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Abstract

Consider a nonparametric contextual multi-arm bandit problem where each arm
a ∈ [K] is associated to a nonparametric reward function fa : [0, 1]→ R mapping
from contexts to the expected reward. Suppose that there is a large set of arms,
yet there is a simple but unknown structure amongst the arm reward functions,
e.g. finite types or smooth with respect to an unknown metric space. We present a
novel algorithm which learns data-driven similarities amongst the arms, in order
to implement adaptive partitioning of the context-arm space for more efficient
learning. We provide regret bounds along with simulations that highlight the
algorithm’s dependence on the local geometry of the reward functions.

1 Introduction

Contextual multi-arm bandits have been used to model the task of sequential decision making in
which the rewards of different decisions must be learned over trial via trial-and-error. The decision
maker receives reward for each of the arms (i.e. actions or options) she chooses across the time
horizon T . In each trial t, the decision maker observes the context xt, which represents the set of
observable factors of the environment that could impact the performance of the action she chooses.
The decision maker must select an action based on the context and all past observations. Upon
choosing action a ∈ [K], she observes a reward, which is assumed to be a stochastic observation of
fa(x), the expected reward of action a at context x. In each trial, she faces the dilemma of whether
to choose an action in order to learn about its performance (i.e. exploration), or to choose an action
that she believes will perform well as estimated from the limited previous data (i.e. exploitation).

Consider a setting when the number of actions is very large, e.g. there is a large number of users
and products on an e-commerce platform such that fully exploring the entire space of possible
recommendations is costly. It is often the case that there is additional structure amongst the large
space of actions, which the algorithm could exploit to learn more efficiently. In real-world applications
however, this additional structure is often unknown a priori and must be learned from the data, which
itself could be costly as well. It becomes important to understand the tradeoff and costs of learning
relationships amongst the arm from data over the course of the contextual bandit time horizon. We
consider a stochastic nonparametric contextual bandit setting in which the algorithm is not given
any information a priori about the relationship between the actions. The key question is: Can an
algorithm exploit hidden structure in a nonparametric contextual bandit problem with no a priori
knowledge of the underlying metric?

Contributions To our knowledge, we propose the first nonparametric contextual multi-arm bandit
algorithm that incorporates latent arm similarities in a setting where no a priori information about
the features or metric amongst the arms is given to the algorithm. The algorithm can learn more
efficiently by sharing data across similar arms, but the tradeoff between the cost of estimating arm

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



similarities must be carefully accounted for. Our algorithm builds upon Slivkin’s Zooming algorithm
[22], adaptively partitioning the context-arm space using pairwise arm similarities estimated from the
data. The adaptive partitioning allows the algorithm to naturally adapt the precision of its estimates
around regions of the context-arm space that are nearly optimal, enabling the algorithm to more
efficiently allocate its observations to regions of high reward.

We provide upper bounds on the regret that show the algorithm’s dependence on the local geometry
of the reward functions. If we let f∗(x) := maxa∈[K] fa(x) denote the optimal reward at context
x, then the regret depends on how the mass of the set {(a, x) : f∗(x)− fa(x) ∈ (0, δ]} scales as δ
goes to zero. This set represents the δ-optimal region of the context-arm space except for the exactly
optimal arms, i.e. the local measure of nearly optimal options centered around the optimal policy.
The scaling of this set captures the notion of “gap” used in classical multi-arm bandit problems, but
in the general contextual bandit setting with a large number of arms, it may be reasonable that the
second optimal arm is very close in value to the optimal arm such that the gap is always very small.
Instead the relevant quantity is the relative measure of arms that are δ-optimal yet not optimal, i.e.
have gap less than δ. If the mass of such arms decreases linearly with respect to δ, then we show that
our algorithm achieves regret of O(

√
KT ).

An interesting property of our algorithm is that it is fully data-dependent and thus does not depend on
the chosen representation of the arm space. The arm similarities (or distances) are measured from
data collected by the algorithm itself, and thus approximates a notion of distance that is defined
with respect to the reward functions {fa}a∈[K]. The algorithm would perform the same for any
permutation of the arms. In contrast, consider existing algorithms which assume a given distance
metric or kernel function which the reward function is assumed to be smooth with respect to. Those
algorithms are sensitive to the metric or kernel given to it, which itself could be expensive to learn or
approximate from data. Suppose that nature applied a measure preserving transformation to the arm
metric space such that the function is still Lipschitz but has a significantly larger Lispchitz constant.
For example, consider a periodic function that repeats across the arm metric space. The performance
of existing algorithms would degrade with poorer arm feature representations, whereas the algorithm
we propose would remain agnostic to such manipulations.

We provide simulations that compare our algorithm to oracle variants that have special knowledge of
the arms and a naive benchmark that learns over each arm separately. Initially our algorithm has a
high cost due to learning the similarities, but for settings with a large number of arms and a long time
horizon, the learned similarities pay off and improve the algorithm’s long run performance.

Related Work As there is a vast literature on multi-arm bandits, we specifically focus on literature
related to the stochastic contextual bandit problem, with an emphasis on nonparametric models. In
contextual bandits, in each trial the learner first observers a feature vector, refer to as “context”,
associated with each arm. The optimal reward is measured with respect to the context revealed at the
beginning of each trial. One approach is to directly optimize and learn over a given space of policies
rather than learn the reward functions [3, 5, 12, 14]. These methods do not require strict assumptions
on the reward functions but instead depend on the complexity or size of the model class.

We focus on the alternative approach of approximating reward functions, which then depend on
assumptions about the structure of the reward function. A common assumption to make is that
the reward function is linear with respect to the observed context vector [15, 1, 2, 13], such that
the reward estimation task reduces to learning coefficient vectors of the reward functions. [2]
incorporates sparsity assumptions for the high dimensional covariate setting, and [13] imposes low
rank assumptions on the coefficient vectors to reduce the effective dimension.

In the linear bandit setting with K arms but only Θ arm types for Θ� K, Gentile et al proposed an
adaptive clustering algorithm which maintains an undirected graph between the arms and progressively
erase edges when the estimated coefficient vectors of the pair of arms is above a set threshold [6].
Two arms of the same type are assumed to have the same coefficient vector. The threshold is
chosen as a function of the minimum separation condition between coefficients vectors of different
types, such that eventually the graph converges to Θ connected components corresponding to the
Θ types. Collaborative filtering bandits [16] applies the same adaptive clustering concept to the
recommendation system setting where both users and item types must be learned.

In the nonparametric setting, instead of fixing a parametric model class such as linear, most work
imposes smoothness conditions on the reward functions, and subsequently use nonparametric estima-
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tors such as histogram binning, k nearest neighbor, or kernel methods to learn the reward functions
[24, 20, 18, 19, 7]. As the contexts are observed, the estimator is applied to learn the reward of each
arm separately, essentially assuming the number of arms is not too large. [7] provides an upper bound
on regret of Õ(KT

d+1
d+2 ), where d is the dimension of the context space, and K is the number of arms.

The setting of continnum arm bandits has been introduced to approximate setting with very large
action spaces. As there are infinitely many arms, it is common to impose smoothness with respect to
some metric amongst the arms [17, 22, 8, 10, 9]. As the joint context-arm metric is known, these
methods apply various smoothing techniques implemented via averaging datapoints with respect to a
partitioning of the context-arm space, refining the smoothing parameter as more data is collected.
[7] uses a k nearest neighbor estimator using the joint context-arm metric. The contextual zooming
algorithm from Slivkins [22] was a key inspiration for our proposed algorithm; it uses the given
context-arm metric to adaptively partition the context-arm product space [22]. This enables the
algorithm to efficiently allocate more observations to regions of the context-arm space that are near
optimal. When T is the time horizon and d is the covering dimension of the context-arm product
space, the regret of the contextual zooming algorithm is bounded above by Õ(T

d+1
d+2 ).

For settings with large but finite number of arms, there are nonparametric models which assume
different types information is known about the relationship amongst the arms. Gaussian process
bandits use a known covariance matrix to fit a Gaussian process over the joint context-arm space
[11]. Taxonomy MAB assumes that similarity structure amongst the arm is given in terms of a
hierarchical tree rather than metric [21]. Deshmukh et al assume that the kernel matrix between
pairs of arms is known, and they subsequently use kernel methods to estimate the reward functions.
Cesa-Bianchi et al assumes that a graph reflecting arm similarities is given to the algorithm, and their
algorithm subsequently uses the Laplacian matrix of the given graph to regularize their estimates of
the reward functions [4]. Wu et al assumes an influence matrix amongst arms is known and used to
share datapoints among connected arms in the estimation [23]. A limitation of these approaches is
that they assumes similarity information is provided to the algorithm either as a metric, kernel, or via
a graph structure. In real-world applications, this similarity information is often not readily available
and must be itself learned from the data.

2 Problem Statement

Assume that the context at each trial t ∈ [T ] is sampled independently and uniformly over the unit
interval, xt ∼ U(0, 1), and revealed to the algorithm. Assume there are K arms, or options, that the
algorithm can choose amongst at each trial t. If the algorithm chooses arm at at trial t, it observes
and receives a reward πt ∈ R according to πt = fat(xt) + εt, where εt ∼ N(0, σ2) is an i.i.d
Gaussian noise term with mean 0 and variance σ2, and fa(x) denotes the expected reward for arm
a as a function of the context x. We assume that each arm reward function fa : [0, 1] → [0, 1] is
L-Lipschitz, i.e. for all x, x′ ∈ [0, 1]2, |fa(x)− fa(x′)| ≤ L|x− x′|.

The goal of our problem setting is to maximize the total expected payoff
∑T
t=1 πt over the time

horizon T . We provide upper bounds on the expected contextual regret,

E [R(T )] := E
[∑T

t=1 (f∗(xt)− fat(xt))
]

where f∗(x) := maxa∈[K] fa(x). (1)

We would like to understand whether an algorithm can efficiently exploit latent structure amongst the
arm reward functions if it exists. Although the number of arms may be large, they could be drawn
from a smaller set of finite arm types. Alternatively the arms could be draw from a continuum metric
space such that the reward function is jointly Lipschitz over the context-arm space; however our
algorithm would not have access to or knowledge of the underlying representation in the metric space.

3 Algorithm Intuition

We begin by describing an oracle algorithm that is given special knowledge of the relationship
between the arms in the form of the context-arm metric. Assume that the arms are embedded into
a metric space, and the function is Lipschitz with respect to that metric. The contextual zooming
algorithm proposed by Slivkins in [22] reduces the large continuum arm set to the effective dimension
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of the underlying metric space. Essentially, their model assumes that each arm is associated to some
known parameter θa ∈ [0, 1], and that the expected joint payoff function is 1-Lipschitz continuous in
the context-arm product space with respect to a known metric D, such that for all context-arm pairs
(x, a) and (x′, a′), |f(x, θa)− f(x′, θa′)| ≤ D((x, θa), (x′, θa′)).

The key idea of Slivkin’s zooming algorithm is to use adaptive discretization to encourage the
algorithm to obtain more refined estimates in the nearly optimal regions of the space while allowing
coarse estimates in suboptimal regions of the context-arm space. The algorithm maintains a partition
of the context-arm space consisting of “balls”, or sets, of various sizes. The algorithm estimates
the reward function within a ball by averaging observed samples that lie within this ball. An upper
confidence bound is obtained by accounting for the bias (proportional to the “diameter” of the ball
due to Lipschitzness) and the variance due to averaging noisy observations within the ball. When a
context arrives, the UCB rule is used to select a ball in the partition, and subsequently an arm in that
ball. When the number of observations in a ball increases beyond the threshold such that the variance
of the estimate is less than the bias, then the algorithm splits the ball into smaller balls, refining the
partition locally in this region of the context-arm space.

The main intuition of the analysis is that the UCB selection rule guarantees (with high probability)
that when a ball with diameter ∆ is selected, the regret incurred by selecting this ball is bounded
above by order ∆. As a result, this algorithm is able to exploit the arm similarities via the joint metric
in order to aggregate samples of similar arms such that the estimates will converge more quickly.
Subsequently the algorithm refines the estimates and subpartitions the space as needed for regions
that are near optimal and thus require tighter estimates in order to allow the algorithm to narrow in on
the optimal arm. The limitation of the previous Zooming algorithm is that it depends crucially on the
given knowledge of the context-arm joint metric, which could be unknown in advance.

