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1 Proofs of Convergence

We consider functions that lie in C2 i.e. continuous functions with well-defined first (∇) and second
(H) derivatives and focus on a class of minima for which the properties of Newton’s Method are well
understood. Namely, we look at strict or isolated minima y∗ that satisfy the following two conditions:

∇y∗(w) = 0 (1)
and

Hy∗(w) is positive definite. (2)
These conditions are sufficient but not necessary for isolated minima e.g. f(y) = y4 has an isolated
minima at y = 0, but f ′′(0) = 0.

We further assume that∇ and H are (Lipschitz-) continuous functions of y, and of their controlling
parameters w.

Drawing heavily from the book Practical Methods of Optimization[1], our proof has two parts: (i)
show that one iteration of Newton step is sufficient to predict the new location of the minimum in
the limit. (ii) Prove that the derivative of one iteration of Newton Step with respect to w exists. The
second step is not completely obvious as it relies upon the stability of H−1, something which is
fortunately guaranteed by the standard assumption in optimisation that H is positive definite about
the minimum.

(i) In the limit one step of Newton’s Method is sufficient to find the new minima

We provide a sketch proof for the 1-D case, with the multi-dimensional case following directly.

Given a strict minimum satisfying constraints (1) and (2), Newton’s method has a squared rate of
convergence. That is to say, if we write N(y) for a single iteration of Newton’s method starting from
y, there is a sufficiently small radius r such that for all y : |y − y∗| < r, |N(y) − y∗| < r2 (see
Theorem 3.11 [1]). From this it follows that as r → 0,

y − y∗

y − y∗
− r2/r ≤ y −N(y)

y − y∗
≤ y − y∗

y − y∗
+ r2/r (3)

Hence it follows from the fact1 that r → 0 as ∆→ 0 that y−N(y)
y−y∗ → 1. Consequentially,

y −N(y)

∆
=
y − y∗

∆
(4)

1This fact is a consequence of the the positive definiteness of Hy∗ and the Lipschitz properties of ∇y∗ , and
Hy∗ with respect to w. Then for small ∆, the second-order Taylor expansion about y∗ of E(y;w + ∆) still has
a positive definite Hessian Hy∗(w + ∆), and predicts an isolated minimum close to y∗. As ∆ tends to 0 the
new minima and y∗ get closer and the Taylor approximation becomes a better and better approximation of E
over the smallest open disc containing these two points.
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and in the limit
dN(y)

dw
=
dy∗

dw
, (5)

with the multi-dimensional derivation following directly.

(ii) The derivative of one step of Newton’s Method exists

As with the previous proof, we show this result in R and then generalise to Rn.

We consider Ew : y → z, a smooth function about a minimum y∗. We consider a strict local
minimum satisfying conditions (1) and (2). Following the derivation in the main body of the paper,
we have that Hy∗(w) is a continuous function of w, and as Hy∗ is strictly positive, there must exist
an open neighbourhood about w where H−1y∗ (w) is smooth. As∇y(w) is also smooth with respect to
w, their product is smooth and the derivative exists.

Generalising this to Rn is straightforward. Just as in the 1-D case, if Hy∗(w) is strictly positive
definite there is a neighbourhood aboutw in whichHy∗ remains strictly positive definite and invertible,
guaranteeing that the inverse remains smooth.

This property only holds for minima with positive definite Hessians. Saddle points and many other
minima where Hy is not invertible may not have well defined limits.

2 Common Special Cases

We now consider two special cases that have unique solutions that avoid the need to be characterised
in terms of a neighbourhood about a local minimum: (i) ill-posed quadratic problems in which
multiple minima may exist, and (ii) well-posed quadratic problems with a singular minimum. The
second case has a direct derivation and the full rank for well-posed problems permits the use of
the Cholesky decomposition. As an example of a reference implementation, we consider the “fast”
variant of the Tensorflow least-squares solver (tf.linalg.lstsq).

The first case is more involved and we include a derivation since we were unable to find a full
description in the literature. The rank deficiency requires that we use a robust decomposition (LDL
rather than Cholesky) and we need to exploit identities for the derivatives of the pseudo-inverse.
Again, as a reference implementation, we consider the Tensorflow least-squares solver but with the
“slow” variant.

