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Abstract

We study the sample complexity of approximate policy iteration (PI) for the
Linear Quadratic Regulator (LQR), building on a recent line of work using LQR
as a testbed to understand the limits of reinforcement learning (RL) algorithms
on continuous control tasks. Our analysis quantifies the tension between policy
improvement and policy evaluation, and suggests that policy evaluation is the
dominant factor in terms of sample complexity. Specifically, we show that to obtain
a controller that is within ε of the optimal LQR controller, each step of policy
evaluation requires at most (n + d)3/ε2 samples, where n is the dimension of
the state vector and d is the dimension of the input vector. On the other hand,
only log(1/ε) policy improvement steps suffice, resulting in an overall sample
complexity of (n + d)3ε−2 log(1/ε). We furthermore build on our analysis and
construct a simple adaptive procedure based on ε-greedy exploration which relies
on approximate PI as a sub-routine and obtains T 2/3 regret, improving upon a
recent result of Abbasi-Yadkori et al. [3].

1 Introduction

With the recent successes of reinforcement learning (RL) on continuous control tasks, there has been
a renewed interest in understanding the sample complexity of RL methods. A recent line of work
has focused on the Linear Quadratic Regulator (LQR) as a testbed to understand the behavior and
trade-offs of various RL algorithms in the continuous state and action space setting. These results
can be broadly grouped into two categories: (1) the study of model-based methods which use data to
build an estimate of the transition dynamics, and (2) model-free methods which directly estimate the
optimal feedback controller from data without building a dynamics model as an intermediate step.
Much of the recent progress in LQR has focused on the model-based side, with an analysis of robust
control from Dean et al. [12] and certainty equivalence control by Fiechter [17] and Mania et al.
[26]. These techniques have also been extended to the online, adaptive setting [1, 4, 11, 13, 31]. On
the other hand, for classic model-free RL algorithms such as Q-learning, SARSA, and approximate
policy iteration (PI), our understanding is much less complete within the context ofd LQR. This is
despite the fact that these algorithms are well understood in the tabular (finite state and action space)
setting. Indeed, most of the model-free analysis for LQR [16, 24, 35] has focused exclusively on
derivative-free random search methods.

In this paper, we extend our understanding of model-free algorithms for LQR by studying the
performance of approximate PI on LQR, which is a classic approximate dynamic programming
algorithm. Approximate PI is a model-free algorithm which iteratively uses trajectory data to estimate
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the state-value function associated to the current policy (via e.g. temporal difference learning), and
then uses this estimate to greedily improve the policy. A key issue in analyzing approximate PI is
to understand the trade-off between the number of policy improvement iterations, and the amount
of data to collect for each policy evaluation phase. Our analysis quantifies this trade-off, showing
that if least-squares temporal difference learning (LSTD-Q) [9, 20] is used for policy evaluation,
then a trajectory of length Õ((n+ d)3/ε2) for each inner step of policy evaluation combined with
O(log(1/ε)) outer steps of policy improvement suffices to learn a controller that has ε-error from
the optimal controller. This yields an overall sample complexity of O((n+ d)3ε−2 log(1/ε)). Prior
to our work, the only known guarantee for approximate PI on LQR was the asymptotic consistency
result of Bradtke [10] in the setting of no process noise.

We also extend our analysis of approximate PI to the online, adaptive LQR setting popularized by
Abbasi-Yadkori and Szepesvári [1]. By using a greedy exploration scheme similar to Dean et al. [13]
and Mania et al. [26], we prove a Õ(T 2/3) regret bound for a simple adaptive policy improvement
algorithm. While the T 2/3 rate is sub-optimal compared to the T 1/2 regret from model-based methods
[1, 11, 26], our analysis improves the Õ(T 2/3+ε) regret (for T ≥ C1/ε) from the model-free Follow
the Leader (FTL) algorithm of Abbasi-Yadkori et al. [3]. To the best of our knowledge, we give the
best regret guarantee known for a model-free algorithm. We leave open the question of whether or
not a model-free algorithm can achieve optimal T 1/2 regret.

2 Main Results

In this paper, we consider the following linear dynamical system:

xt+1 = Axt +But + wt , wt ∼ N (0, σ2
wI) , x0 ∼ N (0,Σ0) . (2.1)

We let n denote the dimension of the state xt and d denote the dimension of the input ut. For
simplicity we assume that d ≤ n, e.g. the system is under-actuated. We fix two positive definite cost
matrices (S,R), and consider the infinite horizon average-cost Linear Quadratic Regulator (LQR):

J? := min
{ut(·)}

lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
subject to (2.1) . (2.2)

We assume the dynamics matrices (A,B) are unknown to us, and our method of interaction with
(2.1) is to choose an input sequence {ut} and observe the resulting states {xt}.
We study the solution to (2.2) using least-squares policy iteration (LSPI), a well-known approximate
dynamic programming method in RL introduced by Lagoudakis and Parr [20]. The study of approxi-
mate PI on LQR dates back to the Ph.D. thesis of Bradtke [10], where he showed that for noiseless
LQR (when wt = 0 for all t), the approximate PI algorithm is asymptotically consistent. In this paper
we expand on this result and quantify non-asymptotic rates for approximate PI on LQR. Proofs of all
results can be found in the extended version of this paper [19].

Notation. For a positive scalar x > 0, we let x+ = max{1, x}. A square matrix L is called stable
if ρ(L) < 1 where ρ(·) denotes the spectral radius of L. For a symmetric matrix M ∈ Rn×n, we
let dlyap(L,M) denote the unique solution to the discrete Lyapunov equation P = LTPL + M .
We also let svec(M) ∈ Rn(n+1)/2 denote the vectorized version of the upper triangular part of
M so that ‖M‖2F = 〈svec(M), svec(M)〉. Finally, smat(·) denotes the inverse of svec(·), so that
smat(svec(M)) = M .

2.1 Least-Squares Temporal Difference Learning (LSTD-Q)

The first component towards an understanding of approximate PI is to understand least-squares
temporal difference learning (LSTD-Q) for Q-functions, which is the fundamental building block of
LSPI. Given a deterministic policy Keval which stabilizes (A,B), the goal of LSTD-Q is to estimate
the parameters of the Q-function associated to Keval. Bellman’s equation for infinite-horizon average
cost MDPs (c.f. Bertsekas [6]) states that the (relative) Q-function associated to a policy π satisfies
the following fixed-point equation:

λ+Q(x, u) = c(x, u) + Ex′∼p(·|x,u)[Q(x′, π(x′))] . (2.3)
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Here, λ ∈ R is a free parameter chosen so that the fixed-point equation holds. LSTD-Q operates
under the linear architecture assumption, which states that the Q-function can be described as
Q(x, u) = qTφ(x, u), for a known (possibly non-linear) feature map φ(x, u). It is well known that
LQR satisfies the linear architecture assumption, since we have:

Q(x, u) = svec(Q)Tsvec

([
x
u

] [
x
u

]T)
, Q =

[
S 0
0 R

]
+

[
AT

BT

]
V [A B] ,

V = dlyap(A+BKeval, S +KT
evalRKeval) , λ =

〈
Q, σ2

w

[
I

Keval

] [
I

Keval

]T〉
.

Here, we slightly abuse notation and let Q denote the Q-function and also the matrix parameterizing
the Q-function. Now suppose that a trajectory {(xt, ut, xt+1)}Tt=1 is collected. Note that LSTD-Q is
an off-policy method (unlike the closely related LSTD estimator for value functions), and therefore the
inputs ut can come from any sequence that provides sufficient excitation for learning. In particular, it
does not have to come from the policy Keval. In this paper, we will consider inputs of the form:

ut = Kplayxt + ηt , ηt ∼ N (0, σ2
ηI) , (2.4)

where Kplay is a stabilizing controller for (A,B). Once again we emphasize that Kplay 6= Keval in
general. Furthermore, the policy under Keval is stochastic while the policy under Kplay is stochastic,
where the injected noise ηt is needed in order to provide sufficient excitation for learning. In order to
describe the LSTD-Q estimator, we define the following quantities which play a key role throughout
the paper:

φt := φ(xt, ut) , ψt := φ(xt,Kevalxt) ,

f := svec

(
σ2
w

[
I

Keval

] [
I

Keval

]T)
, ct := xTt Sxt + uTt Rut .

The LSTD-Q estimator estimates q via:

q̂ :=

(
T∑
t=1

φt(φt − ψt+1 + f)T

)† T∑
t=1

φtct . (2.5)

Here, (·)† denotes the Moore-Penrose pseudo-inverse. Our first result establishes a non-asymptotic
bound on the quality of the estimator q̂, measured in terms of ‖q̂ − q‖. Before we state our result, we
introduce a key definition that we will use extensively.
Definition 1. Let L be a square matrix. Let τ ≥ 1 and ρ ∈ (0, 1). We say that L is (τ, ρ)-stable if

‖Lk‖ ≤ τρk , k = 0, 1, 2, ... .

While stability of a matrix is an asymptotic notion, Definition 1 quantifies the degree of stability
by characterizing the transient response of the powers of a matrix by the parameter τ . It is closely
related to the notion of strong stability from Cohen et al. [11].

With Definition 1 in place, we state our first result for LSTD-Q.
Theorem 2.1. Fix a δ ∈ (0, 1). Let policies Kplay and Keval stabilize (A,B), and assume that both
A + BKplay and A + BKeval are (τ, ρ)-stable. Let the initial state x0 ∼ N (0,Σ0) and consider
the inputs ut = Kplayxt + ηt with ηt ∼ N (0, σ2

ηI). For simplicity, assume that ση ≤ σw. Let P∞
denote the steady-state covariance of the trajectory {xt}:

P∞ = dlyap((A+BKplay)T, σ2
wI + σ2

ηBB
T) . (2.6)

Define the proxy variance σ2 by:

σ2 := τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2
η‖B‖2 . (2.7)

Suppose that T satisfies:

T ≥ Õ(1) max

{
(n+ d)2,

τ4

ρ4(1− ρ2)2

(n+ d)4

σ4
η

σ2
wσ

2‖Kplay‖4+‖Keval‖8+(‖A‖4 + ‖B‖4)+

}
.

(2.8)
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Then we have with probability at least 1− δ,

‖q̂ − q‖ ≤ Õ(1)
τ2

ρ2(1− ρ2)

(n+ d)

σ2
η

√
T
σwσ‖Kplay‖2+‖Keval‖4+(‖A‖2 + ‖B‖2)+‖QKeval‖F . (2.9)

Here the Õ(1) hides polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) factors.