Arm Similarity Estimation In our model, we are not given any metric or features of the arm, thus
the key question is whether it is still possible for an algorithm to exploit good structure amongst
the arms if it exists. We propose an algorithm inspired by Slivkin’s contextual zooming algorithm,
which also adaptively partitions the context-arm space with the goal to allow for coarse estimates that
converge quickly initially, and subsequently selectively refine the partition and the corresponding
estimates in regions of the context-arm space that are nearly optimal. The key challenge to deal with
is determining how to subpartition amongst the arms when we do not know any underlying metric or
feature space. Our algorithm estimates a similarity (or distance) from the collected data itself, and
uses the data-dependent distances to cluster/subpartition amongst the arms. This concept is similar to
clustering bandits which also learns data-driven similarities, except that the clustering bandits works
assume linear reward functions and finite types, whereas our model and algorithm is more general for
nonparametric functions and arms drawn from an underlying continuous space [6].

We want our algorithm to partition the context-arm product space into balls, or subsets, within
which the maximum diameter is bounded, where diameter of a subset is defined as diam(S) :=
sup(x,a)∈S fa(x)− inf(x′,a′)∈S fa′(x

′). We consider balls ρ ⊆ [0, 1]× [K] which have the form of
[c0(ρ), c1(ρ)]×A(ρ), where c0(ρ) ∈ [0, 1] denotes the start of the context interval, c1(ρ) ∈ [c0(ρ), 1]
denotes the end of the context interval, and A(ρ) ⊆ [K] denotes the subset of arms. We use
∆(ρ) := c1(ρ)− c0(ρ) to denote the “width” of the context interval pertaining to the ball ρ.

In order to figure out which set of arms to include in a “ball” such that the diameter is bounded,
we ideally would like to measure the L∞ distance with respect to the context interval of the ball,
maxx∈[c0(ρ),c1(ρ)] |fa(x) − fa′(x)|. As the functions are assumed to be Lipschitz with respect to
the context space, a bound on the L2 distance also implies a bound on the L∞. Our algorithm
approximates the L2 distance, defined with respect to an interval [u, v] according to

Dvu(a, a′) :=

√
1

200

∑
i∈[200]

(
fa(zi(u, v))− fa′(zi(u, v))

)2

(2)

where zi(u, v) =
(
1− i

200

)
u+ i

200v. This is a finite sum approximation to the integrated L2 distance
between fa and fa′ within the interval [u, v].

Our algorithm uses the data collected for an arm in order to approximate the reward functions using a
k nearest neighbor estimator, and subsequently uses the estimated reward functions to approximate
Dvu. These approximate distances are then used to cluster the arms when subpartitioning. With high
probability, we show that the diameter of the constructed balls is bounded by 2L∆(ρ). Our algorithm
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collects extra samples to compute these distances, and a key part of the analysis is to understand
when the improvement in the learning rate of the reward functions is sufficient enough to offset the
cost of estimating arm distances.

4 Algorithm Statement

Let nt(ρ) =
∑t−1
s=1 I (ρs = ρ) denote the number of times ρ has been selected before trial t. Let

µt(ρ) = 1
nt(ρ)

∑t−1
s=1 I (ρs = ρ)πs denote the average observed reward from ρ before trial t. Define

UCBt(ρ) = µt(ρ) + 2L∆(ρ) +
√

6σ2 ln(T )/nt(ρ), (3)

which gives an upper confidence bound for the maximum reward achievable by any context-arm pair
in the ball ρ. The algorithm maintains two sets of balls, P and P∗, such that P ∪ P∗ is a partition
of the context-arm space, i.e. all balls are disjoint and the union cover the entire space. We refer to
balls in P∗ as flagged. They are given ultimate priority in the algorithm, until sufficient samples are
collected to further subpartition this ball via clustering. We refer to balls in P as “active”, within
which priority is given to balls with higher upper confidence bound (UCB).

Ball-Arm Selection Rule In a given trial t, when the context xt arrives, the algorithm identifies the
flagged balls ρ ∈ P∗ which contain context xt, i.e. xt ∈ [c0(ρ), c1(ρ)], and gives priority amongst
them to balls with larger width ∆(ρ),

ρt = argmaxρ∈P∗ ∆(ρ)I (xt ∈ [c0(ρ), c1(ρ)]) .

If there are no flagged balls in P∗ which contain xt, then the algorithm selects an active ball ρ ∈ P
containing xt, and gives priority to the ball with the highest upper confidence bound UCBt(ρ),

ρt = argmaxρ∈P UCBt(ρ)I (xt ∈ [c0(ρ), c1(ρ)]) . (4)

When a ball ρt is chosen, the algorithm plays an arm at ∈ Aρt via a round robin ordering. The
algorithm observes a noisy reward πt for arm at and updates nt(ρ), µt(ρ), and UCBt(ρ) accordingly.

By grouping the context-arm pairs into balls, the algorithm aggregates the observed rewards within a
ball to trade-off between bias and variance. For any given trial, the algorithm reduces the decision
problem from selecting amongst a large number of arms to selecting amongst a smaller set of balls,
which each consist of a subset of arms. Whenever the ball is subpartitioned, the width of the context
interval is halved, such that balls never repeat, and are always strictly nested within a hierarchy.
Furthermore, the fact that the algorithm gives priority to flagged balls with larger context widths
implies that the data collected in the “flagged” phase of every ball will be uniformly distributed over
context width of that ball.

Flagging Rule At the beginning of the algorithm, the entire context-arm space is flagged as a single
large ball to be subpartitioned, i.e. P∗ = {([0, 1]× [K])} and P = ∅. In subsequent rounds, we flag
a ball ρ ∈ P whenever it satisfies the condition nt(ρt) > 6σ2 ln(T )/L2∆2(ρt). Upon being flagged,
ρ is removed from P and added to P∗. Let stopping time τf (ρ) denote the trial t that ball ρ is flagged.
Intuitively, the threshold is chosen at a point where the confidence radius, i.e. natural variation in the
estimates due to the additive Gaussian observation error, is on the order of the diameter of the ball.
As a result, further collecting samples does not improve the overall UCB because the diameter of the
ball will dominate the expression.

Sub-Partitioning via Clustering Recall that flagged balls in P∗ are always given priority over
active balls in P . The observations collected in the flagged phase are used to estimate distances,
or similarities between the arms for the purpose of subpartitioning the ball into smaller balls. In
particular, the algorithm splits the context space [c0(ρ), c1(ρ)] into 64 evenly sized intervals and waits
until it collects at least k samples within each of the 64 intervals for each of the arms a ∈ A(ρ), where
k is chosen according to k = 5431σ2 ln(T |A(ρ)|)/(L2∆2(ρ)). This condition is mathematically
stated as

∏
a∈A(ρ) SUFFDATA(a) == 1 where

SUFFDATA(a) :=
∏64
i=1 I

(∑
s>τf (ρ) I (ρs = ρ, as = a) I (xs ∈ [wi−1, wi]) ≥ k

)
,
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for wi = c0(ρ) + i∆(ρ)/64. When this sufficient data condition is satisfied, the algorithm uses the
observations collected in the flagged phase to compute pairwise arm distances approximating (2). Let
τcl(ρ) denote the trial in which the sufficient data condition is satisfied and ρ is subpartitioned.

The SUBPARTITION subroutine estimates the reward functions via a k-nearest neighbor estimator,

f̂a(x) = 1
k

∑τcl(ρ)
s=τf (ρ)+1 I (ρs = ρ, as = a) I (xs ∈ k-NN)πs, (5)

where xs is a k nearest neighbor of x if
∑τcl(ρ)
`=τf (ρ)+1 I (ρ` = ρ, a` = a) I (|x` − x| ≤ |xs − x|) ≤ k.

Given the estimated functions {f̂a}a∈A(ρ) and a pair of arms a, a′ ∈ A(ρ), we compute D̂vu(a, a′)
for intervals [u, v] = [c0(ρ), (c0(ρ) + c1(ρ))/2] and [u, v] = [(c0(ρ) + c1(ρ))/2, c1(ρ)] according to

D̂vu(a, a′) :=

√
1

200

∑
i∈[200]

(
f̂a(zi(u, v))− f̂a′(zi(u, v))

)2

− 2σ2

k (6)

where zi(u, v) =
(
1− i

200

)
u+ i

200v and the term 2σ2

k accounts for bias due to the noise.

We use the computed distances D̂vu(a, a′) to subpartition ρ by clustering the arms for each half of
the context interval separately. For an arbitray ordering of the arms, we test if the next arm has
distance less than 3L(v− u)/16 to any of the existing cluster centers. If so, we assign it to the cluster
associated to the closest cluster center. Otherwise, we create a new cluster and assign this arm to be
the cluster center. This results in a clustering in which all pairs of cluster centers are guaranteed to be
distance 3L(v − u)/16 apart, and all members of a cluster must be within distance 3L(v − u)/16
to the cluster center. These distances are measured with respect to the data dependent estimates
D̂vu(a, a′). In our analysis, we show that with high probability D̂vu(a, a′) ≈ Dvu(a, a′).

Once the clusters are created, then ρ is unflagged (removed from P∗) and new balls corresponding
to each of the clusters for each half of the context interval are added to the active set P . See the
appendix for a pseudocode description of the algorithm.

5 Simulation

We test our algorithm on a model with 50, 100, 200 arms and a context space of [0, 1]. Each arm a
corresponds to a parameter θa uniformly spaced out within [0, 1]. The expected reward for arm a and
context x is

fa(x) := g(x, θa) = 1−
∣∣x− 4 minz∈{0,0.5,1} |θa − z|

∣∣.
This function is periodic with respect to θ, and can be depicted as a zigzag. Our distance
estimate D̂vu(a, a′) approximates Dvu(a, a′), which is defined with respect fa and fa′ directly
and does not depend on θa. Consider a measure preserving transformation that maps θa to
φa = 4 minz∈{0,0.5,1} |θa − z|, such that the reward function is equivalently described by
fa(x) = 1 − |x − φa|. An algorithm which partitions with respect to Dvu(a, a′) would be ag-
nostic to such a transformation, as opposed to an algorithm which depends on a metric defined with
respect the arm’s representation, which would perform worse on θa than φa.

We benchmark the performance of our Approx-Zooming algorithm against three variations:

• Approx-Zooming -With-True-Reward-Function: We give the Approx-Zooming algorithm oracle
access to evaluate Dvu(a, a′) at no cost, which is used to subpartition whenever a ball is flagged.

• Approx-Zooming -With-Similarity-Metric: We give the Approx-Zooming algorithm oracle access
to evaluate |θa − θa′ | at no cost, which is used to subpartition whenever a ball is flagged.

• Approx-Zooming -With-No-Arm-Similarity: This naive variant uses no arm similarities, estimating
each arm’s reward independently. The context space is adaptively partitioned via our algorithm.

We chose the model parameters that led to the highest average cumulative reward in each baseline
algorithm. For all algorithms the flagging rule is set to nt(ρ) ≥ 4 ln(T )/∆2, and σ was set to 1e− 2.
For Approx-Zooming , k was set to 10. We set the number of trials T to 100, 000 as all the algorithms
had converged to their optimal point by then. Additional details on how the model parameters were
chosen is given in Appendix F.
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In figure 1, we plot the average cumulative reward over the trials, i.e. 1
T

∑T
t=1 πt, where T is the

total number of trials and πt ∈ (0, 1) is the reward observed in the tth trial. We plot the result for
the 200 arm setting with σ set to 1e − 2. As we can see, the oracle variant of the algorithm that
uses the true reward function to calculate Dvu(a, a′) achieves the best cummulative reward across the
entire time horizon. Not surprisingly, the algorithm which learns each arm separately takes more
time to converge to the optimal policy compared to all the other methods. Our Approx-Zooming
algorithm has a heavy cost up front due to the clustering of the arms globally, but the algorithm
improves over the time horizon as it learns the correct arm similarities. The oracle variant which uses
the similarity metric |θa − θa′ | performs worse than the true Dvu(a, a′) variant, as it does not account
for the periodic nature of the function. This supports our intuition that algorithms which depend on a
given metric are sensitive to the choice of a good vs bad metric.
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Figure 1: Avg. cumulative reward vs. number of trials
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Figure 2: Approx-Zooming Selected Arm Frequency Over The Trials

In figure 2 we plot the frequencies an arm is selected in different contexts over the T trials. Each of
the four plots corresponds to averaging the frequency over T/4 trials across the time horizon. The
x-axis refers to the context space, and the y-axis refers to the set of arms. Initially the frequency plot is
very blurry, indicating that our algorithm is not necessarily playing the optimal arm but selecting arms
to learn the latent arm structure. As time progresses our algorithm learns the similarities amongst
arms and gradually plays the arms using the latent structure, which is depicted by the zigzag shape
sharpening. Finally, in the last trials Approx-Zooming plays the optimal policy, which corresponds to
the clear zigzag. In Appendix F we present similar plots for the benchmark algorithms.

