lemma 2. Fix a subset C ⊆ V and an integer k ≥ 1, and let π1, . . . , πn be a random permutation
of V . For any v ∈ C letXv = I {v ∈ {π1, . . . , πk}}, and letXC =

∑
v∈C Xv . Then E[XC] = k|C|

n ,

and P(XC = 0) < e−
k|C|
3n .

Proof. Since π is a random permutation, then for each v ∈ C and each each i = 1, . . . , k we have
P(πi = v) = 1

n . Therefore E[Xv] = k
n and E[XC] = k|C|

n . Now, the process is exactly equivalent to
sampling without replacement from a set of n items of which |C| are marked. Therefore, the Xv’s are
non-positively correlated and we can apply standard concentration bounds for the sum of independent
binary random variables. In particular, for any η ∈ (0, 1) we have:

P(XC = 0) ≤ P(XC < (1− η)E[XC]) < exp
(
− η2E[XC]

2

)
which drops below e−

k|C|
3n by replacing E[XC] and choosing η ≥

√
2/3.

The next lemma is the crucial one.

Lemma 3. Let ε ≤ 1
10 . Consider a strongly (1− ε)-knit set C with |C| > 10n

f(n) . Let uC = min{v ∈
C} be the id of C. Then, for any v ∈ C, in any single run of ACC we have P(id(v) = uC) ≥ 2

3 .

Proof. We bound from above the probability that any of three “bad” events occurs. As in the proof
of Theorem 4, we equivalently see ACC as going through a sequence of candidate pivots π1, . . . , πn
that is a uniform random permutation of V . Let iC = min{i : πi ∈ C} be the index of the first
node of C in the random permutation of candidate pivots. The first event, B1, is {iC > df(n− 1)e}.
Note that, if B1 does not occur, then ACC will pivot on πiC . The second event, B2, is the event that
πiC ∈ Vsing if ACC pivots on πiC (we measure the probability of B2 conditioned on B1). The third
event, B3, is {πiC /∈ P} where P = NuC ∩Nv . If none among B1, B2, B3 occurs, then ACC forms
a cluster Ĉ containing both uC and v, and by the min-tagging rule sets id(v) = minu∈Ĉ = uC . We
shall then show that P(B1 ∪B2 ∪B3) ≤ 1/3.

For B1, we apply Lemma 2 by observing that iC > df(n− 1)e corresponds to the event XC = 0
with k = df(n− 1)e. Thus

P(iC > df(n− 1)e) < e−
df(n−1)e|C|

3n ≤ e−
f(n−1)

3n
10n
f(n) = e−

f(n−1)
f(n)

10
3 < e−3

where we used the fact that n ≥ |C| ≥ 11 and therefore f(n− 1) ≥ 10
11f(n).

For B2, recall that by definition every v ∈ C has at least (1− ε)c edges. By the same calculations as
the ones above, if ACC pivots on πiC , then:

P(πiC ∈ Vsing) ≤ exp
(
− f(n− 1)

n− 1
(1− ε)c

)
≤ exp

(
− f(n− 1)

n− 1

(
1− 1

10

) 10n

f(n)

)
≤ e−9

For B3, note that the distribution of πiC is uniform over C. Now, let NuC and Nv be the neighbor
sets of uC and v in C, and let P = NuC ∩Nv . We call P the set of good pivots. Since C is strongly
(1− ε)-knit, both uC and v have at least (1− ε)c neighbors in C. But then |C \ P | ≤ 2εc and

P(πiC /∈ P) =
|C \ P |
|C|

≤ 2ε ≤ 1/5

By a union bound, then, P(B1 ∪B2 ∪B3) ≤ e−3 + e−9 + 1/5 < 1/3.

We are now ready to conclude the proof. Suppose we execute ACC independently K = 48dln(n/p)e
times with the min-tagging rule. For a fixed v ∈ G let Xv be the number of executions giving
id(v) = uC . On the one hand, by Lemma 3, E[Xv] ≥ 2

3K. On the other hand, v will not be assigned
to the cluster with id uC by the majority voting rule only if Xv ≤ 1

2K ≤ E[Xv](1− δ) where δ = 1
4 .

