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Abstract

From traditional Web search engines to virtual assistants and Web accelerators,
services that rely on online information need to continually keep track of remote
content changes by explicitly requesting content updates from remote sources
(e.g., web pages). We propose a novel optimization objective for this setting that
has several practically desirable properties, and efficient algorithms for it with
optimality guarantees even in the face of mixed content change observability and
initially unknown change model parameters. Experiments on 18.5M URLSs crawled
daily for 14 weeks show significant advantages of this approach over prior art.

1 Introduction

As the Web becomes more and more dynamic, services that rely on web data face the increasingly
challenging problem of keeping up with online content changes. Whether it be a continuous-query
system [26]], a virtual assistant like Cortana or Google Now, or an Internet search engine, such a
service tracks many remote sources of information — web pages or data streams [27]. Users expect
these services, which we call trackers, to surface the latest information from the sources. This is
easy if sources push content updates to the tracker, but few sources do. Instead, major trackers such
as search engines must continually decide when to re-pull (crawl) data from sources to pick up the
changes. A policy that makes these decisions well solves the freshness crawl scheduling problem.

Freshness crawl scheduling has several challenging aspects. For most sources, the tracker finds
out whether they have changed only when it crawls them. To guess when the changes happen, and
hence should be downloaded, the tracker needs a predictive model whose parameters are initially
unknown. Thus, the tracker needs to learn these models and optimize a freshness-related objective
when scheduling crawls. For some web pages, however, sitemap polling and other means can provide
trustworthy near-instantaneous signals that the page has changed in a meaningful way, though not
what the change is exactly. But even with these remote change observations and known change model
parameters, freshness crawl scheduling remains highly nontrivial because the tracker cannot react
to every individual predicted or actual change. The tracker’s infrastructure imposes a bandwidth
constraint on the average daily number of crawls, usually just a fraction of the change event volume.
Last but not least, Google and Bing track many billions of pages [32] with vastly different importance
and change frequency characteristics. The sheer size of this constrained learning and optimization
problem makes low-polynomial algorithms for it a must, despite the availability of big-data platforms.

This paper presents a holistic approach to freshness crawl scheduling that handles all of the above
aspects in a computationally efficient manner with optimality guarantees using a type of reinforcement
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learning (RL) [29]. This problem has been studied extensively from different angles, as described
in the Related Work section. The scheduling aspect per se, under various objectives and assuming
known model parameters, has been the focus of many papers, e.g., [2}[10} [13} 25/ [35]]. In distinction
from these works, our approach has all of the following properties: (i) optimality; (ii) computational
efficiency; (iii) guarantee that every source changing at a non-zero rate will be occasionally crawled;
(iv) ability to take advantage of remote change observations, if available. No other work has (iv), and
only [35] has (i)-(iii). Moreover, learning change models previously received attention [11] purely as
a preprocessing step. Our RL approach integrates it with scheduling, with convergence guarantees.

Specifically, our contributions are: (1) A natural freshness optimization objective based on harmonic
numbers, and analysis showing how its mathematical properties enable efficient optimal scheduling.
(2) Efficient optimization procedures for this bandwidth-constrained objective under complete, mixed,
and lacking remote change observability. (3) A reinforcement learning algorithm that integrates
these approaches with model estimation of [[11] and converges to the optimal policy, lifting the
known-parameter assumption. (4) An approximate crawl scheduling algorithm that requires learning
far fewer parameters, and identifying a condition under which its solution is optimal.

2 Problem formalization

In settings we consider, a service we call tracker monitors a set W of information sources. A source
w € W can be a web page, a data stream, a file, etc, whose content occasionally changes. To pick up
changes from a source, the tracker needs to crawl it, i.e., download its content. When source w has
changes the tracker hasn’t picked up, the tracker is stale w.r.t. w; otherwise, it is fresh w.r.t. w. We
assume near-instantaneous crawl operations, and a fixed set of sources W. Growing W to improve
information completeness [27]] is also an important but distinct problem; we do not consider it here.

Discrete page changes. We define a content change at a source as an alteration at least minimally
important to the tracker. In practice, trackers compute a source’s content digest using data extractors,
shingles [4]], or similarity hashes [[1], and consider content changed when its digest changes.

Models of change process and importance. We model each source w € W’s changes as a Poisson
process with change rate A,,. Many prior works adopted it for web pages [2,8] [0} [10L [11} 12} [35] as a
good balance between fidelity and computational convenience. We also associate an importance score
14, With each source, and denote these parameters jointly as fi. Importance score 1, can be thought
of as characterizing the time-homogeneous Poisson rate at which the page is served in response to the
query stream, although in general it can be any positive weight measuring source significance [2].
While scores (1., are defined by, and known to, the tracker, change rates A\, need to be learned.

Change observability. For most sources, the tracker can find out whether the source has changed
only by crawling it. In this case, even crawling doesn’t tell the tracker how many times the source
has changed since the last crawl. We denote the set of these sources as W™ and say that the tracker
receives incomplete change observations about them. However, for other sources, which we denote as
We, the tracker may receive near-instant notification whenever they change, i.e., get complete remote
change observations. E.g., for web pages these signals may be available from browser telemetry or
sitemaps. Thus the tracker’s set of sources can be represented as W = WeUW ™ and W°NW ™ = 0.

Bandwidth constraints. Even if the tracker receives complete change observations, it generally
cannot afford to do a crawl upon each of them. The tracker’s network infrastructure and considerations
of respect to other Internet users limit its crawl rate (the average number of requests per day); the
total change rate of tracked sources may be much higher. We call this limit bandwidth constraint R.

Optimizing freshness. The tracker operates in continuous time and starts fresh w.r.t. all sources. Our
scheduling problem’s solution is a policy ™ — a rule that at every instant ¢ chooses (potentially stochas-
tically) a source to crawl or decides that none should be crawled. Executing 7 produces a crawl se-
quence of time-source pairs CrSeq = (t1,w1), (t2,w2), . .., denoted CrSeq,, = (t1,w), (t2, w),. ..
for a specific source w. Similarly, the (Poisson) change process at the sources generates a change
sequence ChSeq = (t},w}), (th,w}), ..., where t} is a change time of source w;; its restriction to

—

source w is ChSeq,,. We denote the joint process governing changes at all sources as P(A).
3 Minimizing harmonic staleness penalty

We view maximizing freshness as minimizing costs the tracker incurs for the lack thereof, and
associate the time-averaged expected staleness penalty J™ with every scheduling policy 7:
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Here, T is a planning horizon, N,,(¢) is the number of uncrawled changes source w has accumulated
by time ¢, and C : Z*T — R is a penalty function, to be chosen later, that assigns a cost to every
possible number of uncrawled changes. Note that N,,(¢) implicitly depends on the most recent time
w was crawled as well as on change sequence C'hSegq, so the expectation is both over possible change
sequences and possible crawl sequences CrSeq generatable by m. Minimizing staleness means
finding 7* = argmin_ . J™ under bandwidth constraint, where Il is a suitably chosen policy class.

Choosing C(n) that is efficient to optimize and induces "well-behaving" policies is of utmost
importance. E.g., C'(n) = 1,,~¢, which imposes a fixed penalty if a source has any changes since
last crawl [2,[10]], can be optimized efficiently in O(|W |log(|WW])) time over the class IT of policies
that crawl each source w according to a Poisson process with a source-specific rate p,,. However, for
many sources, the optimal p, is 0 under this C'(n) [2]. This is unacceptable in practice, as it leaves
the tracker stale w.r.t. some sources forever, raising a question: why monitor these sources at all?

In this paper, we propose and analyze the following penalty:

C(n):H(n):Z% if n > 0,and 0if n =0 2)

i=1
H (n) for n > 0 is the n-th harmonic number and has several desirable properties as staleness penalty:

It is strictly monotonically increasing. Thus, it penalizes the tracker for every change that happened
at a source since the previous crawl, not just the first one as in [10].

It is discrete-concave, providing diminishing penalties: intuitively, while all undownloaded changes
at a source matter, the first one matters most, as it marks the transition from freshness to staleness.

""Good' policies w.r.t. this objective don’t starve any source as long as that source changes. This
is because, as it turns out, policies that ignore changing sources incur J™ = oo if C(n) is as in Eq.
(see Prop. [T]in Section[d). In fact, this paper’s optimality results and high-level approaches are valid
for any concave C'(n) > 0 s.t. lim,_,~, C'(n) = oo, though possibly at a higher computational cost.

It allows for efficiently finding optimal policies under practical policy classes. Indeed, C'(n) =
H(n) isn’t the only penalty function satisfying the above properties. For instance, C(n) = n?

for 0 < d < 1and C(n) = log,(1 + n) for d > 1 behave similarly, but result in much more
computationally expensive optimization problems, as do other alternatives we have considered.