Our simulations show that when the number of arms is large, it is important to use similarities
amongst arms to more quickly learn the optimal policy. In addition our results highlight the fact
that metric-based algorithms may be sensitive to the choice of metric, which is not a trivial task. In
contrast, our approach relies on samples from the reward distribution to learn the latent structure, and
is thus agnostic to any choice of metric. However, the parameter k needs to be carefully tuned for
our algorithm to avoid unnecessary sampling for estimating similarities. In Appendix F we include
similar plots for other parameters of the problem, in particular for smaller number of arms. We see
that for 50 arms or 100 arms, the cost due to the added extra exploration may exceed the gain from
learning the metric, and thus we anticipate that the benefits of learning the metric only dominates in
regimes where the number of arms is large and the time horizon is sufficiently long.
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6 Upper bound on the Regret

We present a general bound on the regret expressed as a function of a quantity relating to the local
geometry of the reward function nearby the optimal policy. Let us denote wi(`) = [(`− 1)2−i, `2−i],
κ(x) = f∗(x)−maxa∈[K] fa(x) I (fa(x) 6= f∗(x)), and

Mi =
∑2i

`=1 I
(
minx∈wi(`) κ(x) ≤ 20 L 2−i

)∑
a∈[K] I

(
(f∗(2−i`)− fa(2−i`)) ≤ 22 L 2−i

)
.

Theorem 6.1. The expected contextual regret of Approx-Zooming is bounded above by

E [R(T )] = O
(
σ2L−2K ln(TK) + min

imax∈Z+

(
LT2−imax +

imax−1∑
i=1

σ2L−1Mi2
i ln(TK)

))
.

The analysis relies on showing that the instantaneous regret incurred by choosing a ball with context
width ∆ is bounded above by O(L∆). The first term in the regret is due to the very first intitial
clustering phase. The second term L T 2−imax bounds the regret incurred by all balls with context
width at most 2−imax . The terms in the summation bound the regret incurred by balls with context
width equal to 2−i. The function κ(x) represents the lowest regret achieved by the second-most
optimal arm, which lower bounds the suboptimality gap. In alignment with our intuition from
classical MAB, when the suboptimality gap is large, the algorithm is able to more quickly converge
to the optimal arm at context x. When we bound the regret incurred by all balls with context width
2−i, we can thus remove subintervals of the context for which κ(x) is large as the algorithm will
have already converged to the optimal arm. This is reflected in the first indicator function within
the expression Mi. Once restricted to context subintervals where the suboptimality gap is not too
large, the expression

∑
a∈[K] I

(
(f∗(2−i`)− fa(2−i`)) ≤ 22 L 2−i

)
counts the number of arms for

which the suboptimality gap is at most 22 L 2−i; arms for which the suboptimality gap is larger will
have already been deemed suboptimal. As the specific bounds on Mi depend on the model and local
geometry amongst the arms, we provide bounds for two concrete examples to give more intuition.

Finite Types Suppose that the reward functions for the K arms, {fa}a∈[K] only takes Θ different
values. Essentially, this implies that there are Θ different types of arms, but we don’t know the arm
types a priori. Within each type, the reward function is exactly the same. Let us define

µκ(z) := µ({x ∈ [0, 1] s.t. κ(x) ≤ z})

where µ is the Lebesgue measure. Then we can show that Mi ≤ 2iKµκ(22 L 2−i). The regret is
bounded by the local measure function µκ. In the finite types setting, the optimal policy corresponds
to partitioning the context space [0, 1] into a set of intervals, S∗, such that across each interval
∫ ∈ S∗, the optimal policy does not change. Let us consider the setting that κ(x) decreases
linearly fast nearby the points where the optimal policy changes, so that for some constant L′,
µκ(22 L 2−i) ≤ 22 |S∗| L 2−i/L′. By plugging the bound on Mi into the main theorem and
choosing imax = log(L′LT/22σ2|S∗|K ln(TK))/2, it follows that

E [R(T )] ≤ O
(
σ2L−2K ln(TK) +

√
σ2|S∗|LL′−1TK ln(TK)

)
(7)

Lipschitz with respect to continuous arm metric space Suppose that each arm a is associated
to a latent feature θa ∈ [0, 1], and the expected reward function fa(x) = g(x, θa), where g :
[0, 1]× [0, 1]→ [0, 1] is a L-Lipschitz function with respect to both the contexts and the arm latent
features such that |g(x, θ) − g(x′, θ′)| ≤ L(|x − x′| + |θ − θ′|). If we assume that the arm latent
features are uniformly spread out, {θa} = {i/K}i∈[K], then

Mi ≤
∑
j∈[K]

∑
`∈[2i] I

(
(f∗(2−i`)− g(2−i`, jK )) ≤ 22 L 2−i

)
, (8)

which is a discrete approximation to the area of the context-arm space for which the suboptimality gap
is at most 22 L 2−i. We can visualize

∑2i

`=1Mi(`) by considering the contour plot of f∗(x)−g(x, θ),
and counting how many grid points {(2−i`, j/K)}`∈[2i],j∈[K] are lower than 22L2−i. For large i and
K, this is approximately 2iKµ({(x, θ) : g(x, θ)− f∗(x) ≥ −22L2−i}), where µ is the Lebesgue
measure. The curve at the lowest level of the contour plot corresponds to the set {(x, θ) s.t. g(x, θ)−
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f∗(x) = 0}, which contains for each context the set of arm features that optimize the expected
reward. The final regret depends on the local measure of the joint reward function.

As an example, if we consider the reward function g(x, θ) = 1− L|x− θ| for some L ∈ (0, 1), we
can show that Mi ≤ 44K, i.e. it is bounded by a constant with respect to i. Therefore by plugging
into the main theorem and choosing imax = log

(
20L2T/σ2K ln(TK)

)
/2 it follows that

E [R(T )] ≤ O
(
σ2L−2K ln(TK) +

√
σ2KT ln(TK)

)
. (9)

7 Discussion

Interpreting the results. We began this paper with the question: Can an algorithm exploit hidden
structure in a nonparametric contextual bandit problem with no a priori knowledge of the underlying
metric? The results of our simulations suggest that our proposed algorithm (with empirically tuned
hyperparameters) can perform better than the corresponding algorithm that learns over each arm
separately, or that uses a suboptimal metric. However, the regret bounds we present are not sufficiently
strong to provably show that the algorithm outperforms learning on arms separately. The stated upper
bound on regret in [7] is linear in the number of arms K, however this may be simply due to the fact
that they did not optimize with respect to K in their analysis. Our regret bound is most comparable
to the regret for the infinite arm setting presented in [22], and it can be recovered from their bound by
imposing the discrete metric amongst the arms.

Generalizing to higher context dimension. For simplicity, we have stated our algorithm and
analysis for the 1D context space, but the results extend to the general d-dimensional setting. The
only change required algorithmically is in the subpartitioning/clustering step. Let us define Cd(q) to
be the number of balls of radius r/q needed to cover a ball of radius r, which scales exponentially in
the dimension d, e.g. qd. Since we are now estimating the reward function f over a d-dimensional
context space, the number of sub-regions of the context space that need to be clustered will be
Cd(2), and the number of samples needed to guarantee that the k-nearest neighbor samples are within
distance 1

16 radius, will be equal to Õ(kCd(32)). To compute D̂, we will instead have a d-dimensional
summation over the subset of the context space. Once D̂ is computed, then the clustering of arms
will have the same computational cost, i.e. linear in number of arms to be clustered. The analysis can
be modified to account for the d-dimensional setting, and the final regret bound will look like

O
(
Cd(2)Cd(32)σ2L−2K ln(TK)+ min

imax∈Z+

(
LT2−imax+

imax−1∑
i=1

Cd(2)Cd(32)σ2L−1Mi2
i ln(TK)

))
,

where Mi instead sums over an ε-net of the context space for ε = 2−i, and thus we may expect Mi to
grow exponentially in i× d, depending on the distribution of the reward function and the finite arms.
The growth of Mi will dominate the regret bound with respect to the dependence on the dimension d.

Choice of metric. Nature could apply a measure preserving transformation to the arm metric space
such that the joint function has a significantly higher Lipschitz constant. This representation would
incur a worse performance by the previous Zooming algorithm, indicating that the algorithm is
critically dependent on the choice of representation and metric. As an example, suppose that arms are
each associated to some latent parameter θ ∈ (0, 2π), and the reward function associated to an arm a
is fa(x) = x + sin(Lθa). The Lipschitz constant with respect to θ is L. By applying a change of
variables from θ to t(θ) = Lθ mod 2π, the associated reward function in terms of the representation
ta = t(θa) would be fa(x) = x+ sin(ta), which only has Lipschitz constant 1 with respect to the
reparamerization t. This is only a simple example amongst many that illustrate the importance of
the choice of metric for learning. In contrast, our algorithm estimates similarity amongst the arms
directly from data collected from the reward functions, which essentially estimates distance in the
function space; as a result our algorithm is invariant to any specific covariate representation.

Future Work. The current results are stated only for Lipschitz reward functions, where the tuning
parameters depend on the Lipschitz constant. It may be interesting to generalize the algorithm to
Holder continuous reward functions, and consider how to adapt the algorithm to the smoothness
parameters if unknown. It would also be interesting to explore the connections to Gaussian process
bandits. One would need to specify the covariance matrix amongst arms, and it may be possible to
consider empirically estimating the covariance matrix in the process of learning.
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A Algorithm Notation and Pseudocode

The algorithm is presented in full in the main body of the paper, but for reference we have also
included pseudocode below.

Algorithm 1 Approx-Zooming Algorithm

Require: context space [0, 1], arm space [K], Lipschitz constant L and time horizon T
1: function APPROX-ZOOMING (K, L, T)
2: Parameter k = 5431σ2 ln(T |A(ρ)|)

L2∆2(ρ)

3: Initialize P∗ = {([0, 1]× [K])}, P = ∅
4: for t ∈ [T ] do
5: Context xt “arrives”
6: if xt ∈ [c0(ρ), c1(ρ)] for any ρ ∈ P∗ then . Check for any flagged balls
7: ρt = argmaxρ∈P∗ ∆(ρ)I (xt ∈ [c0(ρ, c1(ρ)])
8: Select at = min{a ∈ A(ρ) s.t. SUFFDATA(a) = 0}
9: Play arm at and observe payoff πt = fat(xt) + εt

10: if
∏
a∈A(ρ) SUFFDATA(a) == 1, then

11: new partitions = SUBPARTITION(ρ)
12: P = P ∪ new partitions
13: P∗ = P∗ \ ρ
14: else . If no relevant flagged balls, then use UCB selection rule
15: ρt = argmaxρ∈P UCBt(ρ)I (xt ∈ [c0(ρ), c1(ρ)])
16: Play any arm at ∈ A(ρt) and observe payoff πt = fat(xt) + εt

17: if nt(ρt) > 6σ2 ln(T )
L2∆2(ρt)

then
18: P = P \ {ρt},P∗ = P∗ ∪ {ρt} . Remove from active set, flag for subpartition
19: τf (ρ) = t

20:
21: function SUBPARTITION(ρ)
22: Initialize centers C0 = ∅, C1 = ∅
23: for ` ∈ {0, 1} do
24: u = c0(ρ) + ∆(ρ)`

2 , v = c0(ρ) + ∆(ρ)(1+`)
2

25: for a ∈ Aρ in arbitrary order do
26: Compute D̂v

u(a, y) for all y ∈ C`
27: if miny∈C` D̂vu(a, y) > 3

16L(v − u) then
28: Add a as a new center, C` = C` ∪ {a}, S`(a) = {a}
29: else
30: y = argminy∈C` D̂ρ(a, y)
31: S`(y) = S`(y) ∪ {a}
32: return

{(
[c0(ρ), c0(ρ)+c1(ρ)

2 ]× S0(y)
)}

y∈C0
∪
{(

[ c0(ρ)+c1(ρ)
2 , c1(ρ)]× S1(y)

)}
y∈C1

Recall the notation and definitions introduced:

• diam(S) := sup(x,a)∈S fa(x)− inf(x′,a′)∈S fa′(x
′)

• [c0(ρ), c1(ρ)] denotes the context interval of ball ρ.
• A(ρ) denotes the set of arms in ball ρ.
• ∆(ρ) := c1(ρ)− c0(ρ) denotes the context width of ball ρ.