By standard concentration bounds, then, P(Xv ≤ 1
2K) ≤ exp(− δ

2E[Xv]
2) = exp(−K

48). By setting
K = 48 ln(n/p), the probability that v is not assigned id uC is thus at most p/n. A union bound
over all nodes concludes the proof.

9

4 Supplementary Material for Section 6

4.1 Proof of Theorem 8

We prove that there exists a distribution over labelings σ with OPT = 0 on which any deterministic
algorithm has expected cost at least nε

2

8 . Yao’s minimax principle then implies the claimed result.

Given V = {1, . . . , n}, we define σ by a random partition of the vertices in d ≥ 2 isolated cliques
T1, . . . , Td such that σ(v, v′) = +1 if and only if v and v′ belong to the same clique. The cliques are
formed by assigning each node v ∈ V to a clique Iv drawn uniformly at random with replacement
from {1, . . . , d}, so that Ti = {v ∈ V : Iv = i}. Consider a deterministic algorithm making queries
{st, rt} ∈ E . Let Ei be the event that the algorithm never queries a pair of nodes in Ti with
|Ti| ≥ n

2d > 5. Apply Lemma 4 below with d = 1
ε . This implies that the expected number of

non-queried clusters of size at least n
2d is at least d2 = 1

2ε . The overall expected cost of ignoring these
clusters is therefore at least

d

2

(n
2d

)2

=
n2

8d
=
εn2

8

and this concludes the proof.

Lemma 4. Suppose d > 0 is even, n ≥ 16d ln d, and B < d2

50 . Then for any deterministic learning
algorithm making at most B queries,

d∑
i=1

P(Ei) >
d

2
.

Proof. For each query {st, rt} we define the set Lt of all cliques Ti such that st 6∈ Ti and some edge
containing both st and a node of Ti was previously queried. The set Rt is defined similarly using rt.
Formally,

Lt = {i : (∃τ < t) sτ = st ∧ rτ ∈ Ti ∧ σ(sτ , rτ) = −1}
Rt = {i : (∃τ < t) rτ = rt ∧ sτ ∈ Ti ∧ σ(sτ , rτ) = −1} .

Let Dt be the event that the t-th query discovers a new clique of size at least n
2d , and let Pt =

max
{
|Lt|, |Rt|

}
. Using this notation,

B∑
t=1

I {Dt} =

B∑
t=1

I {Dt ∧ Pt < d/2}+

B∑
t=1

I {Dt ∧ Pt ≥ d/2}︸ ︷︷ ︸
N

. (21)

We will now show that unless B ≥ d2

50 , we can upper bound N deterministically by
√

2B.

Suppose N > d
2 , and let t1, . . . , tN be the times tk such that I {Dtk ∧ Ptk ≥ d/2} = 1. Now fix

some k and note that, because the clique to which stk and rtk both belong is discovered, neither stk
nor rtk can occur in a future query {st, rt}) that discovers a new clique. Therefore, in order to have
I {Dt ∧ Pt ≥ d/2} = 1 for N > d

2 times, at least(
N

2

)
≥ d2

8

queries must be made, since each one of the other N − 1 ≥ d
2 discovered cliques can contribute with

at most a query to making Pt ≥ d
2 . So, it takes at least B ≥ d2

8 queries to discover the first d2 cliques
of size at least two, which contradicts the lemma’s assumption that B ≤ d2

16 . Therefore, N ≤ d
2 .

Using the same logic as before, in order to have I {Dt ∧ Pt ≥ d/2} = 1 for N ≤ d
2 times, at least

d

2
+

(
d

2
− 1

)
+ · · ·+

(
d

2
−N + 1

)

10

queries must be made. So, it must be

B ≥
N∑
k=1

(
d

2
− (k − 1)

)
= (d+ 1)

N

2
− N2

2

or, equivalently, N2 − (d+ 1)N + 2B ≥ 0. Solving this quadratic inequality for N , and using the

hypothesis N ≤ d
2 , we have that N ≤ (d+1)−

√
(d+1)2−8B

2 . Using the assumption that B ≤ d2

50 we
get that N ≤

√
2B.

