
A Proofs

A.1 Proof of Theorem 3

Proof. For each arm i 6= 1, we will choose two thresholds xi = µi + ∆i

3 , yi = µ1 − ∆i

3 such that
µi < xi < yi < µ1 and define two types of events, Eµi (t) = {µ̂i(t) ≤ xi}, and Eθi (t) = {θi(t) ≤
yi}. Intuitively, Eµi (t) and Eθi (t) are the events that the estimate µ̂i and the sample value θi(t) are
not too far above the mean µi, respectively. E[Ti(T )] =

∑T
t=1 P(At = i) is decomposed into the

following three parts according to events Eµi (t) and Eθi (t),

E[Ti(T )] =

T∑
t=1

P(At = i, (Eµi (t))c)︸ ︷︷ ︸
(a)

+

T∑
t=1

P(At = i, Eµi (t), (Eθi (t))c)︸ ︷︷ ︸
(b)

+

T∑
t=1

P(At = i, Eµi (t), Eθi (t)︸ ︷︷ ︸
(c)

)

Let τk denote the time at which k-th trial of arm i happens. Set τ0 = 0.

(a) ≤ 1 +

T−1∑
k=1

P((Eµi (τk + 1))c) ≤ 1 +

T−1∑
k=1

exp
(
− k(xi − µi)2

2

)
≤ 1 +

18

∆2
i

. (5)

The probability in part (b) is upper bounded by 1 if Ti(t) is less than Li(T ) =
σ2[2 log(T∆2

i )]
2/p

(yi−xi)2 , and
by Ca/(T∆2

i ) otherwise. The latter can be proved as below,

P(At = i, (Eθi (t))c|Eµi (t)) ≤ P(θi(t) > yi|µ̂i(t) ≤ xi) ≤ P
( Zit√

Ti(t)
> yi − xi|µ̂i(t) ≤ xi

)
≤ Ca · exp

(
− Ti(t)

p/2(yi − xi)p

2σp
)
≤ Ca
T∆2

i

if Ti(t) ≥ Li(T ).

The third inequality holds by sub-Weibull (p) assumption on perturbation Zit. Let τ be the largest
step until Ti(t) ≤ Li(T ), then part (b) is bounded as, (b) ≤ Li(T ) +

∑T
t=τ+1 Ca/(T∆2

i ) ≤
Li(T ) + Ca/∆

2
i .

Regarding part (c), define pi,t as the probability pi,t = P(θ1(t) > yi|Ht−1) whereHt−1 is defined
as the history of plays until time t− 1. Let δj denote the time at which j-th trial of arm 1 happens.

Lemma 10 (Lemma 1 [3]). For i 6= 1,

(c) =

T∑
t=1

P(At = i, Eµi (t), Eθi (t))

≤
T∑
t=1

E
[1− pi,t

pi,t
I(At = 1, Eµi (t), Eθi (t))

]
≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

]
.

Proof. See Appendix A.2.

The average rewards from the first arm, µ̂1(δj + 1), has a density function denoted by φµ̂1,j
.

E
[1− pi,δj+1

pi,δj+1

]
=E
[ 1

P(θ1(δj + 1) ≥ yi|Hδj+1)
− 1
]

=

∫
R

[ 1

P
(
x+ Z√

j
> µ1 − ∆i

3

) − 1
]
φµ̂1,j

(x)dx

11



The above integration is divided into three intervals, (−∞, µ1 − ∆i

3 ], (µ1 − ∆i

3 , µ1 − ∆i

6 ], and
(µ1 − ∆i

3 ,∞). We denote them as (i), (ii) and (iii), respectively.

∫ µ1−
∆i
3

−∞

[ 1

P
(
Z > −

√
j(x− µ1 + ∆i

3 )
) − Cb]φµ̂1,j (x)dx

=

∫ ∞
0

[ 1

P(Z > u)
− Cb

] 1√
j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ u = −

√
j
(
x− µ1 +

∆i

3

)
≤
∫ ∞

0

[
Cb · exp

( uq
2σq

)
− Cb

] 1√
j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ anti-concentration inequality