Arbitrary quadratic problems: For the case where E(y ;w) is an arbitrary quadratic function we
have

E(y ;w) = ||Awy − bw||22 (6)

= (Awy − bw)T(Awy − bw). (7)

A global minimum with respect to y occurs when

dE(y ;w)

dy
= 2(Awy − bw) = 0 (8)

and thus
Awy

∗ = bw ⇒ y∗ = A+
wbw, (9)

where A+
w is the pseudo-inverse of Aw. Importantly, use of the pseudo-inverse makes the problem

well-posed; if the solution to equation (6) is ill-determined, it returns the unique minimiser with the
minimal `2-norm. Using the derivative of the pseudo-inverse of [2] we have

dA+
w

dw
= −A+

(
dA

dw

)
A+ + A+A+T

(
dAT

dw

)(
I −AA+

)
+
(
I −A+A

)(dAT

dw

)
A+TA+, (10)
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and we can derive dy∗(w)/dw as

dy∗

dw
= A+

w

dbw
dw

+
dA+

w

dw
bw

= A+
w

dbw
dw
−A+ dA

dw
A+bw

+A+A+T dAT

dw

(
I −AA+

)
bw +

(
I −A+A

) dAT

dw
A+TA+ dA+

w

dw
bw. (11)

Well-defined quadratic problems: In the final, and most restrictive case, we consider solutions
of equation (6) where the matrix A is known to be full rank, and the problem either fully- or
over-determined. Here we solve the problem via Cholesky decomposition, by using the identity
y∗ = (ATA)−1ATB, and the derivative of a matrix inverse [3] as

dA−1

dw
= A−1

dA

dw
A−1. (12)

In this case we have

dy∗

dw
=(ATA)−1AT db

dw
+ (ATA)−1

dAT

dw
b+ (ATA)−1(2

dAT

dw
A)(ATA)−1ATb. (13)

To demonstrate the effectiveness of our approach we consider two traditional problems of computer
vision. Namely, tracker fusion as an energy minimisation problem using a robust non-convex loss-
function and a non-rigid structure from motion approach to the 3D reconstruction of human poses
using a pre-learnt basis functions.

3 Tracker Fusion

The energy for the top-left/bottom-right corner [y0, y1] is modelled as a mixture of Gaussians of the
form:

E(y) =
∑
t∈T

mt exp

(
− (y0 − at)2

σ2
T,t

− (y1 − bt)2

σ2
L,t

)
(14)

where the mixing weight mt for tracker t is

mt = st exp

(
− (wf,t − w0,t)

2

σ2
w,t

− (hf,t − h0,t)2

σ2
h,t

)
θf (15)

with st being the per tracker scale, wf,t being the width of the bounding box of tracker t in frame f ,
and θf is the temporal weight due exclusively to the frame

θf =
1

1 +A2
tf +B2

t f
2

(16)

With At and Bt being arbitrary parameters squared to keep them non-negative. All free parameters
σ, θ, s, A,B are tuned automatically using the method outlined in the paper.

4 Human Pose Estimation

The models were trained on CPU only, on a standard desktop machine.

The training data set is the one provided Martinez et al. [4], namely stacked hourglass detections
from Human3.6M, sampled one every 5 frame. As the other multi-view approaches considered, we
only used frames for which all four camera views were available.

The detections provided only have 16 joints, while the network proposed by Tome et al. [5] uses 17
joints; this was addressed by including a fake chest joint, set at the origin of the reference system and
marked as occluded. This means that in all our reconstructions the chest joint is inferred using the
physically-plausible basis and rest pose, and the reconstructed location of the other joints.
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Figure 1: Error distribution on Human36M using our multi-camera model. Results are included for
the untrained (Baseline) network and for the learnt shapes for the energy functions using both the
`2 and the Huber loss. For visual clarity, we sort the datapoints by order of increasing error for the
Huber case (i.e. our most effective approach). All models perform well on typical input instances,
and fail in a limited number of cases. These outliers, however, have a noticeable, negative impact on
the average error. We also provide reconstruction examples from the low, medium and tail part of the
distribution.

Figure 2: The learnt importance of joints. The figures show the individual importance of each joint
on a model by model basis for the x (left-hand figure) and y (right-hand figure) components of the
reprojection error in multiview reconstruction.

In Figure 1, we compare the error distribution of the initialised model (“Baseline”) with the trained
one, using both an energy function based on the l2 and one based on the Huber loss. To make the
data clearer, the datapoints are arranged by error size according to the Huber model. We can see how
both trained model are consistently - and abundantly - better than what is obtained using the original
network parameters of Tome et al. [5]. Moreover, the Huber version of the network results generally
more accurate than the l2 one. Moreover, both trained models show good performances on the typical
inputs and fail in a limited number of cases.

We also include an up-scaled version of the third example showed in Figure 4 of the paper; Figure 3
represent an instance taken from the tail of the error distribution. Even if the reconstruction failed, our
proposed approach is still able to produce a pose more physically plausible than the one suggested by
the original method, having retrained the basis vectors and the rest poses.

We also provide additional results for the monocular test. To demonstrate that Wibergian learning
allows the use of more complex models than standard parameter tuning, we trained three different
networks, with a varying number of mixture components. We initialise these models following
Tome et al. [5] and evaluate the resulting networks, giving the baseline results. For reference, we also
include the results by Martinez et al.[4]. While [4] outperforms our results, the focus in our work is
to propose a new learning mechanism that substantially outperforms current training for variational
approaches, without the extensive engineering that is needed to obtain state-of-the-art performance on
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Figure 3: Sample pose from Figure 3 of the main paper, taken from the tail of the error distribution.
Even if the reconstruction fails, the reproduced pose is still physically plausible.