We now bound the first term of (21) in expectation. The event Dt is equivalent to st, rt ∈ Ti for some
i ∈ ¬Lt ∩ ¬Rt, where for any S ⊆ {1, . . . , d} we use ¬S to denote {1, . . . , d} \ S.

Let Pt = P
(
· | Pt < d/2

)
. For L′, R′ ranging over all subsets of {1, . . . , d} of size strictly less than

d
2 ,

Pt(Dt) =
∑
L′,R′

∑
i∈¬L′∩¬R′

Pt
(
st ∈ Ti ∧ rt ∈ Ti

∣∣Lt = L′, Rt = R′
)
Pt(Lt = L′ ∧ Rt = R′)

=
∑
L′,R′

∑
i∈¬L′∩¬R′

Pt
(
st ∈ Ti

∣∣Lt = L′
)
Pt
(
rt ∈ Ti

∣∣Rt = R′
)
Pt(Lt = L′ ∧ Rt = R′)

(22)

=
∑
L′,R′

∑
i∈¬L′∩¬R′

1

|¬L′|
1

|¬R′|
Pt(Lt = L′ ∧ Rt = R′) (23)

=
∑
L′,R′

|¬L′ ∩ ¬R′|
|¬L′| |¬R′|

Pt(Lt = L′ ∧ Rt = R′)

≤ 2

d
. (24)

Equality (22) holds because Pt = max{Lt, Rt} < d
2 implies that there are at least two remaining

cliques to which st and rt could belong, and each node is independently assigned to one of these
cliques. Equality (23) holds because, by definition of Lt, the clique of st is not in Lt, and there were
no previous queries involving st and a node belonging to a clique in ¬Lt (similarly for rt). Finally,
(24) holds because |¬L′| ≥ d

2 , |¬R′| ≥ d
2 , and |¬L′ ∩ ¬R′| ≤ min{|¬L′|, |¬R′|}. Therefore,

B∑
t=1

P
(
Dt ∧ Pt < d/2

)
≤

B∑
t=1

P
(
Dt | Pt < d/2

)
≤ 2B

d
.

Putting everything together,

E

[
B∑
t=1

I {Dt}

]
≤ 2B

d
+
√

2B . (25)

On the other hand, we have

B∑
t=1

I {Dt} =

d∑
i=1

(
I
{
|Ti| ≥ n

2d

}
− I {Ei}

)
= d−

d∑
i=1

(
I
{
|Ti| < n

2d

}
+ I {Ei}

)
(26)

Combining (25) and (26), we get that

d∑
i=1

P(Ei) ≥ d−
d∑
i=1

P
(
|Ti| < n

2d

)
− 2B

d
−
√

2B .

By Chernoff-Hoeffding bound, P
(
|Ti| < n

2d

)
≤ 1

d2 for each i = 1, . . . , d when n ≥ 16d ln d.
Therefore,

d∑
i=1

P(Ei) ≥ d−
2B + 1

d
−
√

2B .

11

To finish the proof, suppose on the contrary that
∑d
i=1 P(Ei) ≤ d

2 . Then from the inequality above,
we would get that

d

2
≥ d− 2B + 1

d
−
√

2B

which implies B ≥
(

2−
√

2
4

)2

d2 > d2

50 , contradicting the assumptions. Therefore, we must have∑d
i=1 P(Ei) >

d
2 as required.

4.2 Proof of Theorem 9

Choose a suitably large n and let V = [n]. We partition V in two sets A and B, where |A| = αn
and |B| = (1− α)n; we will eventually set α = 0.9, but for now we leave it free to have a clearer
proof. The set A is itself partitioned into k = 1/ε subsets A1, . . . , Ak, each one of equal size αn/k
(the subsets are not empty because of the assumption on ε). The labeling σ is the distribution defined
as follows. For each i = 1, . . . , k, for each pair u, v ∈ Ai, σ(u, v) = +1; for each u, v ∈ B,
σ(u, v) = −1. Finally, for each v ∈ B we have a random variable iv distributed uniformly over [k].
Then, σ(u, v) = +1 for all u ∈ Aiv and σ(u, v) = −1 for all u ∈ A \Aiv . Note that the distribution
of iv is independent of the (joint) distributions of the iw’s for all w ∈ B \ {v}.
Let us start by giving an upper bound on E[OPT]. To this end consider the (possibly suboptimal)
clustering C = {Ci : i ∈ [k]} where Ci = Ai ∪{v ∈ B : iv = i}. One can check that C is a partition
of V . The expected cost E[∆C] of C can be bound as follows. First, note the only mistakes are due to
pairs u, v ∈ B. However, for any such fixed pair u, v, the probability of a mistake (taken over σ) is
P(iu 6= iv) = 1/k. Thus,