=

∫ ∞
0

[ ∫ u

0

G′(v)dv
] 1√

j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ G(u) = Cb · exp

( uq
2σq

)
≤
∫ ∞

0

exp
(
−

(v +
√
j∆i

3 )2

2

)
·G′(v)dv ∵ Fubini’s Theorem & sub-Gaussian reward

=

∫ ∞
0

exp
(
−

(v +
√
j∆i

3 )2

2

)
· Cb

qvq−1

2σq
exp

( vq
2σq

)
dv

≤ CbMq,σ exp
(
− j∆2

i

18

)
∵ ∃ 0 < Mq,σ <∞ if q < 2 or (q = 2, σ ≥ 1)

(i) =

∫ µ1−
∆i
3

−∞

[[ 1

P
(
Z > −

√
j(x− µ1 + ∆i

3 )
) − Cb]φµ̂1,j (x) + (Cb − 1)φµ̂1,j (x)

]
dx

≤ CbMq,σ exp
(
− j∆2

i

18

)
+ (Cb − 1) exp

(
− j∆2

i

18

)
(ii) =

∫ µ1−
∆i
6

µ1−
∆i
3

2P
(
Z < −

√
j(x− µ1 +

∆i

3
)
)
φµ̂1,j

(x)dx

≤ 2P(Z < 0) · P
(
µ1 −

∆i

3
≤ µ̂1,j ≤ µ1 −

∆i

6

)
≤ 2P

(
µ̂1,j ≤ µ1 −

∆i

6

)
≤ 2 exp

(
− j∆2

i

72

)
(iii) =

∫ ∞
µ1−

∆i
6

2P
(
Z < −

√
j(x− µ1 +

∆i

3
)
)
φµ̂1,j (x)dx

≤ 2P
(
Z < −

√
j∆i

6

) ∫ ∞
µ1−

∆i
6

φµ̂1,j (x)dx ≤ 2P
(
Z < −

√
j∆i

6

)
≤ 2Ca exp

(
− jp/2∆p

i

2 · (6σ)p
)

(c) =

T−1∑
j=0

(i) + (ii) + (iii) <
18Cb(Mq,σ + 1) + 126

∆2
i

+
4Ca(6σ)p

∆p
i

(6)

Combining parts (a), (b), and (c),

E[Ti(T )] ≤ 1 +
144 + Ca + 18Cb(Mq,σ + 1)

∆2
i

+
4Ca(6σ)p

∆p
i

+
σ2[2 log(T∆2

i )]
2/p

(yi − xi)2

We obtain the following instance-dependent regret that there exists C ′′ = C(σ, p, q) independent of
K, T , and ∆i such that

R(T ) ≤ C ′′
∑

∆i>0

(
∆i +

1

∆i
+

1

∆p−1
i

+
log(T∆2

i )
2/p

∆i

)
. (7)

The optimal choice of ∆ =
√
K/T (logK)1/p gives the instance independent regret bound R(T ) ≤

O(
√
KT (logK)1/p).
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A.2 Proof of Lemma 10

Proof. First of all, we will show the following inequality holds for all realizations Ht−1 ofHt−1,

P(At = i, Eθi (t), Eµi (t)|Ht−1) ≤ 1− pi,t
pi,t

· P(At = 1, Eθi (t), Eµi (t)|Ht−1). (8)

To prove the above inequality, it suffices to show the following inequality in (9). This is because
whether Eµi (t) is true or not depends on realizations Ht−1 of historyHt−1 and we would consider
realizations Ht−1 where Eµi (t) is true. If it is not true in some Ht−1, then inequality in (8) trivially
holds.

P(At = i|Eθi (t), Ht−1) ≤ 1− pi,t
pi,t

· P(At = 1|Eθi (t), Ht−1) (9)

Considering realizations Ht−1 satisfying Eθi (t) = {θi(t) ≤ yi}, all θj(t) should be smaller than yi
including optimal arm 1 to choose a sub-optimal arm i.

P(At = i|Eθi (t), Ht−1) ≤ P(θj(t) ≤ yi,∀j ∈ [K]|Eθi (t), Ht−1)

= P(θ1(t) ≤ yi|Ht−1) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1)

= (1− pi,t) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1) (10)

The first equality above holds since θ1 is independent of other θj ,∀j 6= 1 and events Eθi (t) given
Ht−1. In the same way it is obtained as below,

P(At = 1|Eθi (t), Ht−1) ≥ P(θ1(t) > yi ≥ θj(t),∀j ∈ [K] \ {1}|Eθi (t), Ht−1)

= P(θ1(t) ≥ yi|Ht−1) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1)

= pi,t · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθi (t), Ht−1) (11)

Combining two inequalities (10) and (11), inequality (9) is obtained. The rest of proof is as followed.