Theorem 2.1 states that:

T ≤ Õ
(

(n+ d)4,
1

σ4
η

(n+ d)3

ε2

)
timesteps are sufficient to achieve error ‖q̂ − q‖ ≤ ε w.h.p. Several remarks are in order. First, while
the (n + d)4 burn-in is likely sub-optimal, the (n + d)3/ε2 dependence is sharp as shown by the
asymptotic results of Tu and Recht [35]. Second, the 1/σ4

η dependence on the injected excitation
noise will be important when we study the online, adaptive setting in Section 2.3. We leave improving
the polynomial dependence of the burn-in period to future work.

The proof of Theorem 2.1 rests on top of several recent advances. First, we build off the work of
Abbasi-Yadkori et al. [3] to derive a new basic inequality for LSTD-Q which serves as a starting
point for the analysis. Next, we combine the small-ball techniques of Simchowitz et al. [33] with
the self-normalized martingale inequalities of Abbasi-Yadkori et al. [2]. While an analysis of LSTD-
Q is presented in Abbasi-Yadkori et al. [3] (which builds on the analysis for LSTD from Tu and
Recht [34]), a direct application of their result yields a 1/σ8

η dependence; the use of self-normalized
inequalities is necessary in order to reduce this dependence to 1/σ4

η .

2.2 Least-Squares Policy Iteration (LSPI)

With Theorem 2.1 in place, we are ready to present the main results for LSPI. We describe two
versions of LSPI in Algorithm 1 and Algorithm 2.

Algorithm 1 LSPIv1 for LQR

Input: K0: initial stabilizing controller,
N : number of policy iterations,
T : length of rollout,
σ2
η: exploration variance,
µ: lower eigenvalue bound.

1: Collect D = {(xk, uk, xk+1)}Tk=1 with in-
put uk = K0xk + ηk, ηk ∼ N (0, σ2

ηI).
2: for t = 0, ..., N − 1 do
3: Q̂t = Projµ(LSTDQ(D,Kt)).
4: Kt+1 = G(Q̂t). [See (2.10).]
5: end for
6: return KN .

Algorithm 2 LSPIv2 for LQR

Input: K0: initial stabilizing controller,
N : number of policy iterations,
T : length of rollout,
σ2
η: exploration variance,
µ: lower eigenvalue bound.

1: for t = 0, ..., N − 1 do
2: Collect Dt = {(x(t)

k , u
(t)
k , x

(t)
k+1)}Tk=1,

u
(t)
k = K0x

(t)
k + η

(t)
k ,η(t)

k ∼ N (0, σ2
ηI).

3: Q̂t = Projµ(LSTDQ(D,Kt)).
4: Kt+1 = G(Q̂t).
5: end for
6: return KN .

In Algorithms 1 and 2, Projµ(·) = arg minX=XT:X�µ·I‖X − ·‖F is the Euclidean projection
onto the set of symmetric matrices lower bounded by µ · I . Furthermore, the map G(·) takes an
(n+ d)× (n+ d) positive definite matrix and returns a d× n matrix:

G

([
Q11 Q12

QT
12 Q22

])
= −Q−1

22 Q
T
12 . (2.10)

Algorithm 1 corresponds to the version presented in Lagoudakis and Parr [20], where all the data
D is collected up front and is re-used in every iteration of LSTD-Q. Algorithm 2 is the one we will
analyze in this paper, where new data is collected for every iteration of LSTD-Q. The modification
made in Algorithm 2 simplifies the analysis by allowing the controller Kt to be independent of the
data Dt in LSTD-Q. We remark that this does not require the system to be reset after every iteration
of LSTD-Q. We leave analyzing Algorithm 1 to future work.
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Before we state our main finite-sample guarantee for Algorithm 2, we review the notion of a (relative)
value-function. Similarly to (relative)Q-functions, the infinite horizon average-cost Bellman equation
states that the (relative) value function V associated to a policy π satisfies the fixed-point equation:

λ+ V (x) = c(x, π(x)) + Ex′∼p(·|x,π(x))[V (x′)] . (2.11)

For a stabilizing policy K, it is well known that for LQR the value function V (x) = xTV x with

V = dlyap(A+BK,S +KTRK) , λ = 〈σ2
wI, V 〉 .

Once again as we did for Q-functions, we slightly abuse notation and let V denote the value function
and the matrix that parameterizes the value function. Our main result for Algorithm 2 appears in the
following theorem. For simplicity, we will assume that ‖S‖ ≥ 1 and ‖R‖ ≥ 1.

Theorem 2.2. Fix a δ ∈ (0, 1). Let the initial policy K0 input to Algorithm 2 stabilize (A,B).
Suppose the initial state x0 ∼ N (0,Σ0) and that the excitation noise satisfies ση ≤ σw. Recall that
the steady-state covariance of the trajectory {xt} is

P∞ = dlyap((A+BK0)T, σ2
wI + σ2

ηBB
T) .

Let V0 denote the value function associated to the initial policy K0, and V? denote the value function
associated to the optimal policy K? for the LQR problem (2.2). Define the variables µ,L as:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ .

Fix an ε > 0 that satisfies:

ε ≤ 5

(
L

µ

)2

min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2
8µ2 log(‖V0‖/λmin(V?))

}
. (2.12)

Suppose we run Algorithm 2 for N := N0 + 1 policy improvement iterations where

N0 :=

⌈
(1 + L/µ) log

(
2 log(‖V0‖/λmin(V?))

ε

)⌉
, (2.13)

and we set the rollout length T to satisfy:

T ≥ Õ(1) max

{
(n+ d)2,

L2

(1− µ/L)2

(
L

µ

)17
(n+ d)4

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2),

1

ε2

L4

(1− µ/L)2

(
L

µ

)42
(n+ d)3

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

}
. (2.14)

Then with probability 1 − δ, we have that each policy Kt for t = 1, ..., N stabilizes (A,B) and
furthermore:

‖KN −K?‖ ≤ ε .

Here the Õ(1) hides polylog(n, τ, ‖Σ0‖, ‖P∞‖, L/µ, T/δ,N0, 1/ση) factors.

Theorem 2.2 states roughly that T · N ≤ Õ( (n+d)3

ε2 log(1/ε)) samples are sufficient for LSPI to
recover a controller K that is within ε of the optimal K?. That is, only log(1/ε) iterations of policy
improvement are necessary, and furthermore more iterations of policy improvement do not necessary
help due to the inherent statistical noise of estimating the Q-function for every policy Kt. We
note that the polynomial factor in L/µ is by no means optimal and was deliberately made quite
conservative in order to simplify the presentation of the bound. A sharper bound can be recovered
from our analysis techniques at the expense of a less concise expression.

It is worth taking a moment to compare Theorem 2.2 to classical results in the RL literature regarding
approximate policy iteration. For example, a well known result (c.f. Theorem 7.1 of Lagoudakis and
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Parr [20]) states that if LSTD-Q is able to return Q-function estimates with error L∞ bounded by ε
at every iteration, then letting Q̂t denote the approximate Q-function at the t-th iteration of LSPI:

lim sup
t→∞

‖Q̂t −Q?‖∞ ≤
2γε

(1− γ)2
. (2.15)

Here, γ is the discount factor of the MDP. Theorem 2.2 is qualitatively similar to this result in that
we show roughly that ε error in the Q-function estimate translates to ε error in the estimated policy.
However, there are several fundamental differences. First, our analysis does not rely on discounting
to show contraction of the Bellman operator. Instead, we use the (τ, ρ)-stability of closed loop system
to achieve this effect. Second, our analysis does not rely on L∞ bounds on the estimated Q-function,
although we remark that similar type of results to (2.15) exist also in Lp (see e.g. [27, 29]). Finally,
our analysis is non-asymptotic.

The proof of Theorem 2.2 combines the estimation guarantee of Theorem 2.1 with a new analysis
of policy iteration for LQR, which we believe is of independent interest. Our new policy iteration
analysis combines the work of Bertsekas [7] on policy iteration in infinite horizon average cost MDPs
with the contraction theory of Lee and Lim [22] for non-linear matrix equations.

2.3 LSPI for Adaptive LQR

We now turn our attention to the online, adaptive LQR problem as studied in Abbasi-Yadkori and
Szepesvári [1]. In the adaptive LQR problem, the quantity of interest is the regret, defined as:

Regret(T ) :=

T∑
t=1

xTt Sxt + uTt Rut − T · J? . (2.16)

Here, the algorithm is penalized for the cost incurred from learning the optimal policy K?, and
must balance exploration (to better learn the optimal policy) versus exploitation (to reduce cost). As
mentioned previously, there are several known algorithms which achieve Õ(

√
T ) regret [1, 4, 11,

26, 31]. However, these algorithms operate in a model-based manner, using the collected data to
build a confidence interval around the true dynamics (A,B). On the other hand, the performance of
adaptive algorithms which are model-free is less well understood. We use the results of the previous
section to give an adaptive model-free algorithm for LQR which achieves Õ(T 2/3) regret, which
improves upon the Õ(T 2/3+ε) regret (for T ≥ C1/ε) achieved by the adaptive model-free algorithm
of Abbasi-Yadkori et al. [3]. Our adaptive algorithm based on LSPI is shown in Algorithm 3.

Algorithm 3 Online Adaptive Model-free LQR Algorithm

Input: Initial stabilizing controller K(0), number of epochs E, epoch multiplier Tmult, lower eigen-
value bound µ.

1: for i = 0, ..., E − 1 do
2: Set Ti = Tmult2

i.
3: Set σ2

η,i = σ2
w

(
1
2i

)1/3
.

4: Set K(i+1) = LSPIv2(K0=K(i), N=Õ((i+ 1)Γ?/µ), T=Ti, σ
2
η=σ2

η,i).
5: end for

Using an analysis technique similar to that in Dean et al. [13], we prove the following Õ(T 2/3) regret
bound for Algorithm 3.

Theorem 2.3. Fix a δ ∈ (0, 1). Let the initial feedback K(0) stabilize (A,B) and let V (0) denote
its associated value function. Also let K? denote the optimal LQR controller and let V? denote
the optimal value function. Let Γ? = 1 + max{‖A‖, ‖B‖, ‖V (0)‖, ‖V?‖, ‖K(0)‖, ‖K?‖, ‖Q‖, ‖R‖}.
Suppose that Tmult is set to:

Tmult ≥ Õ(1)poly(Γ?, n, d, 1/λmin(S)) .

and suppose µ is set to µ = min{λmin(S), λmin(R)}. With probability at least 1− δ, we have that
the regret of Algorithm 3 satisfies:

Regret(T ) ≤ Õ(1)poly(Γ?, n, d, 1/λmin(S))T 2/3 .
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We note that the regret scaling as T 2/3 in Theorem 2.3 is due to the 1/σ4
η dependence from LSTD-Q

(c.f. (2.9)). As mentioned previously, the existing LSTD-Q analysis from Abbasi-Yadkori et al. [3]
yields a 1/σ8

η dependence in LSTD-Q; using this 1/σ8
η dependence in the analysis of Algorithm 3

would translate into T 4/5 regret.