4 Optimization under known change process

We now derive procedures for optimizing Eq. [1|with C'(n) = H(n) (Eq. [2) under the bandwidth
constraint for sources with incomplete and complete change observations, assuming that we know the

change process parameters A exactly. In Sectionwe will lift the known-parameters assumption. We
assume ji, A > 0, because sources that are unimportant or never change don’t need to be crawled.

4.1 Case of incomplete change observations

When the tracker can find out about changes at a source only by crawling it, we consider randomized
policies that sample crawl times for each source w from a Poisson process with rate p,,:

I~ = {CrSeq, ~ Poisson(p,) Yw € W~ |p > 0} 3)
This policy class reflects the intuition that, since each source changes according to a Poisson process,
i.e., roughly periodically, it should also be crawled roughly periodically. In fact, as Azar et al. [2]
show, any 7 € II~ can be de-randomized into a deterministic policy that is approximately periodic
for each w. Since every 7 € II™ is fully determined by the corresponding vector g, we can easily
express a bandwidth constrainton 7 € 1" as ) - puw = R

To optimize over I1~, we first express policy cost (Eq. |1) in terms of II~’s policy parameters p' > 0:



Proposition 1. For m € 117, J™ from Eq. is equivalent to
Pw
Z a (Aw + Pw )

weW —

Proof. See the Supplement. Note that J™ = oo if p,, = 0 for any w € W~. The proof relies on
properties of Poisson processes, particularly memorylessness. |

Thus, finding 7* € II™ can be formalized as follows:
Problem 1. [Finding 7* € 117 ]

INPUT: bandwidth R > 0; positive importance and change rate vectors |1, A>0.

OUTPUT: Crawl rates § = (pw)wew - maximizing J = —J" = 5 i, 1n (A”%p) subject to
weW —

w =R, py >0 ] w=. -
we;v, r r for allw € Algorithm 1: LAMBDACRAWL-INCOMLOBS:

finding the optimal crawl scheduling policy 7* €
The next result readily identifies the opti- I~ under incomplete change observations (Prob-

mal solution to this problem: lem[T)
Proposition 2. For ji, A > 0, policy ~Input: B> 0—bandwidth;
7* € II~ parameterized by * > 0 that > 0,A > 0 - importance and change rates;

€ > 0 —desired precision on A
Output: o — vector of crawl rates for each source.
W~ Pmin _y,— {Aw}ming yp— {pw}
|W—| max, - {Aw}R+R?

satisfies the following equation system is
unique, minimizes harmonic penalty J"
in Eq. |2} and is therefore optimal in I17: 1 Ajgwer <

—12
W12 max, - {Aw} max, o {w}

/AT _a 2 Mupper S i (B
Pw = w2 =, forallw € W™ 3 X\ < BisectionSearch(Ajower, Aupper, €)
Z cw- Pw = R 4 // see, e.g., Burden & Faires [6]
weW—
_ —Ay /Az At A
Q) s foreach w € W™ do p,, + ;"+ A
6 Return g

Proof. See the Supplement. The main in-
sight is that for any i, A > 0 the Lagrange multiplier method, which gives rise to Eq. system
identifies the only maximizer of J=—Jr (Eq. |4) with p° > 0, which thus must correspond to
m* € II™. Crucially, that solution always has A > 0. |
Eq. system [3]is non-linear, but the r.h.s. of Egs. involving A monotonically decreases in A > 0, so,
e.g., bisection search [6] on A > 0 can find p* as in Algorithm[l}

Proposition 3. LAMBDACRAWL-INCOMLOBS (Algorithm|l) finds an e-approximation to Problem
’s optimal solution in time O(logQ(M) wW=)).

Proof. See the Supplement. The key step is showing that the solution A is in [Ajower, Aupper]- M

Note that a convex problem like this could also be handled using interior-point methods, but the most
suitable ones have higher, cubic per-iteration complexity [3]].

4.2 Case of complete change observations

If the tracker receives a notification every time a source changes, the policy class II™ in Eq. |3|is
clearly suboptimal, because it ignores these observations. At the same time, crawling every source on
every change signal is unviable, because the total change rate of all sources ), -0 Ay, can easily
exceed bandwidth . These extremes suggest a policy class whose members trigger crawls for only a
fraction of the observations, dictated by a source-specific probability p,,:

I1° ={for all w € W°, on each observation o,, crawl w with probability p,, [0 < p'< 1}  (6)

As with II~, to find 7* € II° we first express J™ from Eq. in terms of I1°’s policy parameters p:

Proposition 4. For m € 11°, J” from Eq. |l|is equivalent to J™ = — 3 10t In (py) if P> 0
and J* = o0 if py, = 0 for any w € W°.

Proof. See the Supplement. The key insight is that under any 7 € II°, the number of w’s uncrawled
changes at time ¢ is geometrically distributed with parameter p,,. |



Under any 7 € I1°, the crawl rate p,, of any source is related to its change rate A,,: every time w
changes we get an observation and crawl w with probability p,,. Thus, p,, = p,,A. Also, bandwidth
R > " cwo Ay isn’t sensible, because with complete change observations the tracker doesn’t
benefit from more crawls than there are changes. Thus, we frame finding 7* € I1° as follows:

Problem 2. [Finding m* € 11°]
INPUT: bandwidth R s.t. 0 < R <)y ., importance and change rate vectors ji, A >0.

OUTPUT: Crawl probabilities ' = (pw)wewe Subject to Y, o Py = Rand 0 < p,, <
1 for allw € W°, maximizing J"= = —J™ = Y wewo Hw 0 (Pu).

Non-linear optimization under inequality constraints could generally take exponential time in the
constraint number. Our main result in this subsection is a polynomial optimal algorithm for Problem 2]

First, consider a relaxation of Problem 2]

; . . . Algorithm 2: LAMBDACRAWL-COMPLOBS:
that ignores the inequality constraints:

> finding the optimal crawl scheduling policy
Proposition 5. The optimal solution p* to 7 € II° under complete change observations
the relaxation of Problem[2|that ignores in- ~ (Problem )

equality constraints is unique and assigns ;| LAMBDACRAWL-COMPLOBS:

—

Py = #:WOWJCOV allw e W°. Input: [i, A- importance and change rate vectors
2 Rst. 0 <R <Y ow Ay — bandwidth;
Proof. See the Supplement. The proof  Output: p* — vector specifying optimal per-page crawl
applies Lagrange multipliers. ] probabilities upon receiving a change
observation.

Our algorithm LAMBDACRAWL- 3 W,epm <+ W°  // remaining sources to consider
CoMPLOBs (Algorithm [2)’s high-level 4 while Wy.,,,, # 0 do
approach is to iteratively (lines [}{T4) s | foreach w € W, do

6

solve Problem [2's relaxations as in Prop. L Dry %fﬂ allw € Wrep,
lines , each time detecting sources @S Trem T
E]( E]-@ g 7 ViolationDetected <~ False

that activate (either meet or exceed) the

pw < 1 constraints (line [09). (Note that Z fore?fcg*wflvfﬁ;: do

the relaxed solution never has p;, < 0.) |, “;)T: —1

Our key insight, which we prove in the |, R+ R— A, // reduce remaining
Supplement, is that any such source has bandwidth

py, = 1. Therefore, we set p}, = 1 for 1 Wem — Wee \ {w} // ignore w
each of them, adjust the overall bandwidth onwards

constraint for the remaining sources to 13 ViolationDetected = True

— * — =
faggbve_ wR f;OIll)l w%lur}thgr IgogsiAdéUr,atEilgg 14 | if ViolationDetected == False then break
(lines [[OT2). Eventually, we arrive at a 15 foreach w € Wy, do
(possibly empty) set of sources for which 16 L P <P
Prop. E]’s solution obeys all constraints 17 Return 5* = (p;,)wewe
under the remaining bandwidth (lines
[T3}{T6). Since Prop. [3fs solution is optimal in this base case, the overall algorithm is optimal too.

Proposition 6. LAMBDACRAWL-COMPLOBS is optimal for Problem|2|and runs in time O(|[W°?).

Proof. See the Supplement. The proof critically relies on the concavity of J". ]

The O(|W°|?) bound is loose. Each iteration usually discovers several active constraints at once, and
for many sources the constraint is never activated, so the actual running time is close to O(|W°]).