T∑
t=1

P(At = i, Eµi (t), Eθi (t)) ≤
T∑
t=1

E[P(At = i, Eµi (t), Eθi (t)|Ht−1)]

≤
T∑
t=1

E
[1− pi,t

pi,t
· P(At = 1, Eµi (t), Eθi (t)|Ht−1)

]
≤

T∑
t=1

E
[
E
[1− pi,t

pi,t
· I(At = 1, Eµi (t), Eθi (t))|Ht−1

]]
≤

T∑
t=1

E
[1− pi,t

pi,t
· I(At = 1, Eµi (t), Eθi (t))

]

≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

δj+1∑
t=δj+1

I(At = 1, Eµi (t), Eθi (t))
]

≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

]

A.3 Proof of Theorem 5

Proof. For each arm i 6= 1, we will choose two thresholds xi = µi + ∆i

3 , yi = µ1 − ∆i

3 such that
µi < xi < yi < µ1 and define three types of events, Eµi (t) = {µ̂i(t) ≤ xi}, Eθi (t) = {θi(t) ≤ yi},
and Eµ1,i(t) = {µ1 − ∆i

6 −
√

2 log T
T1(t) ≤ µ̂1(t)}. The last event is to control the behavior of µ̂1(t)

not too far below the mean µ1. E[Ti(T )] =
∑T
t=1 P(At = i) is decomposed into the following four

13



parts according to events Eµi (t), Eθi (t), and Eµ1,i(t),

E[Ti(T )] =

T∑
t=1

P(At = i, (Eµi (t))c)︸ ︷︷ ︸
(a)

+

T∑
t=1

P(At = i, Eµi (t), (Eθi (t))c)︸ ︷︷ ︸
(b)

+

T∑
t=1

P(At = i, Eµi (t), Eθi (t), (Eµ1,i(t))
c)︸ ︷︷ ︸

(c)

+

T∑
t=1

P(At = i, Eµi (t), Eθi (t), Eµ1,i(t))︸ ︷︷ ︸
(d)

.

Let τk denote the time at which k-th trial of arm i happens. Set τ0 = 0.

(a) ≤ E[

T−1∑
k=0

τk+1∑
t=τk+1

I(At = i)I((Eµi (t))c)] ≤ E[

T−1∑
k=0

I((Eµi (τk + 1))c)

τk+1∑
t=τk+1

I(At = i)]

≤ 1 +

T−1∑
k=1

P((Eµi (τk + 1))c) ≤ 1 +

T−1∑
k=1

exp(−k(xi − µi)2

2
) ≤ 1 +

18

∆2
i

.

The second last inequality above holds by Hoeffding bound of sample mean of k sub-Gaussian
rewards, µ̂i(t) in Lemma 1. The probability in part (b) is upper bounded by 1 if Ti(t) is less than
Li(T ) = 9(2+ε) log T

∆2
i

and is equal to 0, otherwise. The latter can be proved as below,

P(At = i, (Eθi (t))c|Eµi (t)) ≤ P(θi(t) > yi|µ̂i(t) ≤ xi)

≤ P
(
Zit >

√
Ti(t)(yi − xi)2

(2 + ε) log T
|µ̂i(t) ≤ xi

)
= 0 if Ti(t) ≥ Li(T ).

The last equality holds by bounded support of perturbation Zit. Let τ be the largest step until
Ti(t) ≤ Li(T ), then part (b) is bounded by Li(T ). Regarding part (c),

(c) =

T∑
t=1

P(At = i, Eµi (t), Eθi (t), (Eµ1,i(t))
c)