3 Related Work

For model-based methods, in the offline setting Fiechter [17] provided the first PAC-learning bound
for infinite horizon discounted LQR using certainty equivalence (nominal) control. Later, Dean et al.
[12] use tools from robust control to analyze a robust synthesis method for infinite horizon average
cost LQR, which is applicable in regimes of moderate uncertainty when nominal control fails. Mania
et al. [26] show that certainty equivalence control actually provides a fastO(ε2) rate of sub-optimality
where ε is the size of the parameter error, unlike the O(ε) sub-optimality guarantee of [12, 17]. For
the online adaptive setting, [1, 4, 11, 18, 26] give Õ(

√
T ) regret algorithms. A key component of

model-based algorithms is being able to quantify a confidence interval for the parameter estimate, for
which several recent works [14, 32, 33] provide non-asymptotic results.

Turning to model-free methods, Tu and Recht [34] study the behavior of least-squares temporal
difference (LSTD) for learning the discounted value function associated to a stabilizing policy. They
evaluate the LSPI algorithm studied in this paper empirically, but do not provide any analysis. In
terms of policy optimization, most of the work has focused on derivative-free random search methods
[16, 24]. Tu and Recht [35] study a special family of LQR instances and characterize the asymptotic
behavior of both model-based certainty equivalent control versus policy gradients (REINFORCE),
showing that policy gradients has polynomially worse sample complexity. Most related to our work
is Abbasi-Yadkori et al. [3], who analyze a model-free algorithm for adaptive LQR based on ideas
from online convex optimization. LSTD-Q is a sub-routine of their algorithm, and their analysis
incurs a sub-optimal 1/σ8

η dependence on the injected exploration noise, which we improve to 1/σ4
η

using self-normalized martingale inequalities [2]. This improvement allows us to use a simple greedy
exploration strategy to obtain T 2/3 regret. Finally, as mentioned earlier, the Ph.D. thesis of Bradtke
[10] presents an asymptotic consistency argument for approximate PI for discounted LQR in the
noiseless setting (i.e. wt = 0 for all t).

For the general function approximation setting in RL, Antos et al. [5] and Lazaric et al. [21] analyze
variants of LSPI for discounted MDPs where the state space is compact and the action space finite. In
Lazaric et al. [21], the policy is greedily updated via an update operator that requires access to the
underlying dynamics (and is therefore not implementable). Farahmand et al. [15] extend the results
of Lazaric et al. [21] to when the function spaces considered are reproducing kernel Hilbert spaces.
Zou et al. [37] give a finite-time analysis of both Q-learning and SARSA, combining the asymptotic
analysis of Melo et al. [28] with the finite-time analysis of TD-learning from Bhandari et al. [8].
We note that checking the required assumptions to apply the results of Zou et al. [37] is non-trivial
(c.f. Section 3.1, [28]). We are un-aware of any non-asymptotic analysis of LSPI in the average cost
setting, which is more difficult as the Bellman operator is no longer a contraction.

Finally, we remark that our LSPI analysis relies on understanding exact policy iteration for LQR,
which is closely related to the fixed-point Riccati recurrence (value iteration). An elegant analysis for
value iteration is given by Lincoln and Rantzer [23]. Recently, Fazel et al. [16] show that exact policy
iteration is a special case of Gauss-Newton and prove linear convergence results. Our analysis, on the
other hand, is based on combining the fixed-point theory from Lee and Lim [22] with recent work on
policy iteration for average cost problems from Bertsekas [7].

4 Experiments

We first look at the performance of LSPI in the non-adaptive setting (Section 2.2). Here, we compare
LSPI to other popular model-free methods, and the model-based certainty equivalence (nominal)
controller (c.f. [26]). For model-free, we look at policy gradients (REINFORCE) (c.f. [36]) and
derivative-free optimization (c.f. [24, 25, 30]). A full description of the methods we compare to is
given in the full paper [19].
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We consider the LQR instance (A,B, S,R) withA =

[
0.95 0.01 0
0.01 0.95 0.01

0 0.01 0.95

]
,B =

[
1 0.1
0 0.1
0 0.1

]
, S = I3,

and R = I2. We choose an LQR problem where the A matrix is stable, since the model-free methods
we consider need to be seeded with an initial stabilizing controller; using a stable A allows us to start
at K0 = 02×3. We fix the process noise σw = 1. The model-based nominal method learns (A,B)
using least-squares, exciting the system with Gaussian inputs ut with variance σu = 1.

(a) Offline Evaluation

0 200,000 400,000 600,000 800,000 1,000,000
timesteps

10−8

10−6

10−4

10−2

100

re
la

tiv
e

er
ro

r

PG (simple)
PG (vf)
LSPIv2
LSPIv1
DFO
nominal

(b) Adaptive Evaluation
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Figure 1: The performance of various model-free methods compared with the nominal controller. (a) Plot of
non-adaptive performance. The shaded regions represent the lower 10th and upper 90th percentile over 100
trials, and the solid line represents the median performance. Here, PG (simple) is policy gradients with the
simple baseline, PG (vf) is policy gradients with the value function baseline, LSPIv2 is Algorithm 2, LSPIv1 is
Algorithm 1, and DFO is derivative-free optimization. (b) Plot of adaptive performance. The shaded regions
represent the median to upper 90th percentile over 100 trials. Here, LSPI is Algorithm 3 using LSPIv1, MFLQ
is from Abbasi-Yadkori et al. [3], nominal is the ε-greedy adaptive certainty equivalent controller (c.f. [13]), and
optimal has access to the true dynamics.

For policy gradients and derivative-free optimization, we use the projected stochastic gradient
descent (SGD) method with a constant step size µ as the optimization procedure. For policy
iteration, we evaluate both LSPIv1 (Algorithm 1) and LSPIv2 (Algorithm 2). For every iteration of
LSTD-Q, we project the resulting Q-function parameter matrix onto the set {Q : Q � γI} with
γ = min{λmin(S), λmin(R)}. For LSPIv1, we chooseN = 15 by picking theN ∈ [5, 10, 15] which
results in the best performance after T = 106 timesteps. For LSPIv2, we set (N,T ) = (3, 333333)
which yields the lowest cost over the grid N ∈ [1, 2, 3, 4, 5, 6, 7] and T such that NT = 106.

Next, we compare the performance of LSPI in the adaptive setting (Section 2.3). We compare
LSPI against the model-free linear quadratic control (MFLQ) algorithm of Abbasi-Yadkori et al. [3],
nominal certainty equivalence controller (c.f. [13]), and the optimal controller. We use the example

of Dean et al. [12], with A =

[
1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

]
, B = I , S = 10I3, R = I3, and σw = 1.

Figure 1 shows the results of these experiments. In Figure 1a, we plot the relative error (J(K̂) −
J?)/J? versus the number of timesteps. We see that the model-based certainty equivalence (nominal)
method is more sample efficient than the other model-free methods considered. We also see that the
value function baseline is able to dramatically reduce the variance of the policy gradient estimator
compared to the simple baseline. The DFO method performs the best out of all the model-free
methods considered on this example after 106 timesteps, although the performance of policy iteration
is comparable. In Figure 1b, we plot the regret (c.f. Equation 2.16). We see that LSPI and MFLQ
both perform similarly with MFLQ slightly outperforming LSPI. We also note that the model-based
nominal methods performs significantly better than both LSPI and MFLQ.

8



5 Conclusion

We studied the sample complexity of approximate PI on LQR, showing that roughly (n +
d)3ε−2 log(1/ε) samples are sufficient to estimate a controller that is within ε of the optimal. We
also show how to turn this offline method into an adaptive LQR method with T 2/3 regret. Several
questions remain open with our work. The first is if policy iteration is able to achieve T 1/2 regret,
which is possible with other model-based methods. The second is whether or not model-free methods
provide advantages in situations of partial observability for LQ control. Finally, an asymptotic
analysis of LSPI, in the spirit of Tu and Recht [35], is of interest in order to clarify which parts of our
analysis are sub-optimal due to the techniques we use versus are inherent in the algorithm.
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A Analysis for LSTD-Q

We fix a trajectory {(xt, ut, xt+1)}Tt=1. Recall that we are interested in finding the Q function for a
given policy Keval, and we have defined the vectors:

φt = φ(xt, ut) , ψt = φ(xt,Kevalxt) ,

f = svec

(
σ2
w

[
I

Keval

] [
I

Keval

]T)
, ct = xTt Sxt + uTt Rut .

Also recall that the input sequence ut being played is given by ut = Kplayxt + ηt, with ηt ∼
N (0, σ2

ηI). Both policies Keval and Kplay are assumed to stabilize (A,B). Because of stability, we
have that Pt converges to a limit P∞ = dlyap((A+BKplay)T, σ2

wI + σ2
ηBB

T), where Pt is:

Pt :=

t−1∑
k=0

(A+BKplay)k(σ2
wI + σηBB

T)((A+BKplay)T)k .

The covariance of xt for t ≥ 1 is:

Cov(xt) = Σt := Pt + (A+BKplay)tΣ0((A+BKplay)T)t .

We define the following data matrices:

Φ =

−φ
T
1−
...

−φTT−

 , Ψ+ =

 −ψ
T
2−
...

−ψT
T+1−

 , c = (c1, ..., cT )T , F =

−f
T−
...

−fT−

 .

With this notation, the LSTD-Q estimator is:

q̂ =
(
ΦT(Φ−Ψ+ + F )

)†
ΦTc .

Next, let Ξ be the matrix:

Ξ =

 −E[φ(x2,Kevalx2)|x1, u1]T−
...

−E[φ(xT+1,KevalxT+1)|xT , uT ]T−

 .

For what follows, we let the notation ⊗s denote the symmetric Kronecker product. See ? ] for more
details. The following lemma gives us a starting point for analysis. It is based on Lemma 4.1 of
Abbasi-Yadkori et al. [3]. Recall that q = svec(Q) and Q is the matrix which parameterizes the
Q-function for Keval.

Lemma A.1 (Lemma 4.1, [3]). Let L :=

[
I

Keval

]
[A B]. Suppose that Φ has full column rank,

and that

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖
σmin(Φ)σmin(I − L⊗s L)

≤ 1/2 .