4.3 Crawl scheduling under mixed observability

In practice, trackers have to simultaneously handle sources with and without complete change data
under a common bandwidth budget R. Consider a policy class that combines II~ and II°:

e — For all w € W—:{CrSeq,, ~ Poisson(py)|p},
~ | For all w € W°:{on each change observation o,,, crawl w with probability p,, |p}

)

For 7 € T1°, Prop.s andimply that J™ from Eq. is equivalent to
Pw
J"=— wln | ——— ) — w I (Pw (®)
I e R I

weWe



Optimization over 7 € TI© can be stated as follows:

Problem 3. [Finding 7 € 11°]

INPUT: bandwidth R > 0; importance and change rate vectors |[i, A>o0.

OUTPUT: Crawl rates p = (pw)wew - and crawl probabilities p = (P )wewe maximizing

— - Pw
J =—-J" = Z /.Lwhl (Aw-l->+ Z /len(pw) )

weW = Pw weWe
subj. 10 ), cy— Pw + D wewe Pwlw = R, py > 0 forallw € W=,0 < p, < 1forallw e W°.

The optimization objective (Eq. [) is Algorithm 3: LAMBDACRAWL: finding optimal

sFrlctly concave as a sum of concave func- mixed-observability policy 7* € TI€ (Probl em
tions over the constrained region, and !
Input: R > 0 — bandwidth;

therefore has a unique maximizer. Find- - S X
ing it amounts to deciding how to split fi >0, A > 0 —importance and change rates;

the total bandwidth R into R° for sources € &> 0 — desired precisions
with complete change observations and Output: p*, p* — crawl rates and probabilities for

— _ p_ po . sources without and with complete change
R~ = R R? for the rest. For any candi observations.
date split, LAMBDACRAWL-COMPLOBS R°. <0

and LAMBDACRAWL-INCOMLOBS give ; R0 <imin{R, 3 Au}
us the reward-maximizing policy param- e TeweWo
eters p*(R°) and p*(R™), respectively,
and Eq. [J then tells us the overall
value J* (R°, R™) of that split. We also
know that for the optimal split, R°" €
[0,min{R, ", cy. Ay}l as discussed 7 SPLIT-EVAL-J :

immediately before Problem@ Thus, we  Input: R° —bandwidth for sources jvith complete

can find Problem [3[s maximizer to any change observations, R, ji, A, "

desired precision using a method such as  Output: J" (Eq. @) for the given split

Golden-section search [20] on R°. LAMB- 8 § <+ LAMBDACRAWL-INCOMLOBS(R —

DACRAWL (Algorithm3) implements this ~ R°, iy, —, Ay, )

idea, where SPLIT-EVAL-.J " (line eval- 9 5 <+ LAMBDACRAWL-COMPLOBS(R®, jiwo, Ewo)
uates J (R°, R™) and OptMaxSearch de- 10 Return

notes an optimal search method. > wew— HwIn (m) + 3 wewo Hw In (puw)
Proposition 7. LAMBDACRAWL (Algo-

rithm @) finds an e-approximation to Problem @’s optimal solution using O(log(%)) calls to

LAMBDACRAWL-INCOMLOBS and LAMBDACRAWL-COMPLOBS.
Proof. This follows directly from the optimality of LAMBDACRAWL-INCOMLOBS and

LAMBDACRAWL-COMPLOBS (Prop.s[2]and [6)), as well as of OptMaxSearch such as Golden section,
which makes O(log(£)) iterations. |

35,0

OptMaxSearch(Split-Eval-J ", RS,:,,, Roaz, €)
/I E.g., Golden section search [20]
Return p*, p*

—

5 Reinforcement learning for scheduling

All our algorithms so far assume known change rates, but in reality change rates are usually unavailable
and vary with time, requiring constant re-learning. In this section we modify LAMBDACRAWL into a
model-based reinforcement learning (RL) algorithm that learns change rates on the fly.

. . . U U
For a source w, suppose the tracker observes binary change indicators {2;}7_,, where {t;};_, are

observation times and z; = 1 iff w changed since ¢;_1 at least once. Consider two cases:

Incomplete change observations for w. Here, the tracker generates the sequence {z; }?:1 for each
source w by crawling it. If z; = 1, the tracker still doesn’t know exactly how many times the source

changed since time ¢;_;. Denoting ag, =t; — tji—1,5 =1, A that solves
aj _
D oaag 2 =0 (10)
jizj=1 j:z;=0
is an MLE of A for the given source [11]]. The 1.h.s. of the equation is monotonically decreasing in

A, so A can be efficiently found numerically. This estimator is consistent under mild conditions [L1]],
e.g., if the sequence {a; }j’;l doesn’t converge to 0, i.e., if the observations are spaced apart.



Complete change observations for w.
In this case, for all j, z; = 1: an observa-
tion indicating exactly one change arrives
on every change. Here a consistent MLE
of A is the observation rate [30]:

Algorithm 4: LAMBDALEARNANDCRAWL: find-
ing optimal crawl scheduling policy 7* € II°
(Problem 3)) under initially unknown change model

Input: R > 0 — bandwidth;

A > 0,A > 0 - importance and initial change

A=(U+1)/to, an .
LAMBDALEARNANDCRAWL, a model- oot guesses
based RL version of LAMBDACRAWL that €%, € > 0 — desired precisions

Tepoch > 0 — duration of an epoch
Nepochs > 0 —number of epochs
S(n) — for each epoch n, observation history

suffix length for learning A in that epoch

uses these estimators to learn model pa-
rameters simultaneously with scheduling
is presented in Algorithm [d] It operates
in epochs of length T, time units each
(lines BHI3). At the start of each epoch

/l obs_hist[S is S(n)-length ob tion hist
n, it calls LAMBDACRAWL (Algorithm 1/ obshistS(n)] s 5(n)-length observation history

suffix
2 obs_hist < ()

on the available An 1 change rate es-
3 foreach 1 < n < Nepocns do

tlmates to produce a policy (p7, plt) opti- -
mal with respect to them (line E]) Execut- 4 Dy Dn <+ LAMBDACRAWL(R, fi, A_1,€
ing this policy during the current epoch, s /I Zew holds observations for all sources from start
for the time period of T¢poc1, and record- to

ing the observations extends the observa- 6 /I end of epoch n. Execute policy (gy,, py,) to get it
tion history (lines[7H8). (Note though that
for sources w € W?, the observations
don’t depend on the policy.) It then re-

no-obs , E)

Znew i Execute AndObserve(py,, D, Tepoch )
8 Append(obs_hist, Znew)
9 // Learn new A estimates using Eqgs. and

estimates change rates using a suffix of
the augmented observation history (lines

. Under mild assumptions, LAMB-
DALEARNANDCRAWL converges to the
optimal policy:

Proposition 8. LAMBDALEARNAND-

foreach w € W~ do
A,  Solve(

aj 0.5
j:zjzzl EajAJfl + 05871

> a; — 0.5 =0,0bs_hist[S(n)])
JiZj, =0

foreach w € W° do
Ug(n)+0.5

CRAWL (Algorithm H)) converges in L An,, «+ Solve(
probability to the optimal policy un- L
der the true change rates A, e,
(5, 7%), if A is stationary and S(n), the length of the his-
= length(obs_hist).

IR obs_hist[S(n)])

11mNepochs —00 (pNepochs ) pNepm,}u ) =
tory’s training suffix, satisfies S(Nepoch,)

Proof. See the Supplement. It follows from the consistency and positivity of the change rate estimates,
as well as LAMBDACRAWL’s optimality ]

LAMBDALEARNANDCRAWL in practice requires attention to several aspects:
Stationarity of A. Source change rates may vary with time, so the length of history suffix for
estimating A should be shorter than the entire available history.

Singularities of A estimators. The MLE in Eq. ylelds A, = o if all crawls detect a change (the

r.h.s. is 0). Similarly, Eq. 1 produces A, = 0if no observations about w arrive in a given pCI‘IOd To
avoid these singularities without affecting consistency, we smooth the estimates by adding imaginary
observation intervals of length 0.5 to Eq. [I0]and imaginary 0.5 observation to Eq. [TT] (lines [TT|[T3).

Number of parameters. Learning a change rate separately for each source can be slow. Instead,
we can generalize change rates across sources (e.g., [12]). Alternatively, sometimes we can avoid
learning for most pages altogether:

Proposition 9. Suppose the tracker’s set of sources W~ is such that for some constant ¢ > 0,
R = cforallw € W™ Then minimizing harmonic penalty under incomplete change observations

w

(Problem has pf, = e

Zw’EW* Hop?