≤
T∑
t=1

P((Eµ1,i(t))
c) =

T∑
t=1

T∑
s=1

P
(
µ1 −

∆i

6
−
√

2 log T

s
≥ µ̂1,s

)
=

T∑
t=1

T∑
s=1

P
(
µ1 −

∆i

6
≥ µ̂1,s +

√
2 log T

s

)
=

T∑
t=1

1

T

T∑
s=1

exp
(
− s∆2

i

72

)
≤ 72

∆2
i

Define pi,t as the probability pi,t = P(θ1(t) > yi|Ht−1) where Ht−1 is defined as the history of
plays until time t − 1. Let δj denote the time at which j-th trial of arm 1 happens. In the history
where the event Eµ1,i(t) holds, then P(θ1(t) > yi|Ht−1) is strictly greater than zero because of wide
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enough support of scaled perturbation by adding an extra logarithmic term in T . For i 6= 1,

(d) =

T∑
t=1

P(At = i, Eµi (t), Eθi (t), Eµ1,i(t)) ≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1
I(Eµ1,i(δj + 1))

]

=

T−1∑
j=0

E
[1− P

(
µ̂1,j +

√
(2+ε) log T

j Z ≥ µ1 − ∆i

3

)
P
(
µ̂1,j +

√
(2+ε) log T

j Z ≥ µ1 − ∆i

3

) I
(
µ̂1,j ≥ µ1 −

∆i

6
−

√
2 log T

j

)]

=

T−1∑
j=0

P
(
Z ≤

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

)
P
(
Z ≥

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

) ∵ maximized when µ̂1,j = µ1 −
∆i

6
−

√
2 log T

j

=

Mi(T )∑
j=0

P
(
Z ≤

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

)
P
(
Z ≥

√
2

2+ε −
√
j∆i

6
√

(2+ε) log T

)
≤Mi(T ) ·

P
(
Z ≤

√
2

2+ε

)
P
(
Z ≥

√
2

2+ε

) = Mi(T ) · CZ,ε ∵ maximized when j = 0

The first inequality holds by Lemma 10, and the last equality works since the term inside expectation
becomes zero if j ≥Mi(T ) =

(
36(
√

2 +
√

(2 + ε))2 log T
)
/∆2

i . This is because the lower bound
of perturbed average rewards from the arm 1 becomes larger than yi for j ≥ Mi(T ). Combining
parts (a), (b), (c) and (d),

E[Ti(T )] ≤ 1 +
90

∆2
i

+
9(2 + ε) log T

∆2
i

+ CZ,ε ·
36(
√

2 +
√

(2 + ε))2 log T

∆2
i

Thus, the instance-dependent regret bound is obtained as below, there exist a universal constant
C ′′′ > 0 independent of T,K and ∆i,

R(T ) = C ′′′
∑

∆i>0

(
∆i +

log(T )

∆i

)
.

The optimal choice of ∆ =
√
K log T/T , the instance-independent regret bound is derived as it

follows,

R(T ) ≤ O(
√
KT log T )

A.4 Proof of Theorem 6

Proof. The proof is a simple extension of the work of Agrawal and Goyal [3]. Let µ1 = ∆ =√
K/T (logK)1/q, µ2 = µ3 = · · · = µK = 0 and each reward is generated from a point distribution.

Then, sample means of rewards are µ̂1(t) = ∆ and µ̂i(t) = 0 if i 6= 1. The normalized θi(t) sampled
from the FTPL algorithm is distributed as

√
Ti(t) · (θi(t)− µ̂i(t)) ∼ Z.

Define the event Et−1 = {
∑
i6=1 Ti(t) ≤ c

√
KT (logK)1/q/∆} for a fixed constant c. If Et−1 is

not true, then the regret until time t is at least c
√
KT (logK)1/q. For any t ≤ T , P(Et−1) ≤ 1/2.

Otherwise, the expected regret until time t, E[R(t)] ≥ E[R(t)|Ect−1] · 1/2 = Ω(
√
KT (logK)1/q).

If Et−1 is true, the probability of playing a suboptimal is at least a constant, so that regret is
Ω(T∆) = Ω(

√
KT (logK)1/q).