Then we have:

‖q̂ − q‖ ≤ 2
‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖
σmin(Φ)σmin(I − L⊗s L)

. (A.1)

Proof. By the Bellman equation (2.3), we have the identity:

Φq = c+ (Ξ− F )q

By the definition of q̂, we have the identity:

Φq̂ = PΦ(c+ (Ψ+ − F )q̂) ,

where PΦ = Φ(ΦTΦ)−1ΦT is the orthogonal projector onto the columns of Φ. Combining these two
identities gives us:

PΦ(Φ− Ξ + F )(q − q̂) = PΦ(Ξ−Ψ+)q̂ .
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Next, the i-th row of Φ− Ξ + F is:

svec

([
xi
ui

] [
xi
ui

]T
− E

[[
I

Keval

]
x̃x̃T

[
I

Keval

]T ∣∣∣∣ xi, ui
]

+ σ2
w

[
I

Keval

] [
I

Keval

]T)

= svec

([
xi
ui

] [
xi
ui

]T
− L

[
xi
ui

] [
xi
ui

]T
LT

)
= (I − L⊗s L)φ(xi, ui) ,

where x̃ = Axi +Bui +wi. Therefore, Φ− Ξ + F = Φ(I −L⊗s L)T. Combining with the above
identity:

Φ(I − L⊗s L)T(q − q̂) = PΦ(Ξ−Ψ+)q̂ .

Because Φ has full column rank, this identity implies that:

(I − L⊗s L)T(q − q̂) = (ΦTΦ)−1ΦT(Ξ−Ψ+)q̂ .

Using the inequlities:

‖(I − L⊗s L)T(q − q̂)‖ ≥ σmin((I − L⊗s L))‖q − q̂‖ ,

(ΦTΦ)−1ΦT(Ξ−Ψ+)q̂ ≤ ‖(Φ
TΦ)−1/2ΦT(Ξ−Ψ+)q̂‖
λmin((ΦTΦ)−1/2)

=
‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q̂‖

σmin(Φ)
,

we obtain:

‖q − q̂‖ ≤ ‖(Φ
TΦ)−1/2ΦT(Ξ−Ψ+)q̂‖

σmin(Φ)σmin(I − L⊗s L)
.

Next, let ∆ = q − q̂. By triangle inequality:

‖∆‖ ≤ ‖(Φ
TΦ)−1/2ΦT(Ξ−Ψ+)‖‖∆‖
σmin(Φ)σmin(I − L⊗s L)

+
‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖
σmin(Φ)σmin(I − L⊗s L)

.

The claim now follows.

In order to apply Lemma A.1, we first bound the minimum singular value σmin(Φ). We do this using
the small-ball argument of Simchowitz et al. [33].
Definition 2 (Definition 2.1, [33]). Let {Zt} be a real-valued stochastic process that is adapted to
{Ft}. The process {Zt} satisfies the (k, ν, p) block martingale small-ball (BMSB) condition if for
any j ≥ 0 we have that:

1

k

k∑
i=1

P(|Zj+i| ≥ ν|Fj) ≥ p a.s.

With the block martingale small-ball definition in place, we now show that the process 〈φt, y〉 satisfies
this condition for any fixed unit vector y.
Proposition A.2. Given an arbitrary vector y ∈ Sn+d−1, define the process Zt := 〈φt, y〉, the

filtration Ft := σ({ui, wi−1}ti=0), and matrix C :=

[
I 0

Kplay I

] [
σwI 0

0 σηI

]
. Then (Zt)t≥1

satisfies the (1, σ2
min(C), 1/324) block martingale small-ball (BMSB) condition from Definition 2.

That is, almost surely, we have:

P(|Zt+1| ≥ σ2
min(C)|Ft) ≥ 1/324.

Proof. Let Y := smat(y) and µt := Axt +But. We have that:[
xt+1

ut+1

]
=

[
I

Kplay

]
µt +

[
I 0

Kplay I

] [
wt
ηt+1

]
.
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Therefore:

〈φt+1, y〉 =

[
xt+1

ut+1

]T
Y

[
xt+1

ut+1

]
=

([
I

Kplay

]
µt +

[
I 0

Kplay I

] [
wt
ηt+1

])T

Y

([
I

Kplay

]
µt +

[
I 0

Kplay I

] [
wt
ηt+1

])
,

which is clearly a Gaussian polynomial of degree 2 given Ft. Hence by Gaussian hyper-contractivity
results (see e.g. [? ]), we have that almost surely:

E[|Zt+1|4|Ft] ≤ 81E[|Zt+1|2|Ft]2.
Hence we can invoke the Paley-Zygmund inequality to conclude that for any θ ∈ (0, 1), almost surely
we have:

P(|Zt+1| ≥
√
θE[|Zt+1|2|Ft]|Ft) ≥ (1− θ)2E[|Zt+1|2|Ft]2

E[|Zt+1|4|Ft]
≥ (1− θ)2

81
.

We now state an useful proposition.

Proposition A.3. Let µ,C, Y be fixed and g ∼ N (0, I). We have that:

E[((µ+ Cg)TY (µ+ Cg))2] ≥ 2‖CTY C‖2F .

Proof. LetZ := (µ+Cg)TY (µ+Cg). We know that E[Z2] ≥ E[(Z−E[Z])2]. A quick computation
yields that E[Z] = µTY µ+ tr(CTY C). Hence

Z − E[Z] = gTCTY Cg − tr(CTY C) + 2µTY Cg .

Therefore,

E[(Z − E[Z])2] ≥ E[(gTCTY Cg − tr(CTY C))2] = 2‖CTY C‖2F .

Invoking Proposition A.3 and using basic properties of the Kronecker product, we have that:

E[Z2
t+1|Ft] ≥ 2‖CTY C‖2F = 2‖(CT ⊗ CT)y‖2 ≥ 2σ2

min(CT ⊗ CT) = 2σ4
min(C) .

The claim now follows by setting θ = 1/2.

With the BMSB bound in place, we can now utilize Proposition 2.5 of Simchowitz et al. [33] to
obtain the following lower bound on the minimum singular value σmin(Φ).

Proposition A.4. Fix δ ∈ (0, 1). Suppose that ση ≤ σw, and that T exceeds:

T ≥ 3242 · 8
(

(n+ d)2 log

(
1 +

20736
√

3√
δ

(1 + ‖Kplay‖2)2(τ2ρ2n‖Σ0‖+ tr(P∞))

σ2
η

)
+ log(2/δ)

)
.

(A.2)

Suppose also that A+BKplay is (τ, ρ)-stable. Then we have with probability at least 1− δ,

σmin(Φ) ≥ σ2
η

1296
√

8

1

1 + ‖Kplay‖2
√
T .

We also have with probability at least 1− δ,

‖ΦTΦ‖ ≤ 12T

δ
(1 + ‖Kplay‖2)2(τ2ρ2n‖Σ0‖+ tr(P∞))2 .
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Proof. We first compute a crude upper bound on ‖Φ‖ using Markov’s inequality:

P(‖Φ‖2 ≥ t2) =
E[λmax(ΦTΦ)]

t2
≤ tr(E[ΦTΦ])

t2
.

Now we upper bound E[‖φt‖2]. Letting zt = (xt, ut), we have that E[‖φt‖2] = E[‖zt‖4] ≤
3(E[‖zt‖2])2. We now bound E[‖zt‖2] ≤ (1 + ‖Kplay‖2) tr(Σt) + σ2

ηd, and therefore:√
E[‖φt‖2] ≤

√
3((1 + ‖Kplay‖2) tr(Σt) + σ2

ηd)

≤
√

3((1 + ‖Kplay‖2)(τ2ρ2n‖Σ0‖+ tr(P∞)) + σ2
ηd)

≤ 2
√

3(1 + ‖Kplay‖2)(τ2ρ2n‖Σ0‖+ tr(P∞)) .

Above, the last inequality holds because σ2
ηd ≤ σ2

wn ≤ tr(P∞). Therefore, we have from Markov’s
inequality:

P

(
‖Φ‖ ≥

√
T√
δ

2
√

3(1 + ‖Kplay‖2)(τ2ρ2n‖Σ0‖+ tr(P∞))

)
≤ δ .

Fix an ε > 0, and let N (ε) denote an ε-net of the unit sphere S(n+d)(n+d+1)/2−1. Next, by
Proposition 2.5 of Simchowitz et al. [33] and a union bound over N (ε):

P
(

min
v∈N (ε)

‖Φv‖ ≥ σ2
min(C)

324
√

8

√
T

)
≥ 1− (1 + 2/ε)(n+d)2e−

T
3242·8 .

Now set

ε =

√
δ

5184
√

3

σ2
min(C)

(1 + ‖Kplay‖2)(τ2ρ2n‖Σ0‖+ tr(P∞))
,

and observe that as long as T exceeds:

T ≥ 3242 · 8
(

(n+ d)2 log

(
1 +

10368
√

3√
δ

(1 + ‖Kplay‖2)(τ2ρ2n‖Σ0‖+ tr(P∞))

σ2
min(C)

)
+ log(2/δ)

)
,

we have that P
(

minv∈N (ε)‖Φv‖ ≥ σ2
min(C)

324
√

8

√
T
)
≥ 1− δ/2. To conclude, observe that:

σmin(Φ) = inf
‖v‖=1

‖Φv‖ ≥ min
v∈N (ε)

‖Φv‖ − ‖Φ‖ε ,

and union bound over the two events. To conclude the proof, note that Lemma F.6 in Dean et al. [13]

yields that σ2
min(C) ≥ σ2

η

2
1

1+‖Kplay‖2 since ση ≤ σw.

We now turn our attention to upper bounding the self-normalized martingale terms:

‖(ΦTΦ)−1ΦT(Ξ−Ψ+)‖ and ‖(ΦTΦ)−1ΦT(Ξ−Ψ+)q‖ .
Our main tool here will be the self-normalized tail bounds of Abbasi-Yadkori et al. [2].
Lemma A.5 (Corollary 1, [2]). Let {Ft} be a filtration. Let {xt} be a Rd1 process that is adapted
to {Ft} and let {wt} be a Rd2 martingale difference sequence that is adapted to {Ft}. Let V be a
fixed positive definite d1 × d1 matrix and define:

V̄t = V +

t∑
s=1

xsx
T
s , St =

t∑
s=1

xsw
T
s+1 .

(a) Suppose for any fixed unit h ∈ Rd2 we have that 〈wt, h〉 is conditionally R-sub-Gaussian, that
is:

∀λ ∈ R, t ≥ 1 , E[eλ〈wt+1,h〉|Ft] ≤ e
λ2R2

2 .