Proof. See the Supplement. The proof proceeds by plugging in A, = % Ly into Eq. system

Thus, if the importance-to-change-rate ratio is roughly equal across all sources, then their crawl rates
don’t depend on change rates or even the ratio constant itself. Thus, we don’t need to learn them for
sources w € W™ and can hope for faster convergence, although for some quality loss (see Sectlon'



6 Related work

Scheduling for Posting, Polling, and Maintenance. Besides monitoring information sources,
mathematically related settings arise in smart broadcasting in social networks [[19, 31133} 136], per-
sonalized teaching [31]], database synchronization [14]], and job and maintenance service scheduling
[, 3LI15L[16]. In web crawling context (see Olston & Najork [22] for a survey), the closest works are
[LO], [35], [25], and [2]]. Like [[10] and [2]], we use Lagrange multipliers for optimization, and adopt
the Poisson change model of [10] and many works since. Our contributions differ from prior art in
several ways: (1) optimization objectives (see below) and guarantees; (2) special crawl scheduling
under complete change observations; (3) reinforcement learning of model parameters during crawling.

Optimization objectives. Our objective falls in the class of convex separable resource allocation
problems [[17]. So do most other related objectives: binary freshness/staleness [2} [10], age [8], and
embarrassment [35]]. The latter is implemented via specially constructed importance scores [35], so
our algorithms can be used for it too. Other separable objectives include information longevity [23].
In contrast, Pandey & Olston [25] focus on an objective that depends on user behavior and cannot be
separated into contributions from individual sources. While intuitively appealing, their measure can
be optimized only via many approximations [25]], and the algorithm for it is ultimately heuristic.

Acquiring model parameters. Importance can be defined and quickly determined from information
readily available to search engines, e.g., page relevance to queries [35]], query-independent popularity
such as PageRank [24], and other features [25} 28]]. Learning change rates is more delicate. Change
rate estimators we use are due to [[L1]; our contribution in this regard is integrating them into crawl
scheduling while providing theoretical guarantees, as well as identifying conditions when estimation
can be side-stepped using an approximation (Prop. [9). While many works adopted the homogeneous
Poisson change process [2,18, 19,10, [11}[12}135], its non-homogeneous variant [[14], quasi-deterministic
[35]], and general marked temporal point process [31]] change models were also considered. Change
models can also be inferred via generalization using source co-location [[12]] or similarity [28]].

RL. Our setting could be viewed as a restless multi-armed bandit (MAB) [34]], a MAB type that
allows an arm to change its reward/cost distribution without being pulled. However, no known restless
MAB class allows arms to incur a cost/reward without being pulled, as in our setting. This distinction
makes existing MAB analysis such as [[18]] inapplicable to our model. RL with events and policies
obeying general marked temporal point processes was studied in [31]. However, it relies on DNNs
and as a result doesn’t provide guarantees of convergence, optimality, other policy properties, or a
mechanism for imposing strict constraints on bandwidth, and is far more expensive computationally.

7 Empirical evaluation

Our experimental evaluation assesses the relative performance of LAMBDACRAWL, LAMB-
DACRAWLAPPROX, and existing alternatives, evaluates the benefit of using completes change
observations, and shows empirical convergence properties of RL for crawl scheduling (Sec. [5). Please
refer to the Supplement, Sec. [9, for details of the experiment setup. All the data and code we
used are available at https://github.com/microsoft/Optimal-Freshness-Crawl-Scheduling.

Metrics. We assessed the algorithms in terms of two criteria. One is the harmonic policy cost Jj;,
defined as in Eq. With C'(n) as in Eq. [2l which LAMBDACRAWL optimizes directly. The other is the
binary policy cost JJ, also defined as in Eq. but with C(n) = 1,,5¢. It was used widely in previous
works, e.g., [2, 110, [35]], and is optimized directly by BinaryLambdaCrawl [2]. LAMBDACRAWL
doesn’t claim optimality for it, but we can still use it to evaluate LAMBDACRAWL’S policy.

Data and baselines. The experiments used web page change and importance data collected by
crawling 18, 532, 314 URLs daily for 14 weeks. We compared LAMBDACRAWL (labeled LC in the
figures), LAMBDACRAWLAPPROX (LCA, LC with Prop. [Of's approximation), and their RL variants
LLC (Alg. @) and LLCA to BinaryLambdaCrawl (BLC) [2], the state-of-the-art optimal algorithm for
the binary cost J. Since BLC may crawl-starve sources and hence get J; = oo (see Fig. [I)), we also
used our own variant, BLCe, with the non-starvation guarantee, and its RL flavor BLLCe. Finally, we
used ChangeRateCrawl (CC) [10, 35] and UniformCrawl (UC) [9, 23] heuristics. In each run of an
experiment, the bandwidth R was 20% of the total number of URLs used in that run.

Results. We conducted three experiments, whose results support the following claims:

(1) LAMBDACRAWL’s harmonic staleness cost JJ| is a more robust objective than the binary cost
JI' widely studied previously: optimizing the former yields policies that are also near-optimal w.r.t.
the latter, while the converse is not true. In this experiment, whose results are shown in Fig. E], we
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Figure 3: Convergence of the RL-
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verges notably faster than BLLCE,
LLCA even more so, as it learns
fewer parameters. LLCA’s asymp-
totic policy is worse than LLC’s but
better than BLLCE’s, especially w.r.t.
binary cost J; (Fig. .

assumed known change rates. To obtain them, we applied the change rate estimators in Egs. [T0]and
[[T]to all of the 14-week crawl data for 18.5M URLS, and used their output as ground truth. Policies
were evaluated using equations in Props. [T} ] to get J;7, and Eqs. [T2} [T3]in the Supplement to get .J;".

(2) Utilizing complete change observations as LAMBDACRAWL does when they are available makes
a very big difference in policy cost. Per Fig. [T} LC outperforms BLC even in terms of binary cost
JI, wr.t. which BLC gives an optimatlity guarantee as long as all URLs have only incomplete
change observations. This raises the question: can LC’s and LCA’s specialized handling of the
complete-observation URLs, a mere 4% of our dataset, explain their overall performance advantage?

The experiment results in Fig. 2] suggest that this is the case. Here we used only the aforementioned
URLs with complete change observations. On this URL set, LC reduces to LC-CO (Alg. [2) and yields
a 2x reduction in harmonic cost J;7 compared to treating these URLs conventionally as LC-10 (Alg.
|I[), BLC, and BLCe do. On the full 18.5M set of URLs, LC crawls its complete-observability subset
even more effectively by allocating to it a disproportionately large fraction of the overall bandwidth.

Although its handling of complete-observation URLs gives LC an edge over alternatives, note that in
the hypothetical situation where LC treats these URLs conventionally, as reflected in the LC-10’s plot
in Fig. |Z|, it is still at par with BLC and BLCe w.r.t. J;, and markedly outperforms them w.r.t. Jj .

(3) When source change rates are initially unknown, the approximate LLCA converges faster w.r.t.
JJT than the optimal LLC, but at the cost of higher asymptotic policy cost. Interestingly, LLCA’s
approximation (Prop. E[) only weakly affects its asymptotic performance w.r.t. binary cost J; (Fig.
[T). These factors and algorithm simplicity make this approximation a useful tradeoff in practice.

This experiment, whose analysis is presented in Fig. [3] compared LLC, LLCA, and BLLCe in settings
where URL change rates have to be learned on the fly. We chose 20 100,000-URL subsamples of
our 18.5M-URL dataset randomly with replacement, and used them to simulate 20 21-day runs of
each algorithm starting with change rate estimates of 1 change/day for each URL. We used "ground
truth" change rates to generate change times for each URL. Every simulated day (epoch; see Alg.
M), each algorithm re-estimated change rates from observations, which were sampled according to
the algorithm’s current policy, of simulated URL changes. For the next day, it reoptimized its policy
for the new rate estimates, and this policy was evaluated with equations in Props. [T} @] under the
ground-truth rates. Each algorithm’s policy costs across 20 episodes were averaged for each day.

8 Conclusion

We have introduced a new optimization objective and a suite of efficient algorithms for it to address the
freshness crawl scheduling problem faced by services from search engines to databases. In particular,
we have presented LAMBDALEARNANDCRAWL, which integrates model parameter learning with
scheduling optimization. To provide theoretical convergence rate analysis in the future, we intend to
frame this problem as a restless multi-armed bandit setting |18 34].

Acknowledgements. We would like to thank Lin Xiao (Microsoft Research) and Junaid Ahmed
(Microsoft Bing) for their comments and suggestions regarding this work.
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SUPPLEMENT

9 Details of the Experiments and Additional Plots

9.1 Dataset, Implementation, Hardware

For the dataset, we crawled 18, 532, 314 URLSs daily over 14 weeks to estimate their change rates
reliably using Equations [T0]and [IT} Some of the URL crawls on some days failed for reasons ranging
from crawler’s internal errors to the URL host being temporarily unavailable, so many URLs were
crawled fewer than 14 - 7 = 98 times. At the same time, some URLs were crawled more often as part
of the crawler’s other workloads.