Table 1: Quantitative evaluation of the monocular network on the stacked hourglass detections of the
Human3.6M dataset, provided by Martinez et al. [4]. Baseline results are obtained by initialising the
network with the parameter provided by Tome et al. [5], while Protocol 1 (P1) corresponds to the
average per joint 3D reconstruction error, expressed in mm. Protocols 2 and 3 (P2 and P3) involve
an additional step of alignment via Procrustes analysis, and in Protocol 3 only 14 of the 17 joints are
considered. Results are included for mixtures of 3, 6 and 10 models.

Monocular Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Tome et al. [5] 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 173.9 85.0 85.8 86.3 71.4 73.1 88.4
Martinez et al. [4] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
3 Models - Baseline 100.8 104.1 103.1 108.4 109.2 122.3 98.1 130.7 136.6 192.1 102.0 108.1 113.6 98.4 104.9 114.2
6 Models - Baseline 100.7 91.7 103.4 108.0 123.8 118.3 98.3 91.1 137.8 207.1 104.7 97.5 103.2 94.8 103.0 112.3
10 Models - Baseline 100.7 92.2 109.6 108.3 128.2 119.1 97.8 91.1 148.7 214.6 112.0 98.1 103.5 94.8 103.0 115.4

3 Models (P1) 57.5 68.5 65.9 71.3 82.0 80.2 57.5 60.7 102.8 136.7 75.8 70.6 74.4 58.2 64.4 76.1
6 Models (P1) 55.0 66.6 65.0 67.5 81.5 79.6 58.1 59.1 95.0 127.3 74.7 67.6 68.3 56.6 63.4 73.4
10 Models (P1) 55.8 66.3 63.2 67.9 81.7 80.5 58.9 57.8 95.0 124.6 74.4 66.0 69.3 56.5 66.0 73.2

3 Models (P2) 48.4 54.0 58.4 58.2 70.2 66.2 45.2 49.9 80.9 110.3 66.1 57.0 61.0 48.5 52.8 62.7
6 Models (P2) 46.4 51.1 56.3 55.0 69.9 63.7 44.7 45.6 79.1 91.3 60.9 54.2 56.9 43.7 50.3 59.0
10 Models (P2) 45.6 52.1 55.1 54.9 69.0 65.5 45.3 47.6 85.7 93.6 60.4 53.6 58.5 43.4 51.1 59.7

3 Models (P3) 51.0 62.3 60.0 60.3 76.2 72.3 49.0 53.5 90.4 113.3 71.2 60.8 69.7 50.4 54.6 67.6
6 Models (P3) 48.7 55.0 56.2 59.2 75.4 66.6 50.1 50.4 90.5 102.8 66.4 57.9 60.8 49.8 57.6 64.2
10 Models (P3) 48.0 55.8 55.3 58.3 76.3 6b9.7 48.6 48.1 88.8 100.3 66.2 56.1 59.8 48.3 57.1 63.7

the Human3.6M dataset. The results, detailed in Table 1, consider three different Protocols: Protocol
1 coincides with the regular average per-joint error, and is the same protocol used in the main paper.
Protocol 2 and 3 instead involve also an alignment of ground truth and reconstruction using Procrustes
analysis, before averaging the reconstruction error over 17 and 14 joints respectively.

This experiment also allows us to gain further insight in the mixture of models used by Tome et al. [5],
by looking at one of the trained parameters. In our network, we introduced - and optimised - a series
of weights for the x and y components of the reprojection error. We can now plot these weights as
heatmaps, placing each weight on the corresponding joint. In Figure 2 we can see the results for the
multicamera approach, while Figure 4 displays the same plots but for the three monocular mixtures
of models. It is possible to notice how different models are more receptive to specific joints.

References
[1] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[2] Gene H Golub and Victor Pereyra. The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate. SIAM Journal on numerical analysis, 10(2):413–432, 1973.

[3] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

[4] Julieta Martinez, Rayat Hossain, Javier Romero, and James J. Little. A simple yet effective baseline for 3D
human pose estimation. In ICCV, 2017.

[5] Denis Tome, Christopher Russell, and Lourdes Agapito. Lifting from the deep: Convolutional 3D pose
estimation from a single image. CVPR 2017 Proceedings, pages 2500–2509, 2017.

5



Figure 4: Learnt importance of joints for the monocular case. The figure shows the relative weights
placed by each model on the y (left) and x (right) component of each joint location. As each model
represents a specific type of pose, we can see that for a given type of pose certain joints are more
significant than others.
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