We have that with probability at least 1− δ, for all t ≥ 1,

‖V̄ −1/2
t St‖2 ≤ 8R2

(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
.
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(b) Now suppose that δ̄ satisfies the condition:

T+1∑
s=2

P(‖ws‖ > R) ≤ δ̄ .

Then with probability at least 1− δ − δ̄, for all 1 ≤ t ≤ T ,

‖V̄ −1/2
t St‖2 ≤ 32R2

(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
.

Proof. Fix a unit h ∈ Rd2 . By Corollary 1 of Abbasi-Yadkori et al. [2], we have with probability at
least 1− δ,

‖V̄ −1/2
t Sth‖2 ≤ 2R2 log

(
det(V̄t)

1/2 det(V )−1/2

δ

)
, 1 ≤ t ≤ T .

A standard covering argument yields that:

‖V̄ −1/2
t St‖2 ≤ 4 max

h∈N (1/2)
‖V̄ −1/2

t Sth‖2 .

Union bounding over N (1/2), we obtain that:

‖V̄ −1/2
t St‖2 ≤ 8R2 log

(
5d2

det(V̄t)
1/2 det(V )−1/2

δ

)
= 8R2

(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
.

This yields (a).

For (b), we use a simple stopping time argument to handle truncation. Define the stopping time
τ := inf{t ≥ 1 : ‖wt‖ > R} and the truncated process w̃t := wt1τ≥t. Because τ is a stopping time,
this truncated process {w̃t} remains a martingale difference sequence. Define Zt =

∑t
s=1 xsw̃

T
s+1.

For any ` > 0 we observe that:

P(∃1 ≤ t ≤ T : ‖V̄ −1/2
t St‖ > `)

≤ P({∃1 ≤ t ≤ T : ‖V̄ −1/2
t St‖ > `} ∩ {τ > T + 1}) + P(τ ≤ T + 1)

= P({∃1 ≤ t ≤ T : ‖V̄ −1/2
t Zt‖ > `} ∩ {τ > T + 1}) + P(τ ≤ T + 1)

≤ P(∃t ≥ 1 : ‖V̄ −1/2
t Zt‖ > `) + P(τ ≤ T + 1)

≤ P(∃t ≥ 1 : ‖V̄ −1/2
t Zt‖ > `) +

T+1∑
s=2

P(‖ws‖ > R)

≤ P(∃t ≥ 1 : ‖V̄ −1/2
t Zt‖ > `) + δ̄ .

Now set ` = 32R2
(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
and using the fact that a R bounded

random variable is 2R-sub-Gaussian, the claim now follows by another application of Corollary 1
from [2].

With Lemma A.5 in place, we are ready to bound the martingale difference terms.
Proposition A.6. Suppose the hypothesis of Proposition A.4 hold. With probability at least 1− δ,

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖ ≤ (n+ d)σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)‖Q‖F
× polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) ,

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖ ≤ (n+ d)2σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)

× polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) .
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Proof. For the proof, constants c, ci will denote universal constants. Define two matrices:

V1 := c1
σ4
η

(1 + ‖Kplay‖2)2
T · I ,

V2 := c2
T

δ
(1 + ‖Kplay‖2)2(τ2ρ2n‖Σ0‖+ tr(P∞))2 · I .

By Proposition A.4, with probability at least 1− δ/2, we have that:

V1 � ΦTΦ � V2 .

Call this event E1.

Next, we have:

E[xt+1x
T
t+1|xt, ut]− xt+1x

T
t+1

= E[(Axt +But + wt)(Axt +But + wt)
T|xt, ut]− (Axt +But + wt)(Axt +But + wt)

T

= (Axt +But)(Axt +But)
T + σ2

wI

− (Axt +But)(Axt +But)
T − (Axt +But)w

T
t − wt(Axt +But)

T − wtwT
t

= σ2
wI − wtwT

t − (Axt +But)w
T
t − wt(Axt +But)

T .

Therefore,

E[ψt+1|xt, ut]− ψt+1

= svec

([
I

Keval

]
(σ2
wI − wtwT

t − (Axt +But)w
T
t − wt(Axt +But)

T)

[
I

Keval

]T)
.

Taking the inner product of this term with q,

(E[ψt+1|xt, ut]− ψt+1)Tq

= tr

(
(σ2
wI − wtwT

t − (Axt +But)w
T
t − wt(Axt +But)

T)

[
I

Keval

]T
Q

[
I

Keval

])

= tr

(
(σ2
wI − wtwT

t )

[
I

Keval

]T
Q

[
I

Keval

])
− 2wT

t

[
I

Keval

]T
Q

[
I

Keval

]
(Axt +But) .

By the Hanson-Wright inequality (see e.g. ? ]), with probability at least 1− δ/T ,∣∣∣∣∣tr
(

(σ2
wI − wtwT

t )

[
I

Keval

]T
Q

[
I

Keval

])∣∣∣∣∣ ≤ c1σ2
w(1 + ‖Keval‖2)‖Q‖F log(T/δ) .

Now, let Lplay := A+BKplay. By Proposition 4.7 in Tu and Recht [34], with probability at least
1− δ/T ,∣∣∣∣∣wT

t

[
I

Keval

]T
Q

[
I

Keval

]
(Axt +But)

∣∣∣∣∣
≤ c1σw(1 + ‖Keval‖2)

√
‖Lt+1

playΣ0(Lt+1
play)T‖+ ‖LplayPtLT

play‖+ σ2
η‖B‖2‖Q‖F log(T/δ)

≤ c1σw(1 + ‖Keval‖2)
√
τ2ρ2(t+1)‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2‖Q‖F log(T/δ) ,

where the inequality above comes from Pt � P∞ and LplayP∞L
T
play � P∞. Therefore, we have:

|(E[ψt+1|xt, ut]− ψt+1)Tv|

≤ c2(σ2
w + σw

√
τ2ρ2(t+1)‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)(1 + ‖Keval‖2)‖Q‖F log(T/δ)

≤ c3σw
√
τ2ρ2(t+1)‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)‖Q‖F log(T/δ) .
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The last inequality holds because P∞ � σ2
wI and hence σw ≤ ‖P∞‖1/2. Therefore we can set

R = c3σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)‖Q‖F log(T/δ) ,

and invoke Lemma A.5 to conclude that with probability at least 1− δ/2,

‖(V1 + ΦTΦ)−1/2ΦT(Ξ−Ψ+)v‖ ≤ c4(n+ d)R+ c5R

√
log(det((V1 + ΦTΦ)V −1

1 )1/2/δ) .

Call this event E2.

For the remainder of the proof we work on E1 ∩ E2, which has probability at least 1 − δ. Since
ΦTΦ � V1, we have that (ΦTΦ)−1 ≤ 2(V1 + ΦTΦ)−1. Therefore, by another application of
Lemma A.5:

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖
≤
√

2‖(V1 + ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖

≤ c6(n+ d)R+ c7R

√
log(det((V1 + ΦTΦ)V −1

1 )1/2/δ)

≤ c6(n+ d)R+ c7R

√
log(det((V1 + V2)V −1

1 )1/2/δ)

≤ c6(n+ d)R+ c8R(n+ d)

√
log

(
(1 + ‖Kplay‖2)4

δ

(τ2ρ2n‖Σ0‖+ tr(P∞))2

σ4
η

)
≤ c(n+ d)R polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, 1/δ, 1/ση) .

Next, we bound:

‖E[ψt+1|xt, ut]− ψt+1‖

≤
∥∥∥∥∥
[

I
Keval

]
(σ2
wI − wtwT

t )

[
I

Keval

]T∥∥∥∥∥
F

+

∥∥∥∥∥
[

I
Keval

]
wt(Axt +But)

T

[
I

Keval

]T∥∥∥∥∥
F

≤ (1 + ‖Keval‖2)(‖σ2
wI − wtwT

t ‖F + ‖wt(Axt +But)
T‖F ) .

Now, by standard Gaussian concentration results, with probability 1− δ/T ,

‖σ2
wI − wtwT

t ‖F ≤ cσ2
w(n+ log(T/δ)) ,

and also

‖wt(Axt +But)
T‖F

≤ cσw(
√
n+

√
log(T/δ))(

√
tr(Lt+1

playΣ0(Lt+1
play)T) + tr(LplayPtLT

play) + σ2
η‖B‖2F

+
√
‖Lt+1

playΣ0(Lt+1
play)T‖+ ‖LplayPtLT

play‖+ σ2
η‖B‖2

√
log(T/δ))

≤ cσw(n+ d)
√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖ log(T/δ) .

Therefore, with probability 1− δ/T ,

‖E[ψt+1|xt, ut]− ψt+1‖

≤ c(1 + ‖Keval‖2)(n+ d)σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2 log(T/δ) .

We are now in a position to prove Theorem 2.1. We first observe that we can lower bound σmin(I −
L⊗s L) using the (τ, ρ)-stability of A+BKeval. This is because for k ≥ 1,

‖Lk‖ =

∥∥∥∥[ I
Keval

]
(A+BKeval)

k−1 [A B]

∥∥∥∥
≤ 2‖Keval‖+‖[A B]‖τρk−1

≤ 2‖Keval‖+ max{1,
√
‖A‖2 + ‖B‖2}

ρ
τ · ρk .
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Hence we see that L is (
2‖Keval‖+ max{1,

√
‖A‖2+‖B‖2}

ρ τ, ρ)-stable. Next, we know that σmin(I −
L⊗s L) = 1

‖(I−L⊗sL)−1‖ . Therefore, for any unit norm v,

‖(I − L⊗s L)−1v‖ = ‖(I − L⊗s L)−1svec(smat(v))‖ = ‖dlyap(LT, smat(v))‖F

≤ 4‖Keval‖2+(‖A‖2 + ‖B‖2)+τ
2

ρ2(1− ρ2)
.

Here, the last inequality uses Proposition E.5. Hence we have the bound:

σmin(I − L⊗s L) ≥ ρ2(1− ρ2)

4‖Keval‖2+(‖A‖2 + ‖B‖2)+τ2
.

By Proposition A.4, as long as T ≥ Õ(1)(n+ d)2 with probability at least 1− δ/2:

σmin(Φ) ≥ c σ2
η

‖Kplay‖2+
√
T .

By Proposition A.6, with probability at least 1− δ/2:

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖ ≤ (n+ d)σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2‖Keval‖2+‖QKeval‖F Õ(1) ,

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖ ≤ (n+ d)2σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2‖Keval‖2+Õ(1) .