• nt(ρ) :=
∑t−1
s=1 I (ρs = ρ) denotes the number of trials ball ρ has been chosen by the

algorithm before trial t.

• µt(ρ) := 1
nt(ρ)

∑t−1
s=1 I (ρs = ρ)πs denotes the average observed reward from this ball

before trial t.

• UCBt(ρ) := µt(ρ)+2L∆(ρ)+
√

6σ2 ln(T )
nt(ρ)

is an upper confidence bound for the maximum
reward achievable by any context-arm pair in the ball ρ.
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• τf (ρ) denotes the trial that ball ρ is flagged.
• τcl(ρ) denotes the trial in which the SUBPARTITION subroutine is called.

• SUFFDATA(a) :=
∏64
i=1 I

(∑
s>τf (ρ) I (ρs = ρ, as = a) I (xs ∈ [wi−1, wi]) ≥ k

)
for

wi = c0(ρ) + i∆(ρ)
64 and k = 5431σ2 ln(T |A(ρ)|)/(L2∆2(ρ)).

• The reward function for an arm a is estimated via a k-NN estimator

f̂a(x) = 1
k

∑τcl(ρ)
s=τf (ρ)+1 I (ρs = ρ, as = a) I (xs ∈ k-NN)πs

where xs is a k nearest neighbor datapoint for computing f̂a(x) if

I (xs ∈ k-NN) =
∑τcl(ρ)
`=τf (ρ)+1 I (ρ` = ρ, a` = a) I (|x` − x| ≤ |xs − x|) ≤ k.

• The distance between arms a and a′ for interval [u, v] is estimated according to

D̂vu(a, a′) :=

√
1

200

∑
i∈[200]

(
f̂a(zi(u, v))− f̂a′(zi(u, v))

)2

− 2σ2

k

where zi(u, v) =
(
1− i

200

)
r + i

200s.

B Proof Sketch

Our algorithm and analysis take after the Zooming algorithm [9, 22]. However, the major difference
is that their model assumes the metric is directly known in advance, but our algorithm must learn the
metric. In particular, each trial we subpartition a set into finer clusters, we pay extra cost to collect
samples to estimate distances used for determining the subsequent clusters.
Lemma B.1. With probability at least 1 − 2T−1, over the entire course of the algorithm for all
t ∈ [T ] and ρ ∈ P ,

µt(ρ) ∈

[
min

(x,a)∈ρ
fa(x)−

√
6σ2 ln(T )
nt(ρ)

, max
(x,a)∈ρ

fa(x) +

√
6σ2 ln(T )
nt(ρ)

]
.

Lemma B.2. With probability at least 1− 4T−1, over the entire course of the algorithm for all trials
that D̂vu(a, y) is evaluated, {

|D̂vu(a, y)−Dvu(a, y)| ≤ 1

8
L(v − u)

}
.

We refer to the set of conditions in Lemmas B.1 and B.1 as the “good event” and denote them with G.

Argue that the resulting clustering produced by SUBPARTITION satisfies that all pairs in the same
cluster must be “close”.
Lemma B.3. Conditioned on the “good events” G, for any ρ ∈ P at any point of the algorithm,
diam(ρ) ≤ 2L∆(ρ).

Let us define
gap(ρ) = min

(x,a)∈ρ
(f∗(x)− fa(x)) .

Conditioned on good events above, for any ρ ∈ Pt, we upper bound the total number of trials this
set can be chosen by the algorithm until either it is completely dominated, or it is flagged to be
subpartitioned.
Lemma B.4. Conditioned on the “good events” G, if ball ρ is chosen by the algorithm at trial t via
the UCB rule, then

nt(ρ) ≤ min
{

24σ2 ln(T )
(gap(ρ)−4L∆(ρt))2

, 6σ2 ln(T )
L2∆2(ρ) + 1

}
(10)

Therefore the max number of trials ball ρ is chosen via the UCB rule is bounded above by,∑τf (ρ)
t=1 I (ρt = ρ) ≤ min

{
24σ2 ln(T )

(gap(ρ)−4L∆(ρt))2
+ 1, 6σ2 ln(T )

L2∆2(ρ) + 2
}

(11)
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Lemma B.5. Conditioned on the “good events” G, for any ρ ∈ P such that τf (ρ) ≤ T ,

max
(x,a)∈ρ

(f∗(x)− fa(x)) ≤ 10L∆(ρ).

For any ρ ∈ P that was created due to a parent in P being flagged (i.e. ∆(ρ) ≤ 1
4 )

max
(x,a)∈ρ

(f∗(x)− fa(x)) ≤ 20L∆(ρ).

Note that since we assumed the reward functions are bounded in [0, 1], the regret is always bounded
by 1, thus the above upper bound is only nontrivial for ∆(ρ) < 1/20L.
Lemma B.6. For any ρ ∈ P such that τf (ρ) ≤ T ,

E
[∑T

t=τf (ρ)+1 I (ρt = ρ) | τf (ρ) ≤ T
]
≤ 304·5431·σ2|A(ρ)| ln(T |A(ρ)|)

L2∆2(ρ) (12)

C Proof of Lemmas

Proof of Lemma B.3. Recall from the algorithm that every ball ρ ∈ P is constructed as a result of
the SUBPARTITION routine, and is associate to a cluster with a corresponding center arm y ∈ A(ρ).
Let us denote r = c0(ρ) and s = c1(ρ), which are the endpoints used to compute distances within
the SUBPARTITION subroutine. It follows that ∆(ρ) = s− r. The algorithm enforced that for any
a, a′ ∈ A(ρ)×A(ρ), it must be that D̂sr(a, y) ≤ 3

16L(v − u) and D̂sr(a′, y) ≤ 3
16L(v − u).

Conditioned on the good events G,

|D̂vu(a, y)−Dvu(a, y)| ≤ 1

8
L(v − u) and |D̂vu(a′, y)−Dvu(a′, y)| ≤ 1

8
L(v − u).

We can verify that Drs(·) is indeed a proper metric amongst the arms as it is simply a normalized L2
norm of the difference of associated vectors. Therefore by triangle inequality,

Dvu(a, a′) ≤ Dvu(a, y) +Dvu(a′, y) (13)

≤ 5

16
L(v − u) +

5

16
L(v − u) =

5

8
L(v − u). (14)

Recall that

Dvu(a, a′) =

√√√√ 1
200

∑
i∈[200]

(
fa(zi(u, v))− fa′(zi(u, v))

)2

for zi(u, v) =
(
1− i

200

)
r + i

200s

As [u, v] is a compact set, it must achieve its supremum, and we let x∗ denote the point that achieves
supremum, i.e.

|fa(x∗)− fa′(x∗)| = sup
x∈[u,v]

|fa(x)− fa′(x)|.

As fa and fa′ are L-Lipschitz, the absolute value of their difference must be 2L-Lipschitz.

For zi(u, v) as defined above, by Lipschitzness,

|fa(zi(u, v))− fa′(zi(u, v))| ≥ max(|fa(x∗)− fa′(x∗)| − 2L|zi(u, v)− x∗|, 0)

Therefore,

(Dvu(a, a′))
2

=
1

200

∑
i∈[200]

(
fa(zi(u, v))− fa′(zi(u, v))

)2

≥ 1

200

∑
i∈[200]

(
max

(
|fa(x∗)− fa′(x∗)| − 2L|zi(u, v)− x∗|, 0

))2

≥ min
x∈[u,v]

1

200

∑
i∈[200]

(
max

(
|fa(x∗)− fa′(x∗)| − 2L|zi(u, v)− x|, 0

))2
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Argue that this is lower bounded by choosing x = s (include a picture?) so that

|zi(u, v)− x| =
(

1− i

200

)
(v − u)

and by rearranging the indices we get

(Dvu(a, a′))
2 ≥ 1

200

200∑
i=0

(
max

(
|fa(x∗)− fa′(x∗)| −

2L(v − u)i

200
, 0
))2

Let us define

imax := min

(⌊
200|fa(x∗)− fa′(x∗)|

2L(v − u)

⌋
, 200

)
then we can lower bound (Dvu(a, a′))

2 by

1

200

imax∑
i=0

(
|fa(x∗)− fa′(x∗)| −

2L(v − u)i

200

)2

= imax+1
200 |fa(x∗)− fa′(x∗)|2 − 2L|fa(x∗)−fa′ (x

∗)|(v−u)
2002

imax∑
i=0

i+ 4L2(v−u)2

2003

imax∑
i=0

i2

Recall that
imax∑
i=0

i =
imax(imax + 1)

2
≤ (imax + 1)2

2

and
imax∑
i=0

i2 =
imax(imax + 1)(2imax + 1)

6
≥ i3max

3

Therefore, if 200 <
⌊

200|fa(x∗)−fa′ (x
∗)|

2L(v−u)

⌋
,

(Dvu(a, a′))
2 (15)

≥ 200+1
200 |fa(x∗)− fa′(x∗)|2 − 2L|fa(x∗)−fa′ (x

∗)|(v−u)(200+1)2

22002 + 4L2(v−u)2

3 (16)

≥ |fa(x∗)− fa′(x∗)|2 − ( 4
3 )2L|fa(x∗)− fa′(x∗)|(v − u) + 4

3L
2(v − u)2 (17)

=
(
|fa(x∗)− fa′(x∗)| − 8L(v−u)

9

)2

+ 44
81L

2(v − u)2 (18)

We have shown in (14) that conditioned on the good event G, Dvu(a, a′) ≤ 5
8L(v − u), which would

violate (18), as ( 5
8 )2 ≤ 44

81 .

Thus, conditioned on the good event G, for a pair of arms a, a′ ∈ A(ρ) × A(ρ), it must be that
200 >

⌊
200|fa(x∗)−fa′ (x

∗)|
2L(v−u)

⌋
, such that

(Dvu(a, a′))
2 (19)

≥ 1
200

(
|fa(x∗)− fa′(x∗)|2200

2L(v − u)

)
|fa(x∗)− fa′(x∗)| (20)

− L|fa(x∗)−fa′ (x
∗)|(v−u)

2002

(
200|fa(x∗)− fa′(x∗)|

2L(v − u)
+ 1

)2

(21)

+ 4L2(v−u)2

3·2003

(
200|fa(x∗)− fa′(x∗)|

2L(v − u)
− 1

)3

(22)

= |fa(x∗)−fa′ (x
∗)|3

L(v−u)

(
1
2 −

1
4

(
1 + 2L(v−u)

200|fa(x∗)−fa′ (x∗)|

)2

+ 1
6

(
1− 2L(v−u)

200|fa(x∗)−fa′ (x∗)|

)3
)

(23)
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Suppose that |fa(x∗)− fa′(x∗)| > L(v − u). We would arise at a contradiction because plugging
this bound into (23) would result in

(Dvu(a, a′))
2
> L2(v − u)2

(
1

2
− 1

4
(1.01)2 +

1

6
(0.99)3

)
>

(
5

8
L(v − u)

)2

.

Therefore Dvu(a, a′) ≤ 5
8L(v − u) must imply that

|fa(x∗)− fa′(x∗)| := sup
x∈[c0(ρ),c1(ρ)]

|fa(x)− fa′(x)| ≤ L∆(ρ).