P(∃i 6= 1, θi(t) > µ1|Ht−1) = P(∃i 6= 1, θi(t)
√
Ti(t) > ∆

√
Ti(t)|Ht−1)

= P(∃i 6= 1, Z > ∆
√
Ti(t)|Ht−1)

≥ 1−
∏
i 6=1

(
1− exp

(
− (
√
Ti(t)∆/σ)q/2

)
/Cb

)
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Given realization Ht−1 of history Ht−1 such that Et−1 is true, we have
∑
i 6=1 Ti(t) ≤

c
√
KT (logK)1/q

∆ and it is minimized when Ti(t) = c
√
KT (logK)1/q

(K−1)∆ for all i 6= 1. Then,

P(∃i 6= 1, θi(t) > µ1|Ht−1) ≥ 1−
∏
i6=1

(
1− exp

(
−
(√

Ti(t)∆
)q

2σq
)
/Cb

)
= 1−

(
1− σ(q,K)

K

)K−1

where σ(q,K) = exp
(
cq/2

2νq ( K
K−1 )q/2

)
/Cb. Accordingly,

P(∃i 6= 1, At = i) ≥ 1

2

(
1−

(
1− σ(q,K)

K

)K−1
)
· 1

2
→ p? ∈ (0, 1).

Therefore, the regret in time T is at least Tp?∆ = Ω(
√
KT (logK)1/q).

A.5 Proof of Theorem 8

Proof. Fix η = 1 without loss of generality in FTRL algorithm via Tsallis entropy. For any α ∈ (0, 1),

Tsallis entropy yields the following choice probability, Ci(G) =
(

1−α
α

) 1
α−1 (λ(G)−Gi)

1
α−1 , where∑K

i=1 Ci(G) = 1, λ(G) ≥ maxi∈[K] Gi. Then for 1 ≤ i 6= j ≤ K, the first derivative is negative
as shown below,

∂Ci(G)

∂Gj
=
(1− α

α

) 1
α−1

1

α− 1

(λ(G)−Gi)
1

α−1−1(λ(G)−Gj)
1

α−1−1∑K
l=1(λ(G)−Gl)

1
α−1−1

< 0.

and it implies that DC(G) is symmetric. For, 1 ≤ i 6= j 6= k ≤ K, the second partial derivative,
∂2Ci(G)
∂Gj∂Gk

is derived as

Ci(G)·
(

(

K∑
l=1

(λ(G)−Gl)
2−α
α−1 )(

1

λ(G)−Gi
+

1

λ(G)−Gj
+

1

λ(G)−Gk
)−

K∑
l=1

(λ(G)−Gl)
3−2α
α−1

)
.

(12)
If we set 1/(λ(G) − Gi) = Xi, the term in (12) except for the term Ci(G) is simplified to∑K
i=1X

2−α
1−α
i · (X1 +X2 +X3)−

∑K
i=1X

3−2α
1−α
i where

∑K
i=1X

1
1−α
i =

(
α

1−α
) 1
α−1 . If we set K = 4,

C(G) = (ε, ε, ε, 1− 3ε), and Xi = C1−α
i

1−α
α , then it is equal to(1− α

α

) 3−2α
1−α

(
6ε3−2α + 3ε1−α(1− 3ε)2−α − (1− 3ε)3−2α

)
. (13)

So, there always exists ε > 0 small enough to make the value of (13) negative where α ∈ (0, 1),
which means condition (4) in Theorem 7 is violated.

B Extreme Value Theory

B.1 Extreme Value Theorem

Theorem 11 (Proposition 0.3 [23]). Suppose that there exist {aK > 0} and {bK} such that

P((MK − bK)/aK ≤ z) = FK(aK · z + bK)→ G(z) as K →∞ (14)

where G is a non-degenerate distribution function, then G belongs to one of families; Gumbel,
Fréchet and Weibull. Then, F is in the domain of attraction of G, written as F ∈ D(G).
1. Gumbel type (Γ) with G(x) = exp(− exp(−x)) for x ∈ R.
2. Fréchet type (Φα) with G(x) = 0 for x > 0 and G(x) = exp(−x−α) for x ≥ 0.
3. Weibull type (Ψα) with G(x) = exp(−(−x)α) for x ≤ 0 and G(x) = 1 for x > 0.

Let γK = F←(1− 1/K) = inf {x : F (x) ≥ 1− 1/K}.
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Theorem 12 (Proposition 1.1 [23]). Type 1 - Gumbel (Λ)
1. If F ∈ D(Γ), there exists some strictly positive function g(t) s.t. limt→ωF

1−F (t+x·g(t))
1−F (t) =

exp(−x) for all x ∈ R with exponential tail decay. Its corresponding normalizing sequences are
aK = g(γK) and bK = γK , where g = (1− F )/F ′.
2. If limx→∞

F ′′(x)(1−F (x))

{F ′(x)}2 = −1, then F ∈ D(Λ).