We first check the condition

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖
σmin(Φ)σmin(I − L⊗s L)

≤ 1/2 ,

from Lemma A.1. A sufficient condition is that T satisfies:

T ≥ Õ(1)
‖Kplay‖4+

σ4
η

· (n+ d)4σ2
w(τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

× ‖Keval‖4+ ·
‖Keval‖4+(‖A‖2 + ‖B‖2)2

+τ
4

ρ4(1− ρ2)2

= Õ(1)
τ4

ρ4(1− ρ2)2

(n+ d)4

σ4
η

σ2
w(τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

× ‖Kplay‖4+‖Keval‖8+(‖A‖4 + ‖B‖4)+ .

Once this condition on T is satisfied, then we have that the error ‖q̂ − q‖ is bounded by:

Õ(1)
‖Kplay‖2+
σ2
η

√
T
· (n+ d)σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2

× ‖Keval‖2+‖QKeval‖F ·
‖Keval‖2+(‖A‖2 + ‖B‖2)+τ

2

ρ2(1− ρ2)

= Õ(1)
τ2

ρ2(1− ρ2)

(n+ d)

σ2
η

√
T
σw

√
τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2

× ‖Kplay‖2+‖Keval‖4+(‖A‖2 + ‖B‖2)+‖QKeval‖F .
Theorem 2.1 now follows from Lemma A.1.

B Analysis for LSPI

In this section we study the non-asymptotic behavior of LSPI. Our analysis proceeds in two steps.
We first understand the behavior of exact policy iteration on LQR. Then, we study the effects of
introducing errors into the policy iteration updates.

19



B.1 Exact Policy Iteration

Exactly policy iteration works as follows. We start with a stabilizing controller K0 for (A,B), and
let V0 denote its associated value function. We then apply the following recursions for t = 0, 1, 2, ...:

Kt+1 = −(S +BTVtB)−1BTVtA , (B.1)

Vt+1 = dlyap(A+BKt+1, S +KT
t+1RKt+1) . (B.2)

Note that this recurrence is related to, but different from, that of value iteration, which starts from a
PSD V0 and recurses:

Vt+1 = ATVtA−ATVtB(S +BTVtB)−1BTVtA+ S .

While the behavior of value iteration for LQR is well understood (see e.g. Lincoln and Rantzer [23]
or ? ]), the behavior of policy iteration is less studied. Fazel et al. [16] show that policy iteration is
equivalent to the Gauss-Newton method on the objective J(K) with a specific step-size, and give a
simple analysis which shows linear convergence to the optimal controller. In this section, we present
an analysis of the behavior of exact policy iteration that builds on top of the fixed-point theory from
Lee and Lim [22]. A key component of our analysis is the following invariant metric δ∞ on positive
definite matrices:

δ∞(A,B) := ‖log(A−1/2BA−1/2)‖ .
Various properties of δ∞ are reviewed in Appendix D.

Our analysis proceeds as follows. First, we note by the matrix inversion lemma:

S +AT(BR−1BT + V −1)−1A = S +ATV A−ATV B(R+BTV B)−1BTV A =: F (V ) .

Let V? be the unique positive definite solution to V = F (V ). For any positive definite V we have by
Lemma D.2:

δ∞(F (V ), V?) ≤
α

λmin(S) + α
δ∞(V, V?) , (B.3)

with α = max{λmax(ATV A), λmax(ATV?A)}. Indeed, (B.3) gives us another method to analyze
value iteration, since it shows that the Riccati operator F (V ) is contractive in the δ∞ metric. Our
next result combines this contraction property with the policy iteration analysis of Bertsekas [7].

Proposition B.1 (Policy Iteration for LQR). Suppose that S,R are positive definite and there exists
a unique positive definite solution to the discrete algebraic Riccati equation (DARE). Let K0 be a
stabilizing policy for (A,B) and let V0 = dlyap(A+BK0, S +KT

0 RK0). Consider the following
sequence of updates for t = 0, 1, 2, ...:

Kt+1 = −(R+BTVtB)−1BTVtA ,

Vt+1 = dlyap(A+BKt+1, S +KT
t+1RKt+1) .

The following statements hold:

(i) Kt stabilizes (A,B) for all t = 0, 1, 2, ...,

(ii) V? � Vt+1 � Vt for all t = 0, 1, 2, ...,

(iii) δ∞(Vt+1, V?) ≤ ρ · δ∞(Vt, V?) for all t = 0, 1, 2, ..., with ρ := λmax(ATV0A)
λmin(S)+λmax(ATV0A)

. Conse-
quently, δ∞(Vt, V?) ≤ ρt · δ∞(V0, V?) for t = 0, 1, 2, ....

Proof. We first prove (i) and (ii) using the argument of Proposition 1.3 from Bertsekas [7].

Let c(x, u) = xTSx + uTRu, f(x, u) = Ax + Bu, and V K(x1) =
∑∞
t=1 c(xt, ut) with xt+1 =

f(xt, ut) and ut = Kxt. Let Vt = V Kt . With these definitions, we have that for all x:

Kt+1x = arg min
u
c(x, u) + Vt(f(x, u)) .
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Therefore,

Vt(x) = c(x,Ktx) + Vt(f(x,Ktx))

≥ c(x,Kt+1x) + Vt(f(x,Kt+1x))

= c(x,Kt+1x) + c(f(x,Kt+1x),Ktf(x,Kt+1x)) + Vt(f(f(x,Kt+1x),Ktf(x,Kt+1x)))

≥ c(x,Kt+1x) + c(f(x,Kt+1x),Kt+1f(x,Kt+1x)) + Vt(f(f(x,Kt+1x),Kt+1f(x,Kt+1x)))

...
≥ Vt+1(x) .

This proves (i) and (ii).

Now, observe that by partial minimization of a strongly convex quadratic:

c(x,Kt+1x) + Vt(f(x,Kt+1x)) = min
u
c(x, u) + Vt(f(x, u))

= xT(S +ATVtA−ATVtB(R+BTVtB)−1BTVtA)x

= xTF (Vt)x .

Combined with the above inequalities, this shows that Vt+1 � F (Vt) � Vt. Therefore, by (B.3) and
Proposition D.4,

δ∞(Vt+1, V?) ≤ δ∞(F (Vt), V?)

= δ∞(F (Vt), F (V?))

≤ αt
λmin(Q) + αt

δ∞(Vt, V?) ,

where αt = max{λmax(ATVtA), λmax(ATV?A)} = λmax(ATVtA), since V? � Vt. But since
Vt � V0, we can upper bound αt ≤ λmax(ATV0A). This proves (iii).

B.2 Approximate Policy Iteration

We now turn to the analysis of approximate policy iteration. Before analyzing Algorithm 2, we
analyze a slightly more general algorithm described in Algorithm 4

Algorithm 4 Approximate Policy Iteration for LQR (offline)
Input: Initial stabilizing controller K0, N number of policy iterations, T length of rollout for

estimation, σ2
η exploration variance.

1: for t = 0, ..., N − 1 do
2: Collect a trajectory Dt = {(x(t)

k , u
(t)
k , x

(t)
k+1)}Tk=1 using input u(t)

k = K0x
(t)
k + η

(t)
k , with

η
(t)
k ∼ N (0, σ2

ηI).
3: Q̂t = EstimateQ(Dt,Kt).
4: Kt+1 = G(Q̂t). [c.f. (2.10)]
5: end for
6: return KN .

In Algorithm 4, the procedure EstimateQ takes as input an off-policy trajectory Dt and a policy Kt,
and returns an estimate Q̂t of the true Q function Qt. We will analyze Algorithm 4 first assuming
that the procedure EstimateQ delivers an estimate with a certain level of accuracy. In order to do this,
we define the sequence of variables:

(i) Qt is true state-value function for Kt.
(ii) Vt is true value function for Kt.

(iii) Kt+1 = G(Qt).

(iv) V t is true value function for Kt.

The following proposition is our main result regarding Algorithm 4.
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Proposition B.2. Consider the sequence of updates defined by Algorithm 4. Suppose we start with a
stabilizing K0 and let V0 denote its value function. Fix an ε > 0. Define the following variables:

µ := min{λmin(S), λmin(R)} ,
Qmax := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2)‖V0‖ ,

γ :=
2‖A‖2‖V0‖

µ+ 2‖A‖2‖V0‖
,

N0 := d 1

1− γ log(2δ∞(V0, V?)/ε)e ,

τ :=

√
2‖V0‖
µ

,

ρ :=
√

1− 1/τ2 ,

ρ := Avg(ρ, 1) ,

where Avg(x, y) = x+y
2 . Let N1 ≥ N0. Suppose the estimates Q̂t output by EstimateQ satisfy, for

all 0 ≤ t ≤ N1 − 1, Q̂t � µI and furthermore,

‖Q̂t −Qt‖ ≤ min

{‖V0‖
N1

, εµ(1− γ)

}(
µ

28

(1− ρ2)2

τ5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

)
.

Then we have for any N satisfying N0 ≤ N ≤ N1 the bound δ∞(VN , V?) ≤ ε. We also have that for
all 0 ≤ t ≤ N1, A+BKt is (τ, ρ)-stable and ‖Kt‖ ≤ 2Qmax/µ.

Proof. We first start by observing that if V, V0 are value functions satisfying V � V0, then their
state-value functions also satisfy Q � Q0. This is because

Q =

[
S 0
0 R

]
+

[
AT

BT

]
V [A B]

�
[
S 0
0 R

]
+

[
AT

BT

]
V0 [A B] = Q0 .

From this we also see that any state-value function satisfies Q �
[
S 0
0 R

]
.

The proof proceeds as follows. We observe that since V t+1 � Vt (Proposition B.1-(ii)):

Vt = Vt − V t + V t − Vt−1 + Vt−1 � Vt − V t + Vt−1 .

Therefore, by triangle inequality we have ‖Vt‖ ≤ ‖Vt − V t‖+ ‖Vt−1‖. Supposing for now that we
can ensure for all 1 ≤ t ≤ N1:

‖Vt − V t‖ ≤
‖V0‖
N

, (B.4)

unrolling the recursion for ‖Vt‖ for N1 steps ensures that ‖Vt‖ ≤ 2‖V0‖ for all 0 ≤ t ≤ N1.
Furthermore,

‖Qt‖ ≤ max{‖S‖, ‖R‖}+ ‖[A B]‖2‖Vt‖
≤ max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2)‖V0‖
= Qmax .

for all 0 ≤ t ≤ N1.