Let us denote (x, a) = argmax(x,a)∈ρ fa(x) and (x, a) = argmin(x,a)∈ρ fa(x). Then

diam(ρ) = fa(x)− fa(x) (24)
≤ |fa(x)− fa(x)|+ |fa(x)− fa(x)| (25)
≤ L∆(ρ) + max

a,a′∈A(ρ)2
sup

x∈[c0(ρ),c1(ρ)]

|fa(x)− fa′(x)| (26)

≤ 2L∆(ρ) (27)

Proof of Lemma B.4. Recall that a ball is flagged (after being played) the first trial that

nt(ρ) >
6σ2 ln(T )

L2∆2(ρ)
,

and subsequently it is removed from P and no longer active, so the flagging condition is triggered
exactly when

nt(ρ) =

⌊
6σ2 ln(T )

L2∆2(ρ)
+ 1

⌋
.

Since the ball is played one last trial, the total number of trials the ball is played via the UCB rule
over time horizon T will be

τf (ρ)∑
t=1

I (ρt = ρ) =

⌊
6σ2 ln(T )

L2∆2(ρ)
+ 1

⌋
+ 1 ≤ 6σ2 ln(T )

L2∆2(ρ)
+ 2.

The second terms in the upper bound of Lemma B.4 are derived by considering when the ball must
be “flagged”.

Next, we consider when the ball must be so suboptimal such that it is no longer chosen by the UCB
rule. Conditioned on the “good events” G, for all ρ ∈ P and t ∈ [τf (ρ)], i.e. the ball is not yet
flagged,

µt(ρ) ∈

[
min

(x,a)∈ρ
fa(x)−

√
6σ2 ln(T )
nt(ρ)

, max
(x,a)∈ρ

fa(x) +

√
6σ2 ln(T )
nt(ρ)

]
such that

UCBt(ρ) ∈

[
min

(x,a)∈ρ
fa(x) + 2L∆(ρ), max

(x,a)∈ρ
fa(x) + 2L∆(ρ) + 2

√
6σ2 ln(T )
nt(ρ)

]
.

Thus
UCBt(ρ) ≥ min

(x,a)∈ρ
fa(x) + 2L∆(ρ) = max

(x,a)∈ρ
fa(x)− diam(ρ) + 2L∆(ρ)

and

UCBt(ρ) ≤ max
(x,a)∈ρ

fa(x)+2L∆(ρ)+2

√
6σ2 ln(T )
nt(ρ)

= min
(x,a)∈ρ

fa(x)+diam(ρ)+2L∆(ρ)+2

√
6σ2 ln(T )
nt(ρ)

.

Suppose at trial t, context xt arrives and ball ρt is chosen by the algorithm via the UCB rule. Let us
denote a∗ = argmaxa∈[K] fa(xt), and let ρ∗ denote the ball which contains a∗. Then

UCBt(ρ
∗) ≥ f∗(xt)− diam(ρ∗) + 2L∆(ρ∗).
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By Lemma B.3, conditioned on the good events G, diam(ρ∗) ≤ 2L∆(ρ∗), thus

UCBt(ρ
∗) ≥ f∗(xt).

By conditioning on the good events G, and by Lemma B.3, it also must hold that

UCBt(ρt) ≤ min
(x,a)∈ρt

fa(x) + diam(ρt) + 2L∆(ρt) + 2

√
6σ2 ln(T )
nt(ρt)

(28)

≤ min
(x,a)∈ρt

fa(x) + 4L∆(ρt) + 2

√
6σ2 ln(T )
nt(ρt)

. (29)

Thus,

min
a∈A(ρt)

fa(xt) ≥ UCBt(ρt)− 4L∆(ρt)− 2

√
6σ2 ln(T )
nt(ρt)

.

If ρt was chosen by the algorithm via the UCB rule, it therefore must imply that

UCBt(ρ) ≥ UCBt(ρ∗)

and thus

f∗(xt)− min
a∈A(ρt)

fa(xt) ≤ 4L∆(ρt) + 2

√
6σ2 ln(T )
nt(ρt)

.

This implies that

gap(ρ) = min
(x,a)∈ρ

(f∗(x)− fa(x)) ≤ 4L∆(ρt) + 2

√
6σ2 ln(T )
nt(ρt)

Therefore if ρ is selected by the UCB rule at trial t, it must be that

nt(ρt) ≤
24σ2 ln(T )

(gap(ρ)− 4L∆(ρt))2
.

Proof of Lemma B.5. Note that maxa∈A(ρ)(f
∗(x)− fa(x)) is a 2L-Lipschitz function such that

max
x∈[c0(ρ),c1(ρ)]

max
a∈A(ρ)

(f∗(x)− fa(x)) (30)

≤ min
x∈[c0(ρ),c1(ρ)]

max
a∈A(ρ)

(f∗(x)− fa(x)) + 2L∆(ρ) (31)

≤ min
x∈[c0(ρ),c1(ρ)]

min
a∈A(ρ)

(f∗(x)− fa(x)) + diam(ρ) + 2L∆(ρ) (32)

= gap(ρ) + diam(ρ) + 2L∆(ρ). (33)

Conditioned on the “good events” holding, by Lemma B.4, if a ball ρ is flagged at trial t = τf (ρ),
then it must be that

nt(ρ) =

⌊
6σ2 ln(T )

L2∆2(ρ)
+ 1

⌋
≤ 24σ2 ln(T )

(gap(ρ)− 4L∆(ρ))2
. (34)

If the above inequality does not hold, then it would imply that the ball is so suboptimal that it stop
being chosen by the UCB rule before hitting the threshold for flagging.

This implies
6σ2 ln(T )

L2∆2(ρ)
≤ 24σ2 ln(T )

(gap(ρ)− 4L∆(ρ))2
(35)

and thus

gap(ρ) ≤ 6L∆(ρ). (36)
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By Lemma B.3 and (33), it follows that

max
(x,a)∈ρ

(f∗(x)− fa(x)) ≤ gap(ρ) + diam(ρ) + 2L∆(ρ)

≤ 6L∆(ρ) + 2L∆(ρ) + 2L∆(ρ)

= 10L∆(ρ).

This implies that the maximum regret for a ball who is eventually flagged is upper bounded by
10L∆(ρ). For any subsequent children balls ρ′ that are formed by subpartitioning ρ, it must follow
that

gap(ρ′) ≤ max
(x,a)∈ρ

(f∗(x)− fa(x)) (37)

≤ 10L∆(ρ) (38)

= 20L∆(ρ′) (39)

Proof of Lemma B.6. The length of trial that a ball ρ stays in the flagged phase before triggering
the SUBPARTITION subroutine depends on the number of samples collected for this ball until the
condition

∏
a∈A(ρ) SUFFDATA(a) == 1. Essentially this condition considers the 64 equal sized

intervals that split the context space [c0(ρ), c1(ρ)] and checks that in each there is at least k points
sampled for each arm a ∈ A(ρ) within each of those 64 subintervals.

Due to the fact that the algorithm always gives priority to flagged balls, and furthermore flagged balls
with larger context width are always given priority, it follows that the context of samples collected for
ball ρ within its flagged phase must be distributed uniformly within [c0(ρ), c1(ρ)]. If ρ is the only
ball flagged that intersects with the context interval [c0(ρ), c1(ρ)], then it is given first priority such
that any context that falls within this interval will be assigned to ρ. As the contexts arrive uniformly
sampled over [0, 1], the set of contexts restricted to [c0(ρ), c1(ρ)] will also be uniformly distributed.

As the context widths are always split into half, the endpoints must be equal to `2−i for some integers
i and `. In the case that there is some other ball ρ′ which intersects with [c0(ρ), c1(ρ)], either it has
smaller context width and thus must be fully contained within [c0(ρ), c1(ρ)], or it has larger context
width and must be a strict superset fully eclipsing [c0(ρ), c1(ρ)]. It is impossible for there to be
another flagged ball ρ′ with the exact same context width [c0(ρ), c1(ρ)], because whichever ball was
flagged first, would cause the algorithm to give full priority to that flagged ball, so that it would be
impossible while that ball is still flagged, for any context in [c0(ρ), c1(ρ)] to be assigned to the other
ball to trigger it to be flagged. If ρ′ has smaller width, then ρ′ is given lower priority, and no samples
will be assigned to ρ′ until ρ is subpartitioned and unflagged. If ρ′ has larger width, then ρ′ will be
given higher priority over the entire interval [c0(ρ), c1(ρ)], such that no samples will be assigned to ρ
until ρ′ is subpartitioned and unflagged.

As a result, in each trial t, either ρ has priority on the entire context interval [c0(ρ), c1(ρ)] and
thus receives samples uniformly within that interval, or ρ does not have priority on any subset of
the interval [c0(ρ), c1(ρ)] such that it receives no samples at all, guarantees that the eventual set
of samples collected during the flagged phase must be distributed uniformly on [c0(ρ), c1(ρ)]. As
a result, the probability that each sample collected for ρ falls into any of the 64 subintervals of
[c0(ρ), c1(ρ)] is evenly 1/64. By coupon collector, the expected number of samples until we get one
sample in each bucket is 64

∑64
i=1

1
i . A naive upper bound on the number of samples until we get k

samples in each bucket is 64k
∑64
i=1

1
i ≤ 304k.

As there are |A(ρ)| arms, each of which needs to satisfy SUFFDATA(a) == 1,

E

 T∑
t=τf (ρ)+1

I (ρt = ρ) | τf (ρ) ≤ T

 ≤ 304k|A(ρ)| = 304 · 5431 · σ2|A(ρ)| ln(T |A(ρ)|)
L2∆2(ρ)

(40)
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D Bounding Probability of Bad Events

Proof of Lemma B.1. Recall that by definition,

µt(ρ) =
1

nt(ρ)

t−1∑
s=1

I (ρs = ρ)πs

=
1

nt(ρ)

t−1∑
s=1

I (ρs = ρ) (fas(xs) + εs)

As (xs, as) ∈ ρ if ρs = ρ, it follows that

1

nt(ρ)

t−1∑
s=1

I (ρs = ρ) fas(xs) ∈
[

min
(x,a)∈ρ

fa(x), max
(x,a)∈ρ

fa(x)

]
.

It remains to be shown that with high probability, for all t,

| 1

nt(ρ)

t−1∑
s=1

I (ρs = ρ) εs| ≤
√

6σ2 ln(T )
nt(ρ)

.

Note that we really only need to concern ourselves with values of t after which the ball has been
chosen at least once. Otherwise, before the ball has been chosen yet, there are no terms to sum over,
thus trivially zero is bounded above by the confidence bound.

For some ball ρ, let us denote the sequence
(τ1, τ2, τ3, ...)

where τs corresponds to the s-th trial that ball ρ is chosen by the algorithm, i.e.
τs∑
t=1

I (ρt = ρ) = s and ρτs = ρ.

By Doob’s optional skipping theorem,
(ετ1 , ετ2 , ετ3 , ...)

is identically distributed to
(ε1, ε2, ε3, ...).

Therefore, by Doob’s optional skipping theorem, union bound, and Hoeffding’s inequality,

P(∀ s ∈ [T ], |1
s

s∑
`=1

ετ` | ≤
√

6σ2 ln(T )

s
)

= P(∀ s ∈ [T ], |1
s

s∑
`=1

ε`| ≤
√

6σ2 ln(T )

s
)

≤
∑
s∈[T ]

P(|
s∑
`=1

ε`| ≤
√

6s2σ2 ln(T )

s
)

≤
∑
s∈[T ]

2 exp (−3 ln(T ))

≤ 2T−2

There are at most T active balls over the course of the algorithm, thus by union bound over all active
balls ρ over the course of the algorithm, with probability at least 1− 2T−1, for all active balls ρ, for
all t : nt(ρ) ≥ 1,

µt(ρ) ∈

[
min

(x,a)∈ρ
fa(x)−

√
6σ2 ln(T )
nt(ρ)

, max
(x,a)∈ρ

fa(x) +

√
6σ2 ln(T )
nt(ρ)

]
.
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Proof of Lemma B.2. Lemma D.1 proves that each trial D̂vu(a, y) is evaluated within the subroutine
SUBPARTITION(ρ) over the course of the algorithm,{

|D̂vu(a, y)−Dvu(a, y)| ≤ 1

8
L(v − u)

}
with probability at least 1− 4T−2|A(ρ)|−2.

Within a subroutine SUBPARTITION(ρ), the maximum number of trials that D̂vu(a, y) could be
evaluated is |A(ρ)|−2. There are maximally T trials that subroutine SUBPARTITION can be called.
By union bound, with probability 1− 4T−1, over the entire course of the algorithm, for all trials that
D̂vu(a, y) is evaluated, {

|D̂vu(a, y)−Dvu(a, y)| ≤ 1

8
L(v − u)

}
.