These URLs are data sources for the knowledge base of a major virtual assistant. The knowledge base
uses special information extractors to get important information out of these pages. To determine if a
page changed, we ran the same information extractors on it every time we crawled it and considered
the page as changed if the extracted information changed.

Log(Value ratio)
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Figure 4: Ranking of 18,532, 314 URLs in our dataset by their &% ratio.
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Figure 5: Importance score histogram for URLs in  Figure 6: (Poisson) change rate distribution for URLs
our dataset. The distribution has a big skew, with most  in our dataset. Most URLs change once in a few days.
pages having importance less than 1000.

4% of the URLSs in the dataset had near-complete change observations that we obtained by frequently
crawling reliable sitemaps associated with these URLs and using other signals. The near-completeness
is due to the fact that we considered a web page changed only if certain information extracted from
it changed, which is usually different from a sitemap maintainer’s notion of change. As a result, a
sitemap could report a change that we wouldn’t consider as one and, conversely, could fail to report
changes important to us.

We set the URL importance scores i, to values defined by the production crawler based on PageRank
and popularity.

Proposition 0] suggests that the performance gap between LAMBDACRAWL and LAMBDACRAWLAP-
PROX depends on the distribution of the ratios g—z across the set of sources W': if they are all equal,
the policy cost of LAMBDACRAWL and LAMBDACRAWLAPPROX should be the same. As Figure 4]

shows, these ratios are similar across much of our dataset, but clearly non-uniform in the head and
tail of the ranking. Figures [5]and[6]show the dataset’s importance and change rate distributions.
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In each run of an algorithm, the bandwidth constraint was set to 20% of the number of pages
used in that run.

All algorithms used in the experiments were implemented in Python and run on a Windows 10 laptop
with 16GB RAM and an Intel quad-core 2.11GHz i7-8650U CPU. The implementations are available
at https://github.com/microsoft/Optimal-Freshness-Crawl-Scheduling,

9.2 Evaluation metrics
To evaluate the algorithms’ performance, we used two metrics:

e The harmonic policy cost J as in Equation[I|with C(n) as in Equation
e The binary policy cost JJ as in Equation[I|with C(n) defined as

C(n) = Tn>0

This policy cost objective was studied in several works including [2, [10]. Some prior
research considered its finite-horizon [35]] and discrete-time versions [2]]. Note that some
of these papers formulated their objective as maximizing freshness, whereby the agent is
rewarded for each time unit when the number of accumulated changes at a source is O.
Maximizing this objective means minimizing binary staleness (although the two aren’t
necessarily negations of each other!) Thus, the two are equivalent and we don’t distinguish
between them in the paper.

Actually using J; to evaluate policy requires deriving its parameterization in terms of policy
7’s crawl rates p’ and crawl probabilities 7, analogously to Propositions |1| and {4 for the
harmonic cost J;7. By following the steps in the proofs of these propositions, we derived the
following expressions for Jj':

wly _
JI = Z At for pages w € W (12)
weW —
JT = Z (1 —py) for pages w € W° (13)
weWe

Note that Equation [I2]is similar to the equation in Azar et al. [2]] for evaluating the freshness
reward of policy 7.

For each experiment, we report the values of J; and J; normalized by the number of
URLSs used in that experiment.

9.3 Algorithms

In the experiments description in Section[7} we refer to the following algorithms used in the empirical
evaluation:

LAMBDACRAWL (LC), as in Algorithm 3]

LAMBDACRAWL-COMPLOBS (LC-ComplObs, LC-CO), as in Algorithm 2]
LAMBDACRAWL-INCOMLOBS (LC-IncomplObs, LC-10), as in Algorithm

BinaryLambdaCrawl (BLC) is the name we give to the state-of-the-art, optimal algorithm proposed
by Azar et al. [2] for minimizing binary staleness J;7. BLC is one of two major baselines for
LAMBDACRAWL in our experiments.

The difference between BLC’s objective J; and LC’s objective JJ is crucial in practice, because
minimizing binary staleness .J; generally yields p* with p}, = 0 for many sources even if they have
A, > 0. This effectively tells the tracker to ignore changes to these sources — an unacceptable
strategy in real applications. Indeed, harmonic penalty (Equation [I) assigns J; = oo to such
strategies.

BinaryLambdaCrawl(e) (BLCe) Vanilla BLC’s lack of non-starvation guarantees makes comparing
it to LAMBDACRAWL in terms of JJT uninsightful, because for BLC, J} is usually co. To address this
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issue, and simultaneously make BLC more practical, we modified BLC to enforce the non-starvation
guarantee. The resulting algorithm is BLCe.

Namely, BLCe accepts a parameter € € [0, 1]. Initially, it operates exactly like BLC to find p* optimal
w.r.t. the binary cost J;. Then it finds all sources w for which

P < €R/IW],

sets p¥, = eR/|W| for each of them, and re-solves the problem over the remaining sources and
bandwidth again using BLC. Thus, BLCe uniformly distributes a small fraction of the bandwidth to
sources that would otherwise get no or little crawl rate allocated to it.

The original, optimal BLC can be viewed as BLC(0). Any € > 0 results in suboptimality w.r.t. J;
while ensuring that J;f < oo. For the experiments, we did a parameter sweep to determine e that
resulted in BLCe’s best performance w.r.t. LAMBDACRAWL’s objective J;. The best value we
found for our dataset, and used in all the experiments, is ¢ = 0.4.

UniformCrawl (UC) [9, 23] is a heuristic that assigns an equal crawl rate to all sources:

pw = R/|W|.

In spite of its simplicity, in our experiments it outperforms ChangeRateCrawl, as predicted by Cho &
Garcia-Molina [10] (see the caption of Figure [I).

ChangeRateCrawl (CC) is the name we give to another heuristic proposed by Cho & Garcia-Molina
[10] that sets

o DuR
. Ew/GWAw/’

thereby crawling sources at a rate proportional to their change rate. Cho & Garcia-Molina [10]
pointed out that ChangeRateCrawl can be very suboptimal if the set W includes sources that change
frequently. This causes ChangeRateCrawl to over-commit crawl bandwidth to sources whose changes
are near-impossible to keep up with, at the expense of almost ignoring the rest. Our experimental
results agree with this observation — ChangeRateCrawl turned out to be the weakest-performing
algorithm in our experiments.

LAMBDALEARNANDCRAWL (LLC), as in Algorithm

LAMBDALEARNANDCRAWLAPPROX (LLCA), as in Algorithm [ with calls to LAMBDACRAWL-
INCOMLOBS in LAMBDACRAWL replaced by setting

pwR
o ="="""
Zw’ ew- Haw?
per Proposition 9]
BinaryLambdaLearnAndCrawl(e) (BLLCe¢), the reinforcement learning version of BLCe where
BLCe replaces LAMBDACRAWL in Algorithm[d] This is also the natural RL adaptation of pure BLC

[2], which otherwise would need a dedicated exploration parameter to ensure data gathering for
sources that would get p,, = 0 under BLC’s (currently) optimal policy. As for BLCe, we used € = 0.4.
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9.4 Experiment[I] (Figure[l)

The goal of this experiment was to assess the harmonic objective J;; that we proposed and the binary
objective J; widely studied in previous works in terms of robustness: how well do policies optimal
w.r.t. one of them behave w.r.t. the other, and vice versa?

In this experiment, we assumed known change rates. To obtain them, we inferred them with estimators
in Equations[I0]and [TT|from our entire 14-week crawl data for 18.5M URLSs, and used the resulting
estimates as ground truth. Policies were evaluated by plugging in these change rates and policy
parameters into the equations in Propositions [I]and ] and into Equations[I2]and

As Figure shows, the harmonic penalty J7 we propose is a more flexible choice of objective than
the binary penalty JJ'. LAMBDACRAWL, optimal w.r.t. it, significantly outperforms BLCe and BLC
w.r.t. it, and even the approximate LAMBDACRAWLAPPROX performs at par with BLCe according
to this objective. What is even more surprising, LAMBDACRAWL also manages to outperform BLC
on the binary objective J;, for which BLC is optimal if all URLs have only incomplete change
observations. That is, no matter which objective we trust, optimizing for J; yields excellent results.

As a side note, the UniformCrawl and ChangeRateCrawl heuristics were outperformed by a large
margin by the above methods w.r.t. both objectives.