Now, by triangle inequality and Proposition B.1-(iii), for all 0 ≤ t ≤ N1 − 1,

δ∞(Vt+1, V?) ≤ δ∞(Vt+1, V t+1) + δ∞(V t+1, V?)

≤ δ∞(Vt+1, V t+1) + γ · δ∞(Vt, V?)

≤ ‖Vt+1 − V t+1‖
µ

+ γ · δ∞(Vt, V?) , (B.5)
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where γ = 2‖A‖2‖V0‖
µ+2‖A‖2‖V0‖ , and the last inequality uses Proposition D.3 combined with the fact that

Vt+1 � µI and V t+1 � µI .

We now focus on bounding ‖Vt+1 − V t+1‖. To do this, we first bound ‖Kt+1 −Kt+1‖, and then
use the Lyapunov perturbation result from Section E. First, observe the simple bounds:

‖Kt+1‖ = ‖G(Qt)‖ ≤
‖Qt‖
µ
≤ Qmax

µ
,

‖Kt+1‖ = ‖G(Q̂t)‖ ≤
‖Q̂t‖
µ
≤ ∆ +Qmax

µ
≤ 2Qmax

µ
.

where the second bound uses the assumption that the estimates Q̂t satisfy Q̂t � µI and ‖Q̂t−Qt‖ ≤
∆ with

∆ ≤ Qmax . (B.6)

Now, by Proposition E.3 we have:

‖Kt+1 −Kt+1‖ = ‖G(Q̂t)−G(Qt)‖

≤ (1 + ‖Kt+1‖)‖Q̂t −Qt‖
µ

≤ (1 +Qmax/µ)∆

µ

≤ 2Qmax

µ2
∆ .

Above, the last inequality holds since Qmax ≥ µ by definition.

By Proposition E.4, because V t+1 � Vt, we know that Kt+1 satisfies for all k ≥ 0:

‖(A+BKt+1)k‖ ≤
√
‖Vt‖

λmin(S)
·
√

1− λmin(V −1
t S)

k

≤
√

2‖V0‖
µ

√
1− µ

2‖V0‖
k

= τ · ρk .

Let us now assume that ∆ satisfies:

2Qmax

µ2
·∆ ≤ 1− ρ

2τ‖B‖ . (B.7)

Then by Lemma E.1, we know that ‖(A+BKt+1)k‖ ≤ τ · ρk. Hence, we have that A+BKt+1 is
(τ, ρ)-stable.

Next, by the Lyapunov perturbation result of Proposition E.6,

‖Vt+1 − V t+1‖
= ‖dlyap(A+BKt+1, S +KT

t+1RKt+1)− dlyap(A+BKt+1, S +K
T
t+1RKt+1)‖

≤ τ2

1− ρ2 ‖KT
t+1RKt+1 −K

T
t+1RKt+1‖

+
τ4

(1− ρ2)2
‖B(Kt+1 −Kt+1)‖(‖A+BKt+1‖+ ‖A+BKt+1‖)‖S +K

T
t+1RKt+1‖ .
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We bound:

‖KT
t+1RKt+1 −K

T
t+1RKt+1‖ ≤ ‖R‖‖Kt+1 −Kt+1‖(‖Kt+1‖+ ‖Kt+1‖)

≤ 6‖R‖Q2
max

µ3
∆ ,

‖B(Kt+1 −Kt+1)‖ ≤ 2‖B‖Qmax

µ2
∆ ,

max{‖A+BKt+1‖, ‖A+BKt+1‖} ≤ τ ,

‖S +K
T
t+1RKt+1‖ ≤ ‖S‖+

‖R‖Q2
max

µ2
.

Therefore,

‖Vt+1 − V t+1‖ ≤
τ2

1− ρ2

6‖R‖Q2
max

µ3
∆ + 8

τ5

(1− ρ2)2
‖B‖max{‖S‖, ‖R‖}Q

3
max

µ4
∆

=
1

µ

(
τ2

1− ρ2

6‖R‖Q2
max

µ2
+ 8

τ5

(1− ρ2)2
‖B‖max{‖S‖, ‖R‖}Q

3
max

µ3

)
∆

≤ 14

µ

τ5

(1− ρ2)2
‖B‖+ max{‖S‖, ‖R‖}Q

3
max

µ3
∆ .

Now suppose that ∆ satisfies:

∆ ≤ 1

2
εµ(1− γ)

(
µ

14

(1− ρ2)2

τ5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

)
=

ε

28
µ2(1− γ)

(1− ρ2)2

τ5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

, (B.8)

we have for all t ≤ N1 − 1 from (B.5):

δ∞(Vt+1, V?) ≤ (1− γ)ε/2 + γ · δ∞(Vt, V?) .

Unrolling this recursion, we have that for any N ≤ N1:

δ∞(VN , V?) ≤ γN · δ∞(V0, V?) + ε/2 .

Now observe that for any N ≥ N0 := d 1
1−γ log(2δ∞(V0, V?)/ε)e, we obtain:

δ∞(VN , V?) ≤ ε .
The claim now follows by combining our four requirements on ∆ given in (B.6), (B.4), (B.7), and
(B.8).

We now proceed to make several simplifications to Proposition B.2 in order to make the result more
presentable. These simplifications come with the tradeoff of introducing extra conservatism into the
bounds.

Our first simplification of Proposition B.2 is the following corollary.

Corollary B.3. Consider the sequence of updates defined by Algorithm 4. Suppose we start with a
stabilizing K0 and let V0 denote its value function. Define the following variables:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ ,

N0 := d(1 + L/µ) log(2δ∞(V0, V?)/ε)e .
Fix an N1 ≥ N0 and suppose that

ε ≤ 1

µ

(
1 +

L

µ

) ‖V0‖
N1

. (B.9)

24



Suppose the estimates Q̂t output by EstimateQ satisfy, for all 0 ≤ t ≤ N1 − 1, Q̂t � µI and
furthermore,

‖Q̂t −Qt‖ ≤
ε

448

µ

µ+ L

(µ
L

)19/2

.

Then we have for any N0 ≤ N ≤ N1 that δ∞(VN , V?) ≤ ε. We also have that for any 0 ≤ t ≤ N1,
that A+BKt is (

√
L/µ,Avg(

√
1− µ/L, 1))-stable and ‖Kt‖ ≤ 2L/µ.

Proof. First, observe that the map x 7→ x
µ+x is increasing, and therefore γ ≤ L

µ+L which implies

that 1− γ ≥ µ
µ+L . Therefore if ε ≤ 1

µ

(
1 + L

µ

)
‖V0‖
N1

holds, then we can bound:

min

{‖V0‖
N1

, εµ(1− γ)

}
≥ εµ

(
µ

µ+ L

)
.

Next, observe that

1− ρ2 = (1 + ρ)(1− ρ) = (1 + 1/2 + ρ/2)(1/2− ρ/2) ≥ (1 + ρ)(1− ρ)/4 = (1− ρ2)/4 .

Therefore,

(1− ρ2)2 ≥ (1− (1− µ/L))2/16 = (1/16)(µ/L)2 .

We also have that τ ≤
√

L
µ . This means we can bound:

µ

28

(1− ρ2)2

τ5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

≥ µ

28 · 16
(µ/L)5/2+2 µ

3

L5
=

1

448L

(µ
L

)17/2

.

Therefore,

min

{‖V0‖
N1

, εµ(1− γ)

}
µ

28

(1− ρ2)2

τ5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

≥ ε

448

(
µ

µ+ L

)(µ
L

)19/2

.

The claim now follows from Proposition B.2.

Corollary B.3 gives a guarantee in terms of δ∞(VN , V?) ≤ ε. By Proposition D.5, this implies a
bound on the error of the value functions ‖VN − V?‖ ≤ O(ε) for ε ≤ 1. In the next corollary, we
show we can also control the error ‖KN −K?‖ ≤ O(ε).
Corollary B.4. Consider the sequence of updates defined by Algorithm 4. Suppose we start with a
stabilizing K0 and let V0 denote its value function. Define the following variables:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ ,

N0 :=

⌈
(1 + L/µ) log

(
2 log(‖V0‖/λmin(V?))

ε

)⌉
.

Suppose that ε > 0 satisfies:

ε ≤ min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2
8µ2 log(‖V0‖/λmin(V?))

}
.

Suppose we run Algorithm 4 for N := N0 + 1 iterations. Suppose the estimates Q̂t output by
EstimateQ satisfy, for all 0 ≤ t ≤ N0, Q̂t � µI and furthermore,

‖Q̂t −Qt‖ ≤
ε

448

µ

µ+ L

(µ
L

)19/2

. (B.10)

We have that:

‖KN −K?‖ ≤ 5

(
L

µ

)2

ε

and that A+BKt is (
√
L/µ,Avg(

√
1− µ/L, 1))-stable and ‖Kt‖ ≤ 2L/µ for all 0 ≤ t ≤ N .
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Proof. We set N1 = N0 + 1. From this, we compute:

‖KN1 −K?‖ = ‖G(Q̂N0)−G(Q?)‖
(a)

≤ (1 + ‖G(Q?)‖)
µ

‖Q̂N0 −Q?‖

≤ (1 + ‖G(Q?)‖)
µ

(‖Q̂N0 −QN0‖+ ‖QN0 −Q?‖)

=
(1 + ‖G(Q?)‖)

µ

(
‖Q̂N0 −QN0‖+

∥∥∥∥[AT

BT

]
(VN0 − V?) [A B]

∥∥∥∥)
≤ (1 + ‖G(Q?)‖)

µ
(‖Q̂N0

−QN0
‖+ ‖[A B]‖2‖VN0

− V?‖)
(b)

≤ (1 + ‖G(Q?)‖)
µ

(
ε

448

µ

µ+ L

(µ
L

)19/2

+ ‖[A B]‖2‖VN0
− V?‖

)
(c)

≤ (1 + ‖G(Q?)‖)
µ

(
ε

448

µ

µ+ L

(µ
L

)19/2

+ e(‖A‖2 + ‖B‖2)‖V?‖ε
)

≤ 2L

µ2

(
1

448

µ

µ+ L

(µ
L

)19/2

+ 2L

)
ε

=

(
1

224

1

µ+ L

(µ
L

)17/2

+ 4

(
L

µ

)2
)
ε

≤ 5

(
L

µ

)2

ε .

Above, (a) follows from Proposition E.3, (b) follows from the bound on ‖Q̂N0 − QN0‖ from
Corollary B.3, and (c) follows from Proposition D.5 and the fact that δ∞(VN0 , V?) ≤ ε from
Corollary B.3.