Lemma D.1. Each trial D̂vu(a, y) is evaluated within the subroutine SUBPARTITION over the course
of the algorithm, {

|D̂vu(a, y)−Dvu(a, y)| ≤ 1

8
L(v − u)

}
with probability at least 1− 4T−2|A(ρ)|−2.

Proof. Consider a single call to the subroutine SUBPARTITION for a ball ρ. By construction, the
subroutine is only called when

∏
a∈A(ρ) SUFFDATA(a) == 1, where

SUFFDATA(a) =

64∏
i=1

I

 ∑
s>τf (ρ)

I (ρs = ρ, as = a) I (xs ∈ [wi−1, wi]) ≥ k

 (41)

for wi = c0(ρ) + i∆(ρ)
64 . As a result, by construction, each trial D̂vu(a, y) is evaluated within the

subroutine SUBPARTITION, if we take the interval [u, v] and split it evenly into 32 subintervals, the
algorithm guarantees that for each of the 32 subintervals, for each arm a and y, there are at least k
samples (or observations) collected for ρ during the “flagged phase” such that the context lies within
the subinterval. As our algorithm estimates the reward functions f̂a and f̂y via k nearest neighbor
averaging, this condition guarantees a minimum bias.

Recall that

D̂vu(a, y) :=

√
1

200

∑
i∈[200]

(
f̂a(zi(u, v))− f̂y(zi(u, v))

)2

− 2σ2

k (42)

for

f̂a(x) = 1
k

∑τcl(ρ)
s=τf (ρ)+1 I (ρs = ρ, as = a) I (xs ∈ k-NN)πs, (43)

where xs is a k nearest neighbor datapoint for computing f̂a(x) if

I (xs ∈ k-NN) =
∑τcl(ρ)
`=τf (ρ)+1 I (ρ` = ρ, a` = a) I (|x` − x| ≤ |xs − x|) ≤ k.

Recall that πs = fas(xs) + εs, where εs is an independent noise term distributed as N(0, σ2). Let us
denote

D̄vu(a, y) :=

√
1

200

∑
i∈[200]

(
f̄a(zi(u, v))− f̄y(zi(u, v))

)2

(44)

for

f̄a(x) = 1
k

∑τcl(ρ)
s=τf (ρ)+1 I (ρs = ρ, as = a) I (xs ∈ k-NN) fa(xs). (45)

As a result of the condition
∏
a∈A(ρ) SUFFDATA(a) == 1, for any x, if xs ∈ k-NN, then xs − x ≤

v−u
32 , such that |fa(x)− fa(xs)| ≤ L(v−u)

32 . This implies that |fa(x)− f̄a(x)| ≤ L(v−u)
32
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By triangle inequality and Lipschitzness,

|Dvu(a, y)− D̄vu(a, y)|

≤
√

1
200

∑
i∈[200]

(
(fa(zi(u, v))− fy(zi(u, v)))− (f̄a(zi(u, v))− f̄y(zi(u, v)))

)2

≤
√

1
200

∑
i∈[200]

(
L(v−u)

16

)2

≤ L(v − u)

16
.

By Lemma D.2, with probability at least 1 − 2T−2|A(ρ)|−2, |D̄vu(a, y) − D̂vu(a, y)| ≤ L(v−u)
16 . It

follows that

|Dvu(a, y)− D̂vu(a, y)| ≤ |Dvu(a, y)− D̄vu(a, y)|+ |D̄vu(a, y)− D̂vu(a, y)| ≤ L(v − u)

8
.

Lemma D.2. With probability at least 1− 4T−2|A(ρ)|−2,

|D̂vu(a, y)− D̄vu(a, y)| ≤ L(v − u)

16
.

Proof. Let us denote E(ρ, a, i) = {t ∈ [τf (ρ) + 1, τcl(ρ)] s.t. ρt = ρ, at = a, xt ∈
k-NN of zi(u, v)}. Recall that by definition,

f̂a(zi(u, v)) = f̄a(zi(u, v)) + 1
k

∑
t∈E(ρ,a,i) εt

We split |(D̂vu(a, y))2 − (D̄vu(a, y))2| into two terms,

|(D̂vu(a, y))2 − (D̄vu(a, y))2| (46)

= | 1
200

∑
i∈[200]

(
(f̂a(zi(u, v))− f̂y(zi(u, v)))2 − (f̄a(zi(u, v))− f̄y(zi(u, v)))2

)
− 2σ2

k | (47)

≤ | 2
200

∑
i∈[200](f̄a(zi(u, v))− f̄y(zi(u, v)))

(
1
k

∑
t∈E(ρ,a,i) εt −

1
k

∑
t∈E(ρ,y,i) εt

)
| (48)

+ | 1
200

∑
i∈[200]

(
1
k

∑
t∈E(ρ,a,i) εt −

1
k

∑
t∈E(ρ,y,i) εt

)2

− 2σ2

k | (49)

By Lemmas D.3 and D.4, with probability at least 1− 4T−2|A(ρ)|−2,

|(D̂vu(a, y))2 − (D̄vu(a, y))2| ≤ D̄vu(a, y)

√
4σ2 ln(T |A(ρ)|)

k
+

4σ2 ln(T |A(ρ)|)
k

.

Let us denote Q1 =
√

4σ2 ln(T |A(ρ)|)
k .

We consider two bounds for |D̄vu(a, y)− D̂vu(a, y)|,

|D̂vu(a, y)− D̄vu(a, y)| ≤ D̂vu(a, y) + D̄vu(a, y)

≤
√
|(D̂vu(a, y))2 − (D̄vu(a, y))2|+ (D̄vu(a, y))2 + D̄vu(a, y)

≤
√
Q1(D̄vu(a, y) +Q1) + (D̄vu(a, y))2 + D̄vu(a, y)

and

|D̂vu(a, y)− D̄vu(a, y)| ≤ |(D̂
v
u(a, y))2 − (D̄vu(a, y))2|
D̂vu(a, y) + D̄vu(a, y)

≤ |(D̂
v
u(a, y))2 − (D̄vu(a, y))2|

D̄vu(a, y)

≤ Q1(D̄vu(a, y) +Q1)

D̄vu(a, y)
.
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The first bound is strictly increasing in D̄vu(a, y), whereas the second bound is strictly decreasing in
D̄vu(a, y). Therefore for any Q2,

|D̂vu(a, y)− D̄vu(a, y)| ≤ min

(
D̄vu(a, y) +

√
Q1(D̄vu(a, y) +Q1) + (D̄vu(a, y))2, Q1 +

Q2
1

D̄vu(a, y)

)
≤ max

(
Q2 +

√
Q1Q2 +Q2

1 +Q2
2, Q1 +

Q2
1

Q2

)

Let us choose Q2 = 1+
√

13
6 Q1 so that

|D̂vu(a, y)− D̄vu(a, y)| ≤ 7 +
√

13

1 +
√

13
Q1

≤ 7 +
√

13

1 +
√

13

√
4σ2 ln(T |A(ρ)|)

k

For

k =
5431σ2 ln(T |A(ρ)|)

L2(v − u)2
≥ 162

(
7 +
√

13

1 +
√

13

)2
4σ2 ln(T |A(ρ)|)
L2(v − u)2

,

it follows that

|D̂vu(a, y)− D̄vu(a, y)| ≤ L(v − u)

16
.

Lemma D.3. With probability at least 1− 2T−2|A(ρ)|−2,

(48) ≤ D̄vu(a, y)

√
4σ2 ln(T |A(ρ)|)

k
.

Proof. Note that 2
200

∑
i∈[200](f̄a(zi(u, v))− f̄y(zi(u, v)))

(
1
k

∑
t∈E(ρ,a,i) εt−

1
k

∑
t∈E(ρ,y,i) εt

)
is

simply a mean zero Gaussian random variable, thus we only need to compute the variance and then
we can apply Hoefdding’s Inequality.

Let us denote

Yi = (f̄a(zi(u, v))− f̄y(zi(u, v)))
(

1
k

∑
t∈E(ρ,a,i) εt −

1
k

∑
t∈E(ρ,y,i) εt

)
,

such that the expression of interest to us can be restated as 2
200

∑
i∈[200] Yi. Note that

Var[Yi] = (f̄a(zi(u, v))− f̄y(zi(u, v)))2 2σ2

k

Then

Var[ 2
200

∑
i∈[200] Yi] = 4

2002

∑
i,i′∈[200]2 Cov(Yi, Yi′)

By construction, Cov(Yi, Yi′) is zero if |zi(u, v)− zi′(u, v)| > v−u
16 , as all the k −NN points must

be within distance v−u
32 . Additionally,

Cov(Yi, Y
′
i ) ≤ 1

2
(Var[Yi] + Var[Yi′ ]).
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Then

4

2002

∑
i,i′∈[200]2 Cov(Yi, Y

′
i )

≤ 4

2002

∑
i,i′∈[200]2

1
2 (Var[Yi] + Var[Yi′ ])I

(
|zi(u, v)− zi′(u, v)| ≤ v−u

16

)
≤ 4

2002

∑
i∈[200] Var[Yi]

∑
i′∈[200] I

(
|zi(u, v)− zi′(u, v)| ≤ v−u

16

)
≤ 4

2002

∑
i∈[200] Var[Yi] max(1, 200

8 )

≤ σ2

200k

∑
i∈[200](f̄a(zi(u, v))− f̄y(zi(u, v)))2

=
σ2

k
(D̄vu(a, y))2

From Hoeffding’s inequality,

P [(48) ≥ δ] ≤ 2 exp
{
− δ2k

2σ2(D̄vu(a, y))2

}
(50)

For δ = D̄vu(a, y)
√

4σ2 ln(T |A(ρ)|)
k , with probability at least 1− 2T−2|A(ρ)|−2, (48) < δ.

Lemma D.4. With probability at least 1− 2T−2|A(ρ)|−2,

(49) ≤ 4σ2 ln(T |A(ρ)|)
k

.

Proof. Let us define
Yi = 1

k

∑
t∈E(ρ,a,i) εt −

1
k

∑
t∈E(ρ,y,i) εt,

so that the expression in (49) can be rewritten as | 1
200

∑
i∈[200] Y

2
i − 2σ2

k |. The left and right terms of
Yi are independent as they correspond to samples obtained for different arms, a and y, so E(ρ, a, i) is
completely disjoint from E(ρ, y, i). Therefore Yi ∼ N(0, 2σ2

k ) such that E
[

1
200

∑
i∈[200] Y

2
i

]
= 2σ2

k .

Next, we want to show that 1
200

∑
i∈[200] Y

2
i is sub-exponential, so that we can use Bernstein’s

inequality to bound its concentration around its mean. The vector (Yi)i∈[200] can be written as a
affine transformation QX , where Q is the matrix defined as

Qit = 1
k (I (t ∈ E(ρ, a, i))− I (t ∈ E(ρ, y, i))),

and Xt = εt, such that X ∼ N(0, σ2I). Therefore the vector (Yi)i∈[200] is a multivariate Gaussian
with mean zero and variance σ2QQT .

It holds by the sub-exponential property of sum of Gaussians that conditioned on the latent variables
{βi}i∈[m] and the observation indices E ′,

P
(∣∣∣∣Y TY200

− ‖σ
2QQT ‖∗
200

∣∣∣∣ ≥ δ) ≤
2 exp

(
− 2002δ2

8‖σ2QQT ‖2F

)
if δ ≤ ‖σ2QQT ‖2F

200‖σ2QQT ‖2

2 exp
(
− 200δ

8‖σ2QQT ‖2

)
if δ > ‖σ2QQT ‖2F

200‖σ2QQT ‖2

.

‖ · ‖∗ denotes the nuclear norm, ‖ · ‖F denotes the frobenius norm, and ‖ · ‖2 denotes the spectral
norm. We can verify that indeed

‖σ2QQT ‖∗
200

=
σ2Tr(QQT )|

200
=

2σ2

k
.
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Let us first upper bound |[QQT ]ij |,

|[QQT ]ij | = |
∑
t

QitQjt|

= | 1

k2

∑
t

(I (t ∈ E(ρ, a, i))− I (t ∈ E(ρ, y, i)))(I (t ∈ E(ρ, a, j))− I (t ∈ E(ρ, y, j)))|

≤ I
(
|zi(u, v)− zj(u, v)| ≤ v − u

16

)
2

k
.