9.5 Experiment 2| (Figure[2)

One of our contributions is a mechanism for taking advantage of complete remote change observations
(Algorithm [2). BLCe, BLC, UniformCrawl, and ChangeRateCrawl don’t have it, and treat all pages
as if the only change observations for them came from crawling. While only 4% of web pages
in our dataset have an (approximately) complete observation history, can LAMBDACRAWL’s and
LAMBDACRAWLAPPROX’s advantage on them explain the performance gap in experiment|[IJ?

Figure |2| indicates that these URLs are indeed responsible for a significant fraction of LAMB-
DACRAWL’s advantage. In this experiment, we focused only on URLs with complete change
observations. Like in the previous experiment, we assumed perfect model knowledge using the
previously obtained change rate estimates and estimated policy performance using Propositions|[I] {]
and Equations [I2]and [T3] Treating these URLs as complete-observation URLs, as LAMBDACRAWL-
CoMPLOBS does, resulted in nearly 5-fold reduction in policy cost, compared to treating these URLSs
under the conventional change observation model.

Although this gives LAMBDACRAWL an edge over previously proposed techniques, note that
even when LAMBDACRAWL treats these URLs conventionally (denoted by the LAMBDACRAWL-
INCOMLOBS (LC-10) plot in Figure @), it still noticeably outperforms BLC and BLCe w.r.t. J;7 while
holding its own against them w.r.t. J;'.

9.6 Experiment 3] (Figure3)

Last but not least, we analyze the reinforcement learning variants of LAMBDACRAWL, LAMB-
DACRAWLAPPROX, and BLLCe. Our motivation for the approximation in Proposition 0] was reducing
the number of parameters LAMBDALEARNANDCRAWL has to learn in order to speed up convergence.
In this experiment, we explore the tradeoff between the resulting gain in learning speed and the
concomitant loss in solution quality.

The evaluation was done in a series of 20 simulated episodes for each algorithm, each episode being
executed on a randomly chosen 100,000-URL subsample of the 18.5M URLs (each subsample was
used once be each of the three algorithms.) In each episode, we simulated a 21-day run of LLC,
LLCA, and BLLCe starting with change rate estimates of 1 change per day for each URL. One epoch
(see Algorithm ) corresponded to 1 day. That is, every (simulated) day each of these algorithms
re-estimated the change parameters using the simulated observation data (the simulated data wasn’t
shared among the algorithms). The simulated data was generated by sampling page changes using
the ground truth change rates obtained in previous experiments and sampling page crawls from each
algorithm’s current policy. At the end of each day, each algorithm reoptimized its policy for the new
estimates, and this policy was evaluated using the aforementioned equations on the ground truth
change rates. For each algorithm, averaged the policy costs for each day across all 20 episodes.

Figure [3|demonstrates that LAMBDALEARNANDCRAWLAPPROX indeed converges quicker than
the other algorithms, with its asymptotic performance being better than BLLCe’s but falling short
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of LAMBDALEARNANDCRAWL’s. BLLCe’s convergence was the slowest. It could potentially be
improved by choosing a larger ¢ at the beginning and gradually “cooling" it. LAMBDALEARNAND-
CRAWL’s advantage, besides convergence speed and asymptotic performance, is that it converges
quickly without such parameter tuning. LAMBDALEARNANDCRAWLAPPROX, however, can also be
a viable alternative to it, given its simplicity, fast convergence, and good (though suboptimal) policy
quality.

10 Proofs

PROOF OF PROPOSITION [1]

First we rearrange Equation |1|as follows, dropping the distributions under the expectation and using
W instead of W~ throughout the proof to make the notation less cumbersome:

JT = i LO(Nu (1)) | dt
ChSeq~P(A) weW

s [ (Z " >>]> it

weWw

Then we use the definition of expectation, chain rule of probabilities, and variable .., to denote the
time when source w was last crawled before time ¢ (although ¢,,..,, is specific to each source w, for
clarity of notation we make this implicit):

J’T:Tlgof/ (Zuw ))])dt

weWw

:Thlréo*/ (Z”wz< w(t)Zm]>>dt

weWw m=0
_ _ _ o /
_TILHéOT (Z sz( / [Nw(t)_m|t—tpTev—T}P[t—tpm,—T]dT>>dt

Now using the fact that our policy is a set of Poisson processes with parameters p,, and page changes
are governed by another set of Poisson processes with parameters A,,, we can plug in appropriate
expressions for the probabilities:

JT = lim % /0 ' (Z o i (C(m) /O t <(T/A“’>7:f _Mw> (pe‘f’wT')dT'>> dt

weWw m=0

t
Z How Z ( /0 T et B)T dT’)) dt

m=0

Il
?:
85
N

\
/_\

and dT" = —du

. o H — / [ U .
We do a variable substitution u = (py, + Ay)T", 50 T = -4 Aot
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> prm g U "o du
J™ = lim — w Y——— ) | dt
dn g ( o 3 (R [ (5) Aw+pw)>

weWw m=0

_ - - Pw Aw " ! m,—u
_Th—r)r(l>oT/ ( MwZ( m! (Au,—i-pu,) <Aw+pw) /Ou ‘ du>>dt

weWw m=0

Consider F(m,t) = fot u™e " "du. By definition of gamma functions, F'(m,t) = T'(m+1)—T(m+
1,t) = m! —T'(m + 1,¢). Recalling that C(m) = H(m) for m > 0 and C(0) = 0 (Equation[2), we
get

e [ (55 (0 () (555 ot ron0) )
pr (2 () () 2 (o (55) )
/z< i () roea)a)) o

Now consider for each w € W functions G(T' fo me1 ( (m) (Af_‘{“p“) ) dt, R(t) =
fo il ( 7()Zl) (A“,Afpw )m L(m+1, t)) dt. Consider limy_, % (G(T) — R(T)) so that
T _ Puw i l —
=% (i (522 ) (im0 - Re1) ) ) as)

Thus, if lim7_, #(G(T) — R(T)) exists, is finite, and we can compute it, we can compute J™ as

well. Focusing on G(T') and recalling that > ~_, H(m)z™ = —% for |z| < 1, we see that
n Pw n Pw
G(T) = MT so limy_, oo G(T) _Inlz )

;}u*’ﬂu;
Bwtpu . . .
since m! < I‘(m t1 ,t) forany ¢ > 0 and since R(T') is an integral of a non-negative function,
(

we have 0 < R(T) < G(T) < o0, so limp_, o, RTT) exists as well. Therefore, we can write

limy o0 % (G(T) — R(T)) = limp_yoe 8 — limp_, oo £

exists. Focusing on R(T"), we see that

We already know limyp_, o % To evaluate limp_, o @, we upper-bound R(T"). Again using
the fact that it is an integral of a non-negative function, we have

/ ( m! (AwAprmP(mHat))dt
D 1( ) remein)a
(H) (g2 )" [ rtm 1)
1<H¥7 (A +pw>mr(m+z))
(s (225))

A

MSiM8

m

tnqg

1

3
I
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We have used the fact that [ I'(m + 1,t)dt = I'(m + 2) = (m + 1)!. The series > _; (m +
1)H (m)z™ converges for || < 1 to some limit L > 0, so we have limyz_, o, @ < lim7_ 00 % =0

and limp_, %(G(T) — R(T)) = —% Plugging this back into Equation we get

Aw+pw

Jﬂ - — Z ,len <Awp—l:pw>

weWw

Corollary 1. Under the harmonic penalty C(n) (Equation , any policy that crawls each source at
a fixed Poisson rate p,, and assigns p,, > 0 to each w with p,,, A, > 0 is strictly preferable to any
such policy that assigns p,, = 0 to any such source.

Proof. Proposition [I]implies that any policy 7 with p,, = 0 for any source w with f,,, A, > 0 has
J™ = oo, whereas any 7 with p,, > 0 for every source w with pi,,, A, > 0 has J™ < 0o |

PROOF OF PROPOSITION 2l The high-level idea is to apply the method of Lagrange mul-
tipliers to Problem I]s relaxation without inequality constraints o' > 0 and show that (a) only one
local maximum of this relaxation is within the region given by p > 0 — the one satisfying Equation
system [5] — and (b) solutions that touch the boundary of this region, i.e., have p,, = 0 for any
w € W™, are suboptimal. In fact, part (b) follows immediately from Corollary so we only need to
solve the relaxation and show part (a).

s

To apply the method of Lagrange multipliers to the relaxation, we set f(p) = J =
> wew - HwIn (Aij‘r’pw) and g(p) = >, cw - Pw — R. We need to solve

{Vf(ﬁ) = AVyg(p)
9(p) =0.