E[OPT] ≤ E[∆0] <
|B|2

k
=

(1− α)2n2

k
(27)

Let us now turn to the lower bound on the expected cost of the clustering produced by an algorithm.
For each v ∈ B let Qv be the total number of distinct queries the algorithm makes to pairs {u, v}
with u ∈ A and v ∈ B. Let Q be the total number of queries made by the algorithm; obviously,
Q ≥

∑
v∈B Qv . Now let Sv be the indicator variable of the event that one of the queries involving v

returned +1. Both Qv and Sv as random variables are a function of the input distribution and of the
choices of the algorithm. The following is key:

P(Sv ∧ Qv < k/2) <
1

2
(28)

The validity of (28) is seen by considering the distribution of the input limited to the pairs {u, v}.
Indeed, Sv ∧ Qv < k/2 implies the algorithm discovered the sole positive pair involving v in less
than k/2 queries. Since there are k pairs involving v, and for any fixed j the probability (taken over
the input) that the algorithm finds that particular pair on the j-th query is exactly 1/k. Now,

P(Sv ∧ Qv < k/2) + P(Sv ∧ Qv < k/2) + P(Qv ≥ k/2) = 1 (29)

and therefore

P(Sv ∧ Qv < k/2) + P(Qv ≥ k/2) >
1

2
(30)

Let us now consider Rv, the number of mistakes involving v made by the algorithm. We analyse
E[Rv |Sv ∧ Qv < k/2]. For all i ∈ [k] let Qiv indicate the event that, for some u ∈ Ai, the algorithm
queried the pair {u, v}. Let I = {i ∈ [k] : Qiv = 0}; thus I contains all i such that the algorithm did
not query any pair u, v with u ∈ Ai. Suppose now the event Sv ∧ Qv < k/2 occurs. On the one
hand, Sv implies that:

P(σ(u, v) = +1 | I) =

{
1/|I| u ∈ Ai, i ∈ I
0 u ∈ Ai, i ∈ [k] \ I (31)

Informally speaking, this means that the random variable iv is distributed uniformly over the (random)
set I . Now observe that, again conditioning on the joint event Sv ∧ Qv < k/2, whatever label s the
algorithm assigns to a pair u, v with u ∈ Ai where i ∈ I , the distribution of σ(u, v) is independent

12

of s. This holds since s can obviously be a function only of I and of the queries made so far, all of
which returned −1, and possibly of the algorithm’s random bits. In particular, it follows that:

P(σ(u, v) 6= s | I) ≥ min
{

1/|I|, 1− 1/|I|
}

(32)

However,Qv < k/2 implies that |I| ≥ k−Qv > k/2 = 2/ε > 2, which implies min{1/|I|, 1−1/|I|} ≥
1/|I|. Therefore, P(σ(u, v) 6= s | I) ≥ 1/|I| for all u ∈ Ai with i ∈ I .

We can now turn to back to Rv, the number of total mistakes involving v. Clearly, Rv ≥∑k
i=1

∑
u∈Ai I {σ(u, v) 6= s}. Then:

E[Rv |E] = E
[k∑
i=1

∑
u∈Ai

I {σ(u, v) 6= s}
∣∣∣Sv ∧ Qv < k/2

]
(33)

= E
[
E
[k∑
i=1

∑
u∈Ai

I {σ(u, v) 6= s}
∣∣∣ I] ∣∣∣Sv ∧ Qv < k/2

]
(34)

≥ E
[
E
[∑
i∈I

∑
u∈Ai

I {σ(u, v) 6= s}
∣∣∣ I] ∣∣∣Sv ∧ Qv < k/2

]
(35)

≥ E
[
E
[∑
i∈I

∑
u∈Ai

1

|I|

∣∣∣ I] ∣∣∣Sv ∧ Qv < k/2
]