We use this to upper bound ‖σ2QQT ‖2F ,

‖σ2QQT ‖2F =
∑
i∈200

∑
j∈200

([σ2QQT ]ij)
2

≤ σ4
∑
i∈200

∑
j∈200

I
(
|zi(u, v)− zj(u, v)| ≤ v − u

16

)
4

k2

≤ 4σ4

k2

∑
i∈200

200

8

=
2002σ4

2k2

By symmetry, ‖σ2QQT ‖1 = ‖σ2QQT ‖∞. By Holder’s inequality,

‖σ2QQT ‖2 ≤
√
‖σ2QQT ‖1‖σ2QQT ‖∞ (51)

= max
j∈[200]

∑
i∈[200]

|[σ2QQT ]ij | (52)

≤ 2σ2

k
max
j∈[200]

∑
i∈[200]

I
(
|zi(u, v)− zj(u, v)| ≤ v − u

16

)
(53)

≤ 2σ2

k
max
j∈[200]

200

8
(54)

≤ 200σ2

4k
(55)

By plugging these bounds in, we obtain that

P
(∣∣∣∣Y TY200

− 2σ2

k

∣∣∣∣ ≥ δ) ≤
{

2 exp
(
− δ

2k2

4σ4

)
if δ ≤ 2σ2

k

2 exp
(
− δk

2σ2

)
if δ > 2σ2

k

.

Let us choose δ = 4σ2 ln(T |A(ρ)|)
k , such that δ > 2σ2

k . Therefore, with probability greater than

1− 2T−2|A(ρ)|−2, (49) ≤ 4σ2 ln(T |A(ρ)|)
k .

E Final Regret Calculation

Proof of Theorem 6.1. When we sum over ρ ∈ P , we mean to refer to all balls over trial that are ever
active, i.e. a member of P at any point of the algorithm within the time horizon T .

By using a similar argument to Lemma B.6, the regret from initial clustering is bounded above by

304 · 5431 · σ2K ln(TK)

L2
= O

(
σ2K ln(TK)

L2

)
,
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where we used the property that regret is bounded above by 1 in every trial step because the expected
reward function f outputs values in [0, 1].

Next we bound the expected regret after the initial clustering conditioned on the good events G. We
split the regret into two terms,

E [regret after initial clustering | G] (56)

= E

 T∑
t=1

∑
ρ∈P

I (ρt = ρ) (f∗(xt)− fat(xt))

∣∣∣∣∣∣ G
 (57)

= E

 T∑
t=1

imax−1∑
i=1

∑
ρ∈P

I
(
ρt = ρ,∆(ρ) = 2−i

)
(f∗(xt)− fat(xt))

∣∣∣∣∣∣ G
 (58)

+ E

 T∑
t=1

∞∑
i=imax

∑
ρ∈P

I
(
ρt = ρ,∆(ρ) = 2−i

)
(f∗(xt)− fat(xt))

∣∣∣∣∣∣ G
 (59)

By Lemma B.5, (59) is bounded above by

E

20L2−imax

T∑
t=1

∞∑
i=imax

∑
ρ∈P

I
(
ρt = ρ,∆(ρ) = 2−i

) ∣∣∣∣∣∣ G
 ≤ 20L2−imaxT

Due to the fact that our algorithm always halved the context width, any ball ρ with ∆(ρ) = 2−i must
have context width wi(`) = [(`− 1)2−i, `2−i] for some ` ∈ [2i]. As a result, (58) equals

E

 imax−1∑
i=1

2i∑
`=1

∑
ρ∈P

I ([c0(ρ), c1(ρ)] = wi(`))

T∑
t=1

I (ρt = ρ) (f∗(xt)− fat(xt))

∣∣∣∣∣∣ G


By Lemma B.5, conditioned on the good events G, for any ρ ∈ P such that ∆(ρ) ≤ 1
4 ,

max
(x,a)∈ρ

(f∗(x)− fa(x)) ≤ 20L∆(ρ).

This implies that for a context width c0(ρ), c1(ρ), we can eliminate all arms a ∈ [K] that are
“extremely suboptimal”, satisfying

min
x∈[c0(ρ),c1(ρ)]

(f∗(x)− fa(x)) > 20L∆(ρ).

Let κ(x) denote the suboptimality gap at context x, i.e. the difference between the optimal set of
arms and the next optimal set of arms,

κ(x) = f∗(x)− sup
a∈[K]

fa(x)I (fa(x) 6= f∗(x)) .

If κ(x) > 20L2−i for all x ∈ wi(`), Lemma B.5 implies that conditioned on the good event G, the
regret incurred by any ball ρ for which [c0(ρ), c1(ρ)] ⊆ wi(`) must be zero, as it must contain only
optimal arms.

Thus we can reduce (58) to

imax−1∑
i=1

2i∑
`=1

I
(

min
x∈wi(`)

κ(x) ≤ 20L2−i
)
E

∑
ρ∈P

I ([c0(ρ), c1(ρ)] = wi(`))

T∑
t=1

I (ρt = ρ) (f∗(xt)− fat(xt))

∣∣∣∣∣∣ G
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By Lemmas B.5, B.4, and B.6, and using a trivial upper bound that |A(ρ)| ≤ K,

E

∑
ρ∈P

I ([c0(ρ), c1(ρ)] = wi(`))

τf (ρ)∑
t=1

I (ρt = ρ) (f∗(xt)− fat(xt)) +

T∑
t=τf (ρ)+1

I (ρt = ρ) (f∗(xt)− fat(xt))

 ∣∣∣∣∣∣ G


≤ E

∑
ρ∈P

I ([c0(ρ), c1(ρ)] = wi(`))
(

20L∆(ρ)
(

6σ2 ln(T )
L2∆2(ρ) + 2

)
+ 10L∆(ρ)

(
304·5431·σ2|A(ρ)| ln(T |A(ρ)|)

L2∆2(ρ)

)) ∣∣∣∣∣∣ G


= O

σ2 ln(TK)

L2−i
E

∑
ρ∈P

I ([c0(ρ), c1(ρ)] = wi(`)) |A(ρ)|

∣∣∣∣∣∣ G


The algorithm guaranatees that the active balls always form a partition of the context-arm space, and
the balls are strictly nested in a hierarchy; as a result, the arms in different balls ρ ∈ P constrained to
the same context width must be disjoint.

By Lipschitzness,

min
x∈wi(`)

(f∗(x)− fa(x)) ≤ 20L2−i =⇒ max
x∈wi(`)

(f∗(x)− fa(x)) ≤ 22L2−i,

such that

I
(

min
x∈wi(`)

(f∗(x)− fa(x)) ≤ 20L2−i
)
≤ I

(
(f∗(2−i`)− fa(2−i`)) ≤ 22L2−i

)
.

For i ≥ 2, by Lemma B.5, conditioned on the good events G,

E

∑
ρ∈P

I ([c0(ρ), c1(ρ)] = wi(`)) |A(ρ)|

∣∣∣∣∣∣ G
 ≤ ∑

a∈[K]

I
(

min
x∈wi(`)

(f∗(x)− fa(x)) ≤ 20L2−i
)

≤
∑
a∈[K]

I
(
(f∗(2−i`)− fa(2−i`)) ≤ 22L2−i

)
.

which upper bounds the number of arms that are ever subpartitioned into a ball of context width
wi(`).

Let us denote

Mi =

2i∑
`=1

I
(

min
x∈wi(`)

κ(x) ≤ 20L2−i
) ∑
a∈[K]

I
(
(f∗(2−i`)− fa(2−i`)) ≤ 22L2−i

)
.

The scaling of this quantity depends on the local geometry amongst the arms with respect to the
expected reward functions.

To get the final regret bound, we use Lemmas B.1 and B.1 to bound the probability that the good
event G is violated,

E [R(T )] (60)
≤ E [regret from initial clustering] + TP(¬G) + E [regret after initial clustering | G] (61)

≤ O
(
σ2K ln(TK)

L2

)
+ T

(
2T−1 + 4T−1

)
+ 20LT2−imax (62)

+O

(
imax−1∑
i=1

σ2Mi ln(TK)

L2−i

)
(63)

= O

(
σ2K ln(TK)

L2
+ min
imax∈Z+

(
LT2−imax +

imax−1∑
i=1

σ2Mi ln(TK)

L2−i

))
(64)
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Finite Types Suppose that the reward functions for the K arms, {fa}a∈[K] only takes M different
values. Essentially, this implies that there are Θ different types of arms, but we don’t know the arm
types a priori. Within each type, the reward function is exactly the same. Let us denote the type of
arm a with θa ∈ [Θ], and we define function g : [0, 1]× [Θ]→ [0, 1] such that fa(x) = g(x, θ). Let
us define

µκ(z) := µ({x ∈ [0, 1] s.t. κ(x) ≤ z})
where µ is the Lebesgue measure.

Naively,
∑
a∈[K] I

(
(f∗(2−i`)− fa(2−i`)) ≤ 22L2−i

)
≤ K. Furthermore, it will minimally be

equal to the number of arms of the optimal type. If there are roughly proportional number of arms in
each type, then this expression is also lower bounded by order K, thus it is sufficient to upper bound
the expression by K. Then Mi can be upper bounded by

Mi = K

2i∑
`=1

I
(

min
x∈wi(`)

κ(x) ≤ 20L2−i
)
≤ Kµκ(22L2−i)

2−i
,

which follows from the fact that κ(x) must be a 2L-Lipschitz function.

Let us denote the type of arm a with θa ∈ [Θ], and we define function g : [0, 1]× [Θ]→ [0, 1] such
that fa(x) = g(x, θ). Let θ∗(x) denote the set of arm types that are optimal at context x,

θ∗(x) = {θ ∈ [Θ] s.t. g(x, θ) = f∗(x)}

In the finite types setting, the optimal policy corresponds to partitioning the context space [0, 1] into a
set of intervals, S∗, such that across each interval ∫ ∈ S∗, the optimal policy does not change, i.e.
θ∗(x) = θ∗(x′) for all (x, x′) ∈ ∫ × ∫ . Note that at each endpoint of ∫ , it must be that κ(x) = 0,
as the fact that the policy changes and the reward functions are Lipschitz will imply that either an
optimal arm becomes suboptimal, or a suboptimal arm becomes optimal, but the change must happen
“smoothly” due to Lipschitzness. This also implies that for some γ arbitrarily close to 0, if x is an
endpoint of any interval, either κ(x+ γ) > 0 or κ(x− γ) > 0.

Let us assume that κ(x) decreases linearly fast nearby the points where the optimal policy changes,
so that for some constant L′,

µκ(22L2−i) ≤ 22L2−i

L′
× |S∗|.

Then it follows by plugging into the main theorem that the regret is upper bounded by

E [R(T )] = O

(
σ2K ln(TK)

L2
+ min
imax∈Z+

(
LT2−imax +

imax−1∑
i=1

22σ2|S∗|K ln(TK)

L′2−i

))
.

(65)
By choosing

imax =
1

2
log

(
L′LT

22σ2|S∗|K ln(TK)

)
,

it follows that

E [R(T )] ≤ O

(
σ2K ln(TK)

L2
+

√
σ2|S∗|LTK ln(TK)

L′

)
(66)

Lipschitz arm geometry Suppose that each arm a is associated to a latent variable θa ∈ [0, 1], and
the expected reward function fa(x) = g(x, θa), where g : [0, 1] × [0, 1] → [0, 1] is a L-Lipschitz
function with respect to both the contexts and the arm latent variables,

g(x, θ)− g(x′, θ′) ≤ L(|x− x′|+ |θ − θ′|).