For any w € W‘,wehaveaaTg = landéfo ST

system of equations turns into

wtPw A Hap Ay

o (Aw#w)"‘ = Ropoioz S0 the above

Ay pw+p2,

SHeBe N forallw e W™
wGWfpw:R

and therefore

{)\pfu + Ay pw — Dy =0, forallw e W™
ZwEW* Pw = R

Solving each quadratic equation separately, we get

2

— Ay Ey/A2 4 2wl _
{pw: A —  forallw e W
ZwEW* Pw = R
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This gives all potential solutions to the relaxation of Problem [T, Now consider the inequality
constraints g > 0 omitted so far. Observe that any real solution to the above system that has

—Ayp—/A2 dpw Dy . . . .
Puw = 2w+ 2— for any w € W~ implies p,, < 0 for pi,,, A, > 0, which violates these
constraints. Therefore, any solution to Problem [T]itself must satisfy

—Ay A2 + 4hwdw _
Pw = VoL forallw e W
ZwEW— Pw = R

and have A > 0 (otherwise p’ < 0, again violating the inequality constraints). Although the first
group of equations are non-linear, note that each p,, () is strictly monotone decreasing in A for
A>0,50 ), cp— Puw is strictly monotone decreasing too implying that ) 5 i, — pw(\) = Rhasa
unique solution in A, and therefore there is a unique p'satisfying the above system of equations. Thus,
this p'is the solution to Problemand therefore corresponds to 7* € I1~.

PROOF OF PROPOSITION3]
We start by combining Equation system [3]

dpw By
{pw — ZBut A;”Jr%, forallw € W~ (16)

ZwGW* Pw = R’
into one equation:

2 dpwAw
Z —Ay +/AZ + 2R R
2
weW —

Bisection search is guaranteed to converge to some solution \ of this equation as long as we initialize
the search with Ajower, Aupper S.t- A € [Nower; Aupper]. However, all A_ < 0 that solve Equation
system 5| correspond to solutions that have 5 < 0. At the same time, from the proof of Proposition 2]
we know that there is exactly one A > 0 that solves Equation system[5] and it corresponds to the
(unique) the optimal solution 5* of Problem [T} We want bisection search to find only this A > 0, so
we want )\lower, Aupper s.t. >\+ S P\lower; )\upper} and Alou)erv )\upper > 0.

To find these bounds, we observe that the 1.h.s. of the above equation is monotonically decreasing in
Afor A > 0, so if we find any \; > O that guarantees

Ml o A 2R e W

A2+ >
Al W

then we have

wAw
—Ay + (/A + pBe
> Sy -

2
weW —

and hence \; < A;. To find such A;, we perform a series of algebraic manipulations:
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AQ + 4:““11} A'w
w

> Ay +

2R
— for all W=, A >0
N o i orallw € 1>

Ap A 2R \*
A2 4 '“1;\ w (A +|WR|) forallw € W=, A\ >0
l

4Dy AR
AT (W
‘W7|2NwAw

=\ < —17

'S WoALR + R?

|W7 |2 min,, ey - {Uw} min,, ey - {Aw}

R \?2
+4( ) foralwe W=, A\ >0
W=

forallw e W=, A\ >0

—)\ < AN >0
LS W maxeew-{AJR+ R2Z T
Since the rhs. of this inequality is always positive, we set Ajpwer =
W~ |2 mi — {0} mi _{A, . .
I ||v;nin|1¥f!§w:$,}{§ff§fm{ } An analogous chain of reasoning shows that we can

W™ max,, cyp— {Aw} max, ¢y — {Hw}
[W—| minwew_ {A,}R+R?

choose Aypper =

To establish a bound on the running time, we observe that each iteration of LAMBDACRAWL-
INCOMLOBS involves evaluating )}, 1, pw, Which takes O(|W ~[) time, so by the properties of

bisection search the total running time is O(logg(M) [W—1). [ |

PROOF OF PROPOSITION [4] Let Ch,(t) denote the total number of changes that have
happened at source w in time interval [0, ¢]. As in the proof of Proposmon' we start with rearrangmg
the cost function in Equation [} dropping the distributions under the expectation and using W
instead of W throughout the proof to make the notation less cumbersome. Using the definition of
expectation and chain rule of probabilities to get:

Tl—rgc CrSeq~m, (w;/vu > ‘|
ChSeq~P(A)
1 T
:Tlggof/o w;/v,qu [C(Nw(t))] dt

g [ (Z 3 () Bl (1) = m])> i
- g [ ( > 3 S (Clm - PINt) = miChu(0) = GFICh () = 1)) "

Since changes at every source w are governed by a Poisson process with rate A,,, P[Ch,,(t) = ¢] =

w Now, consider P[N,,(t) = m|Ch,,(t) = c|. Recall that whenever source w € W°
changes we find out about the change immediately; with probability p,, the policy 7 € II° then
crawls source w straight away, and with probability (1 — p,,) it waits to make this decision until we
find out about w’s next change. Therefore, the only way we can have N,,(t) = m is if our policy
crawled source w m + 1 changes ago and has not chosen to crawl w after any of the m changes
that happened since, or it hasn’t chosen to crawl w since "the beginning of time". Thus, N, (t) is
geometrically distributed, assuming that at least m + 1 changes actually happened at source w in the
time interval [0, 1]. Thus, we have

|
5
|
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pu(l = pu)™, ife>m+1
P[Nw(t) = m|0hw(t) = C] = (1 _pw)ma ifc=m
0 otherwise

Recalling that C'(m) = H (m) form > 0 and C'(0) = 0 (Equation[2) and putting everything together,
we have

Jﬂ'
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weW c=0 C!
Since
1
J™ = lim =(G(T)— R(T)+ F(T)),
T—oo T

if we show that each of lim7_, %, lim7_ o %, and lim7_, % exists and manage to

compute them, then we will know J™. The rest of the proof focuses on computing these limits.
Consider G(T'). Note that p,, > oo C(m)(1=pw)™ = pw Y ey H(m)(1—py,)™ doesn’t depend

m=0 m=1
on c. We can use the identity >~ H(m)z™ = f% for [z] < 1togetpy > oo C(m)(1 —

—Aypt c . .
pw)™ = —In(py), s0 G(T) = — fOT (ZweW P Y oe <ec(,A”t)> ln(pw)> dt. To simplify

e 2wt (AL,1)°
c!

G(T) further, note that .- is just the probability of any number of changes

occurring in time interval [0, ¢] under a Poisson process, and therefore equals 1. Thus, G(T') =
T
- fO (ZweW Hw ln(pw)) dt = =T ZwEW Hw ln(pw), SO

lim @ = Z Hw ln(pw)'

T—o0
weW

Consider R(T). Observe that C(m) = H(m) < mform > 1,50 py > oo C(m)(1 — py,)™ <

m=c

Pw Yoo m(1 — py)™ = (=pw)™(cpw=putl) Because (1 — p,, )¢ decreases in ¢ much faster than

m= Puw
for any fixed 0 < p,, < 1, for any w € W there is a ¢, s.t. py > o_, C(m)(1 —

1
c(cpw—DPw+1)
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Pw)™ < (17”‘“)6(;?7““) 1 for any ¢ > c*

R(T) as follows:

v.. Let ¢* = max,ew c;,. We can then upper-bound

/)<§Zuw22( ))@wiéamxbﬂmW)>ﬁ=Rwﬂ+Rﬂﬂ,

weWw c=0 m=c
where
L (5SS L)
Ry(T) :/O (w;V Fow 2 < = A ‘) >( w i C(m pw)m>> dt

Considering Ry (T'), recalling that C(m) = H(m) for m > 0, we have p, Y ~_ . C(m)(1 —
Pw)™ < puw Yooy C(m)(1 = py)™ = —In(py), as shown previously. Also, for any ¢ we have

foT e—Am’ﬁ(Awt)cdt _ F(c+1)7F(c+1,AwT). Therefore,

c! Ay c!

T - Awt
Rl(T) = / Z Z ( > (pw Z C 1 _pw)m> dt

0 weW

‘< T(c+1) —T(c+1,A,7T)
< - Z Hw ln(pw) Z A ¢l
wew c=0 w
Since lim7_, oo W = 0, R1(T) is therefore upper-bounded by a finite sum of terms that all

go to 0 when divided by T"as T' — oo. Since R1(7") > 0 also holds, we have limy_, oo w =0.