(36)

= E
[
E
[αn
k

] ∣∣∣Sv ∧ Qv < k/2
]

(37)

=
αn

k
(38)

And therefore:

E[Rv] ≥ E[Rv |Sv ∧ Qv < k/2] · P(Sv ∧ Qv < k/2)

>
αn

k
· P(Sv ∧ Qv < k/2)

This concludes the bound on E[Rv]. Let us turn to E[Qv]. Just note that:

E[Qv] ≥
k

2
· P(Qv ≥ k/2) (39)

By summing over all nodes, we obtain:

E[Q] ≥
∑
v∈B

E[Qv] ≥
k

2

(∑
v∈B

P(Qv ≥ k/2)
)

(40)

E[∆] ≥
∑
v∈B

E[Rv] >
αn

k

(∑
v∈B

P(Sv ∧ Qv < k/2)
)

(41)

to which, by virtue of (30), applies the constraint:(∑
v∈B

P(Qv ≥ k/2)
)

+
(∑
v∈B

P(Sv ∧ Qv < k/2)
)
> |B|1

2
=

(1− α)n

2
(42)

This constrained system gives the bound. Indeed, by (40), (41) and (42), it follows that if E[Q] <
k
2

(1−α)n
4 = (1−α)nk

8 then E[∆] > αn
k

(1−α)n
2 = α(1−α)n2

4k . It just remains to set α and k properly so
to get the statement of the theorem.

Let α = 9/10 and recall that k = 1/ε. Then, first, (1−α)nk
8 = nk

80 = n
80 ε . Second, (27) gives

E[OPT] < (1−α)2n2

k = n2

100k = εn2

100 . Third, α(1−α)n2

4k = 9n2

400k = 9εn2

400 > E[OPT] + εn2

80 . The
above statement hence becomes: if E[Q] < n

80ε , then E[∆] > E[OPT] + εn2

80 . An application of
Yao’s minimax principle completes the proof.

As a final note, we observe that for every c ≥ 1 the bound can be put in the form E[∆] ≥ c ·E[OPT]+
Ω(n2ε) by choosing α ≥ c/(c+ 1/4).

13

5 Supplementary Material for Section 7

We report the complete experimental evaluation of ACC including error bars (see the main paper for
a full description of the experimental setting). The details of the datasets are found in Table 1.

Table 1: Description of the datasets.
Datasets Type |V | #Clusters

captchas Real 244 69
cora Real-world 1879 191
gym Real 94 12
landmarks Real 266 12
skew Synthetic 900 30
sqrt Synthetic 900 30

References
[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Rank-

ing and clustering. J. ACM, 55(5):23:1–23:27, 2008.

[2] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

14

Figure 1: Clustering cost vs. number of queries.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Q 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1e4

η = 0
η = 0.1
η = 0.5
η = 1

(a) skew.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Q 1e4

0.0

0.5

1.0

1.5

2.0

1e4

η = 0
η = 0.1
η = 0.5
η = 1

(b) sqrt.

0 1 2 3 4 5 6 7

Q 1e4

0.0

0.2

0.4

0.6

0.8

1.0
1e5

η = 0
η = 0.1
η = 0.5
η = 1

(c) cora.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Q 1e3

0

1

2

3

4

5

1e3

η = 0
η = 0.1
η = 0.5
η = 1

(d) landmarks.

0 1 2 3 4 5

Q 1e2

0

1

2

3

4

5

6

7 1e2

η = 0
η = 0.1
η = 0.5
η = 1

(e) gym.

0 1 2 3 4 5 6 7 8

Q 1e3

0

1

2

3

4

5

6

1e2

η = 0
η = 0.1
η = 0.5
η = 1

(f) captchas.

15

	Probability bounds
	Supplementary Material for Section 3
	Pseudocode of ACC
	Proof of Theorem 1
	Pseudocode of ACCESS
	Proof of Theorem 2
	Proof of Theorem 3

	Supplementary Material for Section 4
	Proof of Theorem 4
	Proof of Theorem 5

	Supplementary Material for Section 6
	Proof of Theorem 8
	Proof of Theorem 9

	Supplementary Material for Section 7