3. If
∫ 0

−∞ |x|F (dx) < ∞, then limK→∞ E
(
(MK − bK)/aK

)
= −Γ(1)(1). Accordingly, EMK

behaves as −Γ(1)(1) · g(γK) + γK .

Theorem 13 (Proposition 1.11 [23]). Type 2 - Fréchet (Φα)
1. If F ∈ D(Φα), its upper end point is infinite, ωF = ∞, and it has tail behavior that decays
polynomially limt→∞

1−F (tx)
1−F (t) = x−α, for x > 0, α > 0. Its corresponding normalizing sequences

are aK = γK and bK = 0.
2. If limx→∞

xF ′(x)
1−F (x) = α for some α > 0, then F ∈ D(Φα).

3. If α > 1 and
∫ 0

−∞ |x|F (dx) < ∞, then limK→∞ E
(
MK/aK

)
= Γ

(
1 − 1/α

)
. Accordingly,

EMK behaves as Γ
(
1− 1

α

)
· γK .

B.2 Asymptotic Expected Block Maxima and Supremum of Hazard Rate

B.2.1 Gumbel distribution

Gumbel has the following distribution function, the first derivative and the second derivative, F (x) =

exp(−e−x), F ′(x) = e−xF (x), and F ′′(x) = (e−x − 1)F ′(x). limx→∞
F ′′(x)(1−F (x))

{F ′(x)}2 = −1,

thus this is Gumbel-type distribution by Theorem 12, F ∈ D(Λ). If g(x) = ex(ee
−x − 1), then

normalizing constants are obtained as bK = − log(− log(1− 1/K)) ∼ logK, and aK = g(bK) =
(1− F (bK))/(exp(−bK)F (bK)) = 1 + 1/K + o( 1

K ). Accordingly, EMK = −Γ(1)(1) · (1 + 1
K ) +

logK + o(1/K).

Its hazard rate is derived as h(x) = F ′(x)
1−F (x) = e−x

exp(e−x)−1 , and since it increases monotonically and
converges to 1 as x goes to infinity, it has an asymptotically tight bound 1.

B.2.2 Gamma distribution

For x > 0, the first derivative and the second derivative of distribution function are given as F ′(x) =

(xα−1e−x)/Γ(α) and F ′′(x) = −F ′(x)(1 + (α − 1)/t) ∼ −F ′(x). It satisfies F ′′(1−F (x))
(F ′(x))2 ∼

− 1−F (x)
F ′(x) → −1 so it is Gumbel-type by Theorem 12, F ∈ D(Λ). It has g(x)→ 1 and thus aK = 1.

Since F ′(bK) ∼ 1 − F (bK) = 1/K, (α − 1) log bK − bK − log Γ(α) = − logK. Thus, we have
bK = logK + (α − 1) log logK − log Γ(α). Accordingly, EMK = −Γ(1)(1) + logK + (α −
1) log logK − log Γ(α).

Its hazard function is expressed by h(x) = (xα−1 exp(−x))/[
∫∞
x
tα−1 exp(−t)dt]. It increases

monotonically and converges to 1, and thus has an asymptotically tight bound 1.

B.2.3 Weibull distribution

The Weibull distribution function and its first derivative are obtained as as F (x) = 1− exp(−(x+
1)α+1) and F ′(x) = α(x+1)α−1(1−F (x)). Its second derivative is (α−1

x+1 −α(x+1)α−1) ·F ′(x).
The second condition in Theorem 12 is satisfied, and thus F ∈ D(Λ) and g(x) = x−α+1/α.
Corresponding normalizing constants are derived as bK = (1 + logK)1/α − 1 ∼ (logK)1/α and
aK = g(bK) = (logK)1/α−1/α. So, EMK = −Γ(1)(1) · (logK)1/α−1/α+ (logK)1/α.

Its hazard rate function is h(x) = α(x+ 1)α−1 for x ≥ 0. If α > 1, it increases monotonically and
becomes unbounded. If the case for α ≤ 1 is only considered, then the hazard rate is tightly bounded
by α.
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B.2.4 Fréchet distribution

The first derivative of Fréchet distribution function is F ′(x) = exp(−x−α)αx−α−1 for x > 0 and
the second condition in Theorem 13 is satisfied as limx→∞

xF ′(x)
1−F (x) = limx→∞

αx−α

exp(x−α)−1 → α.