If we assume that the arm latent variables are uniformly spread out, {θa} = { iK }i∈[K], then

Mi =

2i∑
`=1

I
(

min
x∈wi(`)

κ(x) ≤ 20L2−i
) ∑
a∈[K]

I
(
(f∗(2−i`)− g(2−i`, θa)) ≤ 22L2−i

)
(67)

≤
∑
j∈[K]

2i∑
`=1

I
(

(f∗(2−i`)− g(2−i`,
j

K
)) ≤ 22L2−i

)
, (68)
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which is a discrete approximation to the area of the arm-context space for which the suboptimality gap
is at most 22L2−i. We can visualize

∑2i

`=1Mi(`) by considering the contour plot of f∗(x)− g(x, θ),
and counting how many grid points {(2−i`, jK )}`∈[2i],j∈[K] are lower than 22L2−i. For large i
and K, this is approximately equal to 2iKµ({(x, θ) : g(x, θ) − f∗(x) ≥ −22L2−i}), where µ
is the Lebesgue measure. The curve at the lowest level of the contour plot corresponds to the set
{(x, θ) s.t. g(x, θ)− f∗(x) = 0}, which contains for each context x the set of arm latent variables
θ that optimize the expected reward function. The final regret bound thus depends on the local
measure/smoothness of the joint reward function.

To give a concrete example, we compute a bound for the reward function used in the simulation,
where g(x, θ) = 1− L|x− θ| for some L ∈ (0, 1).

Mi ≤
2i∑
`=1

∑
a∈[K]

I
(
(f∗(2−i`)− fa(2−i`)) ≤ 22L2−i

)

=

2i∑
`=1

∑
j∈[K]

I
(

(f∗(2−i`)− g(2−i`,
j

K
)) ≤ 22L2−i

)

≤
2i∑
`=1

∑
j∈[K]

I
(
L|2−i`− j

K
| ≤ 22L2−i

)

≤
2i∑
`=1

∑
j∈[K]

I
(
j ∈ [K(2−i`− 22 · 2−i),K(2−i`+ 22 · 2−i)]

)

≤
2i∑
`=1

44 · 2−iK

≤ 44K

By plugging this into the main theorem, it follows that

E [R(T )] = O

(
σ2K ln(TK)

L2
+ min
imax∈Z+

(
LT2−imax +

imax−1∑
i=1

σ2K ln(TK)

L2−i

))
. (69)

Choosing

imax =
1

2
log

(
20L2T

σ2K ln(TK)

)
,

results in

E [R(T )] ≤ O
(
σ2K ln(TK)

L2
+
√
σ2KT ln(TK)

)
. (70)

F Additional Simulation Results and Discussion

We test our algorithm on a model with 50, 100, 200 arms and a context space of [0, 1]. Each arm a
corresponds to a parameter θa uniformly spaced out within [0, 1]. The expected reward for arm a and
context x is

fa(x) := g(x, θa) = 1−
∣∣x− 4 minz∈{0,0.5,1} |θa − z|

∣∣.
This function is periodic with respect to θ, and can be depicted as a zigzag. Our distance
estimate D̂vu(a, a′) approximates Dvu(a, a′), which is defined with respect fa and fa′ directly
and does not depend on θa. Consider a measure preserving transformation that maps θa to
φa = 4 minz∈{0,0.5,1} |θa − z|, such that the reward function is equivalently described by
fa(x) = 1 − |x − φa|. An algorithm which partitions with respect to Dvu(a, a′) would be ag-
nostic to such a transformation, as opposed to an algorithm which depends on a metric defined with
respect to the arm’s representation, which would perform worse on θa than φa.
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In a sequence of T trials we uniformly randomly sample from the context space and reveal it to the
algorithm. The algorithm selects what it considers to be the best arm in each trial based on the context
revealed. Then simulation reveals a noisy payoff (i.e., fa(x) + σ) to the algorithm. The task in the
simulation setup1 is for our algorithm to learn the optimal arm for different contexts.

We benchmark the performance of our Approx-Zooming algorithm against three variations:

• Approx-Zooming -With-True-Reward-Function: We give the Approx-Zooming algorithm oracle
access to evaluate Dvu(a, a′) at no cost, which is used to subpartition whenever a ball is flagged.

• Approx-Zooming -With-Similarity-Metric: We give the Approx-Zooming algorithm oracle access
to evaluate |θa − θa′ | at no cost, which is used to subpartition whenever a ball is flagged.

• Approx-Zooming -With-No-Arm-Similarity: This naive variant uses no arm similarities, estimating
each arm’s reward independently. The context space is adaptively partitioned via our algorithm.

The possible combinations of the parameters we have chosen are as follows. For all algorithms
we have evaluated for [50, 100, 200] arms over [10, 000, 50, 000, 100, 000] trials for σ values [1e−
1, 1e− 2, 1e− 3]. We chose the model parameters that led to the highest average cumulative reward
in each baseline algorithm based on a selected set of parameter permutations. There were no hyper
parameters to be considered for Approx-Zooming-No-Arm-Similarity. As per the implementation of
the algorithms Approx-Zooming-Similarity-Metric and Approx-Zooming-True we had to specify a
starting bias (from 0.25, 0.5, 1), starting distance threshold (from 0.25, 0.5, 1, 10) within a partition
and the context discretization mapping (from 5, 6, 7). In addition to the above parameters as per the
implementation of Approx-Zooming algorithm we had to specify the number of neighbours. The
final k nearest neighbours for the Approx-Zooming algorithm was a function of a minimum value
we specified (from 3, 4, 5), a global sampling constant (from 1, 2, 3), the number of neighbours we
specified explicitly (from 5, 10, 15) and the context width. We evaluated the algorithms for some
of these permutations and selected the best hyper-parameter configuration 2. For all algorithms the
flagging rule is set to nt(ρ) ≥ 4 ln(T )/∆2, and for results reported in this paper σ is set to either
1e− 3 or 1e− 2. For Approx-Zooming , k was set to 10. We set the number of trials T to 100, 000
as all the algorithms had converged to their optimal point by then. We present results for the three
simulation settings:(1) 50 arms with noise σ = 1e− 3, (2) 100 arms with σ = 1e− 3 and (3) 200
arms with σ = 1e− 2.

In figure 3, we plot the average cumulative reward over the trials, i.e. 1
T

∑T
t=1 πt, where T is the total

number of trials and πt ∈ (0, 1) is the reward observed in the tth trial for different simulation settings.
As we can see, the oracle variant of the algorithm that uses the true reward function to calculate
Dvu(a, a′) performs the best on all three plots. Our Approx-Zooming algorithm has a heavy cost up
front due to the clustering of the arms globally, but the algorithm improves over the time horizon as
it learns the correct arm similarities. The oracle variant which uses the similarity metric |θa − θa′ |
performs worse than the true Dvu(a, a′) variant, as it does not account for the periodic nature of the
function.

In figure 4, figure 5 and figure 6 we plot the frequencies an arm is selected in different contexts
over the T trials in our three simulation settings. Each of the four plots correspond to averaging the
frequency over T/4 trials across the time horizon. The x-axis refers to the context space, and the
y-axis refers to the set of arms. As we see, the algorithms do generally learn to play the optimal policy,
which corresponds to the zigzag shape. We can verify that in our algorithm initially the frequency
plot is very blurry, indicating that it is spreading out the samples over time. As time progresses our
algorithm indeed learns the similarities, which is depicted by the shape sharpening. The Approx-
Zooming-True algorithm is given the true distance function, and we can see that indeed it is the
sharpest curve. Approx-Zooming-Similarity-Metric, which is using the metric representation narrows
in slower than the algorithm given true distance function. Approx-Zooming-No-Arm-Similarity
which learns each arm separately initially finds a small set of arms that plays across the context and
as a result takes more time to converge to the optimal policy.

The algorithm which learns each arm separately takes more time to converge to the optimal policy
compared to all the other methods. Therefore, we can conclude that given a large arm set it is

1The code to the algorithms and simulation is avialble at https://bitbucket.org/nirandiw/context_
similarity/src/master/

2The hyper parameter tuning results are available at https://drive.google.com/open?id=1vb-RK8E_
flPZ7haN_M83Y63Fes87j6fs
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(a) Simulation setup : 50 arms and σ = 1e− 3
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(b) Simulation setup : 100 arms and σ = 1e− 3
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(c) Simulation setup : 200 arms and σ = 1e− 2

Figure 3: Avg. cumulative reward vs. number of trials

important to use similarities amongst arms to find the optimal arm. Furthermore, we observed the
algorithm using the metric representation narrows in slower than the algorithm given true distance
function. Therefore, we argue if a metric space is used to find similarities in the arm spaces it needs
to be carefully chosen to represent the reward distribution, which is not a trivial task. In contrast, our
approach relies on samples from the reward distribution and learns the latent structure avoiding the
difficulty of choosing a suitable metric. However, our approach needs to carefully tune the parameter
k to avoid unnecessary sampling for similarity estimation. We anticipate that the benefits of learning
the metric only dominates in regimes where the number of arms is large and the time horizon is
sufficiently long. Below we include similar plots for other parameters of the problem, in particular
we analysed how Approx-Zooming performs compared to other benchmark algorithms when we have
smaller number of arms but smaller number of trials with higher values for σ.

In table 1 we plot the final cumulative reward for each of the benchmark algorithms after 10000,
50000, 100000 trials. We have measured the cumulative reward for 50, 100, 200 arms and where σ
was set to either 1e− 1, 1e− 2, or 1e− 3. The hyper parameter values used in each of the benchmark
algorithms for this experiment are as follows. For Approx-Zooming algorithm the starting bias was
set to 0.25 and the starting distance threshold was set to 0.5. The number of neighbours were set
to 10. For the Approx-Zooming-Similarity-Metric algorithm the starting bias was set to 0.25 and
the starting distance threshold was set to 10. For the Approx-Zooming-True algorithm the starting
bias was set to 0.25 and the starting distance threshold was set to 0.07. As can be seen in table 1
for 50 arms or 100 arms we see a lower cumulative reward for Approx-Zooming compared to other
benchmark algorithms when σ = 1e− 1 or 1e− 2 and the total number of trials is 10, 000, which
suggests that the cost due to the added extra exploration may exceed the gain from learning the
metric when σ is large or the total number of trials is small. This observation is aligned with the
click through rates we report in figure 3 and illustrates that the benefits of learning the metric only
dominates in regimes where the number of arms is large and the time horizon is sufficiently long.
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(c) Approx-Zooming-Similarity-Metric
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(d) Approx-Zooming-No-Arm-Similarity

Figure 4: Arm Frequency Plots For 50 Arms
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(d) Approx-Zooming-No-Arm-Similarity

Figure 5: Arm Frequency Plots For 100 Arms
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Figure 6: Arm Frequency Plots For 200 Arms
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Number
of arms

Total number
of trials

σ Approx-Zooming Approx-Zooming-
True

Approx-Zooming-
Similarity-Metric

Approx-Zooming-No-
Arm-Similarity

50
10000 0.1

0.789319 0.865815 0.828892 0.811413
100 0.794965 0.836930 0.810921 0.776608
200 0.663524 0.838799 0.788084 0.757901

50
50000 0.1

0.905667 0.911928 0.900178 0.861530
100 0.895329 0.897861 0.882766 0.838076
200 0.850035 0.905815 0.848488 0.815208

50
100000 0.1

0.926956 0.931452 0.914195 0.889772
100 0.917762 0.911701 0.906180 0.859232
200 0.909856 0.918141 0.881553 0.836007

50
10000 0.01

0.816736 0.862454 0.828892 0.811956
100 0.762866 0.833096 0.810921 0.777493
200 0.735657 0.838271 0.788084 0.760152

50
50000 0.01

0.893435 0.911078 0.903131 0.861970
100 0.883395 0.897688 0.882611 0.837934
200 0.840253 0.908507 0.850934 0.814603

50
100000 0.01

0.926705 0.931727 0.913347 0.891015
100 0.912631 0.911363 0.906772 0.858644
200 0.907565 0.918062 0.881263 0.836181

50
10000 0.001

0.843526 0.863722 0.837772 0.811940
100 0.767987 0.833951 0.812152 0.776157
200 0.703802 0.837280 0.787980 0.760589

50
50000 0.001

0.892600 0.910488 0.902087 0.864150
100 0.884865 0.897461 0.882370 0.837778
200 0.866195 0.908066 0.850165 0.814999

50
100000 0.001

0.927094 0.931463 0.913255 0.891716
100 0.908725 0.911319 0.905410 0.859420
200 0.910485 0.916554 0.881567 0.836579

Table 1: The Cumulative Reward For Different Number Of Arms = [50, 100, 200], Trials
= [10K, 50K, 100K] and σ = [1e− 1, 1e− 2, 1e− 3]
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