Considering R (T'), we use our definition of ¢* to write
T o e_A ( oo
RQ(T):/ ZM“’Z<><“’ZC 1_pw) ) dt
0 = m=c

S me () O) e (52 ()
/(Zmi( A;jt wl)’ ))dt

||
g/\
m
S
=
1S
T
—_
S[>®
OFP/\
~
~
IS
~

F(07 AwT) + v
Ay ’
wew

Z i In(A,T) +

where 7y is the Euler-Mascheroni constant. Since limp_, oo M = 0, Ro(T) is therefore upper-

bounded by a finite sum of terms that all go to O when divided by 7" as T' — oco. Since Ry(T') > 0

also holds, we have lim7 ;o % = 0. Thus, we have
o B0 _ gy B RAT) R BT
T—o00 T—o0 T T—o0 T—o00 T

Consider F(T'). Observe that for a suitably chosen constant s > 0, sR(T) > F(T'). Therefore,

R(T) () _
T

since lim7_s s =0, lim7 ;o —— = 0 too.
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‘We have thus shown that

e GO ZROCET) GO RO R
A L L S L N

PROOF OF PROPOSITION Since under any p > 0 crawl rates p are related to crawl
probabilities via p,, = p,Aw, to apply the method of Lagrange multipliers to the relaxation of Prob-

lernthat takes into account only the bandwidth constraint we set f(p) = J = > wewe Hw In(Pw)
and g(p) = >, cpo Pw Aw — R. We need to solve

{Vf(ﬁ) = AVyg(p)
9(p) = 0.

For any w € W°, we have 6679 = A, and % = g—“’, so the above system of equations turns into

e = \A,, for all w € W°
ZwEW" prU’ =R

and therefore

R w
{pw :274\% w‘;WO - for all w € W°
_ 2wewo Hw
A= F
This is the only solution yielded by the method of Lagrange multipliers, so it is the unique maximizer

of the relaxation. |

PROOF OF PROPOSITION [6l

To establish LAMBDACRAWL-COMPLOBS’s correctness, we first prove the following lemma, which
establishes that any source w that violates its p,, < 1 constraint in any iteration of LAMBDACRAWL-
CoMPLOBS must have p;, = 1:

Lemma 1. Let p* be the maximizer of Problem 2| and let p'* be the maximizer of the relaxation
Problem|2|with the same inputs but with inequality constraints ignored. Then any source w that has
p'* has plf > 1, violating its inequality constraint, necessarily has pf, = 1.

Proof. For convenience, we rewrite Problem [2 as an equivalent problem of maximizing .J,,0q =
> wewe Hw In(py) under the constraints > 10 pw = R and p, < A, for every w € W°.
Consider its relaxation with p,, < A,, for every w € W ignored. By the equivalent of Proposition 3]

for this reformulation, o™ is unique and must have p* = p* /A, for each source w. The Lagrangian

of L(7, X0) := Jmoda(P) = Mo (X weweo pPw—R) musthave VL(5™, Ai") = 0 for the optimal solution
(P, A") (which, again, encodes the optimal p;; for the relaxation of the original formulation of
Problemvia Pl = pl¥JAy). from this we see that %Jmod PREPYE %Jm(,d [ or=, for any
sources u, w € W°. Since %Jmod = ’;—w, this implies

o _ Pw porall u,w e We. (17)

Ix o l%
Pu, Pw
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Consider the slack-variable formulation of Problem with slack variables {qy, }wewe. Inequality
constraints in this formulation turn into p,, = Ay, — gy for q,, > 0. In this formulation, we now have

L5, A0 M- Nwe) = L(5,20) = D Awlpw — Aw) .
weWe
where, by the Karush-Kuhn-Tucker conditions, A,, > 0 for all w. By complementary slackness,
Ay = 0 for every w € W¢ such that ¢, > 0, i.e., for every w that does not activate its inequality
constraint, under the optimal solution (p*, A§, AL, ..., \*W"I)' This implies that %J mod [pr,

wr e

—AE =0\ = aijmod [px, —Ay» for any sources u, w € W¢,i.e.,

Puw
%fA;:,\;:’szA; for all u,w € W°. (18)

Now, suppose for contradiction that there is a source u € W° that has p/ > 1 but p¥ < 1, implying
that p/* > A, but p} < A,. This, in turn, implies that (a) p/* > p; and (b) A}, = 0, since u
doesn’t activate its inequality constraint under p* (and hence under p*). Then, since ) 0 pf =
> wewe Py = R, there must also exist some other source w # wu such that p; < p;. For this source,

w
Ar, > 0,80 A%, > AL
Recall that J,,,,4 is strictly concave, and its partial derivatives % are monotone decreasing in every
non-negative p,,. Together with p/* > p*, p'* < p* 'A% > X\* and Equation this implies
Peclrcbo By
pu pu p'll) p?l)
But this contradicts Equation|17] completing the proof of the lemma. ]

The optimality of LAMBDACRAWL-COMPLOBS now follows by induction. Its every iteration except
the last one identifies at least one constraint that is active under p*, by the above lemma, and thereby
assigns an optimal p}, to some sources, leaving optimal craw] probabilities for others to be found in
subsequent iterations. The solution for the sources remaining in the final iteration, which does not vio-
late any inequality constraints, is optimal by Proposition[5} Therefore, LAMBDACRAWL-COMPLOBS
arrives at the optimal solution, and that solution is unique because Problem 2]'s maximization objective
is concave as a sum of concave functions, and the optimization region is convex.

We note that the proof so far is similar to the proof of Lemma 3.3 from [21] for a different concave
function F' under constraints of the form x1 + ... + xx < ¢, where x1,. ..,z is a subset of F"’s
variables and ¢y, is a constraint.

Since in each iteration LAMBDACRAWL-COMPLOBS removes at least one source from further
consideration, it makes at most |T¥°| iterations. In each iteration it applies Proposition which takes
O(|W°|) time, yielding the overall time complexity of O(|W°|?).

PROOF OF PROPOSITION([7] See the paper. ]

PROOF OF PROPOSITION LAMBDALEARNANDCRAWL starts with strictly positive fi-

nite estimates AO of change rates. Since LAMBDACRAWL, which LAMBDALEARNANDCRAWL uses
for determining crawl rates for the next epoch, is optimal to any desired precision (Proposition|[7), it
follows from Corollarythat it returns positive p7, p; > 0, and 0 < i, R < oo guarantees that these
crawl rates are also finite. In subsequent iterations, A,, are estimated using Equations|(10|and |1 1{with
smoothing terms (lines[TT]and[T3]of Algorithm ), and the smoothing terms ensure that the change

rate estimates are finite and bounded away from 0: 0 < 6,5, < An < 00, where 0,5, is implied by
the aforementioned estimators and specific smoothing term values. This, along with finite positive
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and R, ensures that 0 < 5;; +17]§Z 11 < dmaz- Hence, by induction, no source is ever starved, and no
source is crawled infinitely frequently. This ensures, together with consistency of estimators from
Equatlons @ and@ that if at least the last iteration Ny, uses the entire observation history,
i.e. S(Nepoch) gth(obs_ hzst then change rate estimates converge to the true change rates

in probability: plim = A, as long as A doesn’t change with time. Optimality

epochsaooANepochs
of LAMBDACRAWL then implies probabilistic convergence of (o, . Py, . ...) t© (5*,p*) as
well. -

PROOF OF PROPOSITION [9 According to Equation system [5] the parameter vector j of
the optimal 7* € II~ that minimizes the expected harmonic penalty in the absence of remote change
observations (Problem[T)) satisfies

2
ZwEW* Pw = R

If &= = cforallw € W™, ¢ > 0, then we can express A, = ¢'f1,, where ¢’ = 1/c and plug it into
the above equations to get

— Ay 44/A2 4 2wl _
{pw: A—  forallwe W

—Ay + A2+ e

2

Pw =

4e’ n2
— pr + 4/ () + =

2

/ /2)\ 4/
— fy + /%

2

—d + /c’2>\)\+4c’
— | forallwe W~ (19)

2

= [

Plugging this into the remaining equation from the above system, >y~ pw = R, we get

/2 /
7C/+ /c A;rélc
D | g

weW —
C/2 C/
— 4/ A;—4 - R .
2 ZwEW* Haw
X +4c ( 2R N ,)2 .
= c
A E’LUGW_ :LLIU
2R 2
)\ < + C/> — 0/2)\ = 46/ —
ZwGW* Haw
4c

)\:

2
2R / /2
~ C — C
(ngwf Haw + )

Plugging this and A,, = ¢’ 1, back into Equations we get forallw € W~
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c/2? 4c!
—d + Typew— Fw o)
4c’
- 2R 2
Pw = Hw (ZwEW* Hw +C/) e
2
4¢’ e2
, ( 2R ’ 2 1
—c' + Cpew— Fw )
4c’
- 2R 2
= Hw (ZwEW_ Hw +C,> e
2
. (Z 2R +c! 2
—c wew — Hw c (( W 2
+ Xpew— Pw + 76/2)
) ( 2R A’
= Hw Zpew— Hw ) e
2

= ,uw (-cl _|_ L
ZwGW* Huw
_ Ml
ZweW* Huw

+ c’)
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