Thus, it is Fréchet-type distribution (Φα) so that bK = 0 and aK = [− log(1 − 1/K)]−1/α =
[1/K + o(1/K)]−1/α ∼ K1/α. So, EMK = Γ(1− 1/α) ·K1/α.

The hazard rate is h(x) = αx−α−1 1
exp(x−α)−1 . It is already known that supremum of hazard is upper

bound by 2α in Appendix D.2.1 in Abernethy et al. [2]. Regarding the lower bound of a hazard rate,
supx>0 h(x) ≥ h(1) = α/(e− 1).

B.2.5 Pareto distribution

The modified Pareto distribution function is F (x) = 1− 1
(1+x)α for x ≥ 0. The second condition

in Theorem 13 is met as limx→∞
xF ′(x)
1−F (x) = limx→∞

αx
1+x → α > 1. Thus, it is Fréchet-type

distribution (Φα), and has normalizing constants, bK = 0 and aK = K1/α − 1. Accordingly,
EMK ≈ Γ(1− 1/α) · (K1/α − 1).

Its hazard rate is h(x) = α
1+x for x ≥ 0 so that it is tightly bounded by α.

C Two-armed Bandit setting

C.1 Shannon entropy

There is a mapping betweenR and FD? ,

R(w)−R(0) = −
∫ w

0

F−1
D? (1− z)dz. (15)

LetR(w) be one-dimensional Shannon entropic regularizer,R(w) = −w logw−(1−w) log(1−w)

for w ∈ (0, 1) and its first derivative isR′(w) = log 1−w
w = F−1

D? (1−w). Then FD?(z) = exp(z)
1+exp(z) ,

which can be interpreted as the difference of two Gumbel distribution as follows,

P(arg max
w∈∆1

〈w, (G1 + Z1, G2,+Z2)〉 = 1) = P(G1 + Z1 > G2 + Z2))

= P(Y > G2 −G1) where Y = Z1 − Z2 ∼ D?

= 1− FD?(G2 −G1) =
exp(G1)

exp(G1) + exp(G2)

If Z1, Z2 ∼ Gumbel(α, β) and are independent, then Z1 − Z2 ∼ Logistic(0, β). Therefore, the
perturbation, FD? is not distribution function for Gumbel, but Logistic distribution which is the
difference of two i.i.d Gumbel distributions. Interestingly, the logistic distribution turned out to be
also Gumbel types extreme value distribution as Gumbel distribution. It is naturally conjectured
that the difference between two i.i.d Gumbel types distribution with exponential tail decay must be
Gumbel types as well. The same holds for Fréchet-type distribution with polynomial tail decay.

C.2 Tsallis entropy

Theorem 8 states that there does not exist a perturbation that gives the choice probability function
same as that from FTRL via Tsallis entropy when K ≥ 4. In two-armed setting, however, there
exists a perturbation equivalent to Tsallis entropy and this perturbation naturally yields an optimal
perturbation based algorithm.

Let us consider Tsallis entropy regularizer in one dimensional decision set expressed by R(w) =
1

1−α (−1 + wα + (1 − w)α) for w ∈ (0, 1) and its first derivative is R′(w) = α
1−α (wα−1 − (1 −

w)α−1) = F−1
D? (1−w). If we set u = 1−w, then the implicit form of distribution function and density

function are given as FD?( α
1−α ((1− u)α−1 − uα−1)) = u and fD?( α

1−α ((1− u)α−1 − uα−1)) =
1

α((1−u)α−2+uα−2) . As u converges to 1, then z = α
1−α ((1−u)α−1−uα−1) goes to positive infinity.
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This distribution satisfies the second condition in Theorem 13 so that it turns out to be Fréchet-type.

lim
z→∞

zfD?(z)

1− FD?(z)
= lim
u→1

α
1−α ((1− u)α−1 − uα−1)

(1− u)× α((1− u)α−2 + uα−2)
=

1

1− α
.

If the conjecture above holds, the optimal perturbation that corresponds to Tsallis entropy regularizer
must be also Fréchet-type distribution in two armed bandit setting. This result strongly support our
conjecture that the perturbation in an optimal FTPL algorithm must be Fréchet-type.
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