Next, we observe that since V0 � V?:

δ∞(V0, V?) = log(‖V −1/2
? V0V

−1/2
? ‖) ≤ log(‖V0‖/λmin(V?)) .

Hence we can upper bound N0 from Corollary B.3 by:

N0 = 2(1 + L/µ) log(2 log(‖P0‖/λmin(V?))/ε) .

From (B.9), the requirement on ε is that:

ε ≤ min

‖V0‖
2µ

1

log
(

2 log(‖V0‖/λmin(V?))
ε

) , 1
 .

We will show with Proposition F.3 that a sufficient condition is that:

ε ≤ min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2
8µ2 log(‖V0‖/λmin(V?))

}
.

With Corollary B.4 in place, we are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let L0 := A+BK0 and let (τ, ρ) be such that L0 is (τ, ρ)-stable. We know
we can pick τ =

√
L/µ and ρ =

√
1− µ/L. The covariance Σt of xt satisfies:

Σt = Lt0Σ0(Lt0)T + Pt � τ2ρ2t‖Σ0‖I + P∞ .

Hence for either t = 0 or t ≥ log(τ)/(1− ρ), ‖Σt‖ ≤ ‖Σ0‖+ ‖P∞‖. Therefore, if the trajectory
length T ≥ log(τ)/(1− ρ), then the operator norm of the initial covariance for every invocation of
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LSTD-Q can be bounded by ‖Σ0‖+ ‖P∞‖, and therefore the proxy variance (2.7) can be bounded
by:

σ2 ≤ τ2ρ4‖Σ0‖+ (1 + τ2ρ4)‖P∞‖+ σ2
η‖B‖2

≤ 2(L/µ)(‖Σ0‖+ ‖P∞‖+ σ2
η‖B‖2) .

By Corollary B.4, when condition (B.10) holds, we have that A + BKt is (τ,Avg(ρ, 1)) stable,
‖Kt‖ ≤ 2L/µ, and ‖Qt‖ ≤ L for all 0 ≤ t ≤ N0 + 1. We now define ε := 5(L/µ)2ε. If we can
ensure that

‖Q̂t −Qt‖ ≤
1

2240

(
µ

µ+ L

)(µ
L

)23/2

ε , (B.11)

then if

ε ≤ 5

(
L

µ

)2

min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2
8µ2 log(‖V0‖/λmin(V?))

}
,

then by Corollary B.4 we ensure that ‖KN −K‖ ≤ ε. By Theorem 2.1, (B.11) can be ensured by
first observing that Qt � µI and therefore for any symmetric Q̂ we have:

‖Projµ(Q̂)−Qt‖ ≤ ‖Projµ(Q̂)−Qt‖F ≤ ‖Q̂−Qt‖F .
Above, the last inequality holds because Projµ(·) is the Euclidean projection operator associated with
‖·‖F onto the convex set {Q : Q � µI , Q = QT}. Now combining (2.9) and (2.8) and using the
bound τ2

ρ2(1−ρ2) ≤
(L/µ)2

1−µ/L :

T ≥ Õ(1) max

{
(n+ d)2,

L2

(1− µ/L)2

(
L

µ

)17
(n+ d)4

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2),

1

ε2

L4

(1− µ/L)2

(
L

µ

)42
(n+ d)3

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

}
.

Theorem 2.2 now follows.

C Analysis for Adaptive LSPI

In this section we develop our analysis for Algorithm 3. We start by presenting a meta adaptive
algorithm (Algorithm 5) and lay out sufficient conditions for the meta algorithm to achieve sub-linear
regret. We then specialize the meta algorithm to use LSPI as a sub-routine.

Algorithm 5 General Adaptive LQR Algorithm

Input: Initial stabilizing controller K(0), number of epochs E, epoch multiplier Tmult.
1: for i = 0, ..., E − 1 do
2: Set Ti = Tmult2

i.
3: Set σ2

η,i = σ2
w

(
1
2i

)1/(1+α)
.

4: Roll system forward Ti steps with input u(i)
t = K(i)x

(i)
t + η

(i)
t , where η(i)

t ∼ N (0, σ2
η,iI).

5: Let Di = {(x(i)
t , u

(i)
t , x

(i)
t+1)}Tit=0.

6: Set K(i+1) = EstimateK(K(i),Di).
7: end for

Algorithm 5 is the general form of the ε-greedy strategy for adaptive LQR recently described in Dean
et al. [13] and Mania et al. [26]. We study Algorithm 5 under the following assumption regarding the
sub-routine EstimateK.
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Assumption 1. We assume there exists two functions Creq, Cerr and α ≥ 1 such that the following
holds. Suppose the controller K(i) that generates Di stabilizes (A,B) and V (i) is its associated
value function, the initial condition x(i)

0 ∼ N (0,Σ
(i)
0 ), and that the trajectory Di is collected via

u
(i)
t = K(i)x

(i)
t + η

(i)
t with η(i)

t ∼ N (0, σ2
η,iI). For any 0 < ε < Creq(‖V (i)‖) and any δ ∈ (0, 1),

as long as |Di| satisfies:

|Di| ≥
Cerr(‖V (i)‖, ‖Σ(i)

0 ‖)
ε2

1

σ2α
η,i

polylog(|Di|, 1/σαη,i, 1/δ, 1/ε) , (C.1)

then we have with probability at least 1−δ that ‖K(i+1)−K?‖ ≤ ε. We also assume the functionCreq

(resp. Cerr) is monotonically decreasing (resp. increasing) with respect to its arguments, and that the
functions are allowed to depend in any way on the problem parameters (A,B, S,R, n, d, σ2

w,K?, P?)

Before turning to the analysis of Algorithm 5, we state a simple proposition that bounds the covariance
matrix along the trajectory induced by Algorithm 5.

Proposition C.1. Fix a j ≥ 1. Let Σ
(j)
0 denote the covariance matrix of x(j)

0 . Suppose that for all
0 ≤ i < j each K(i) stabilizes (A,B) A+BK(i) is (τ, ρ)-stable. Also suppose that ση,i ≤ σw and
that

Tmult ≥
1

2(1− ρ)
log

(
nτ2

ρ2

)
.

We have that:

tr(Σ
(j)
0 ) ≤ σ2

w(1 + ‖B‖2)n
τ2

(1− ρ2)2
.

Proof. Let Li = A+BK(i). We write:

E[‖x(i)
0 ‖2] = E[E[‖x(i)

0 ‖2|x
(i−1)
0 ]]

= E[E[tr(xi0(xi0)T)|x(i−1)
0 ]]

≤ E[tr(L
Ti−1

i−1 x
(i−1)
0 (x

(i−1)
0 )T(L

Ti−1

i−1 )T)] + (σ2
w + σ2

η,i−1‖B‖2)n
τ2

1− ρ2

≤ nτ2ρ2Ti−1E[‖x(i−1)
0 ‖2] + σ2

w(1 + ‖B‖2)n
τ2

1− ρ2
.

We have that x(0)
0 = 0. Hence if we choose Tmult such that nτ2ρ2Tmult ≤ ρ2, we obtain the

recurrence:

E[‖x(i)
0 ‖2] ≤ ρ2E[‖x(i−1)

0 ‖2] + σ2
w(1 + ‖B‖2)n

τ2

1− ρ2
,

and therefore E[‖x(i)
0 ‖2] ≤ σ2

w(1 + ‖B‖2)n τ2

(1−ρ2)2 for all i. This is ensured if

Tmult ≥
1

2(1− ρ)
log(nτ2/ρ2) .

Next, we state a lemma that relates the instantaneous cost to the expected cost. The proof is based
on the Hanson-Wright inequality, and appears in Dean et al. [13]. Let the notation J(K; Σ) denote
the infinite horizon average LQR cost when the feedback ut = Kxt is played and when the process
noise is wt ∼ N (0,Σ). Explicitly:

J(K; Σ) = tr(ΣV (K)) , V (K) = dlyap(A+BK,S +KTRK) . (C.2)

With this notation, we have the following lemma.
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Lemma C.2 (Lemma D.2, [13]). Let x0 ∼ N (0,Σ0) and suppose that ut = Kxt+ηt with A+BK
as (τ, ρ)-stable and ηt ∼ N (0, σ2

ηI). We have that with probability at least 1− δ:
T∑
t=1

xTt Qxt + uTt Rut ≤ TJ(K;σ2
wI + σ2

ηBB
T)

+ c
√
nT

τ2

(1− ρ)2
(‖Σ0‖+ σ2

w + σ2
η‖B‖2)‖Q+KTRK‖ log(1/δ) .

Finally, we state a second order perturbation result from Fazel et al. [16], which was recently used by
Mania et al. [26] to study certainty equivalent controllers.
Lemma C.3 (Lemma 12, [16]). Let K stabilize (A,B) with A+BK as (τ, ρ)-stable, and let K?

be the optimal LQR controller for (A,B,Q,R) and V? be the optimal value function. We have that:

J(K)− J? ≤ σ2
w

τ2

1− ρ2
‖R+BTV?B‖‖K −K?‖2F .

With these tools in place, we are ready to state our main result regarding the regret incurred (c.f.
(2.16)) by Algorithm 5.
Proposition C.4. Fix a δ ∈ (0, 1). Suppose that EstimateK satisfies Assumption 1. Let the initial
feedback K(0) stabilize (A,B) and let V (0) denote its associated value function. Also let K?

denote the optimal LQR controller and let V? denote the optimal value function. Let Γ? = 1 +
max{‖A‖, ‖B‖, ‖V (0)‖, ‖V?‖, ‖K(0)‖, ‖K?‖, ‖Q‖, ‖R‖}. Define the following bounds:

Kmax := Γ? ,

Vmax := 4
Γ5
?

λmin(S)2
,

Σmax := 4σ2
wn

Γ4
?

λmin(S)2
.

Suppose that Tmult satisfies:

Tmult ≥ max

{
1,

Γ8
?

λmin(S)4
,

1

C4
req(Vmax)

}
C2

err(Vmax,Σmax)

σ4
w

poly(α) polylog(1/σw, E/δ) .

With probability at least 1− δ, we have that:

Regret(T ) ≤ σ2(1−α)
w d

Γ7
?

λmin(S)2
C2

err(Vmax,Σmax)

(
T + 1

Tmult

)α/(α+1)

polylog(T/δ)

+ TmultΓ
2
?J?

(
T + 1

Tmult

)α/(α+1)

+O(1)n3/2
√
Tσ2

w

Γ9
?

λmin(S)4
log(T/δ) + oT (1) .

Proof. We state the proof assuming that T is at an epoch boundary for simplicity. Each epoch has
length Ti = Tmult2

i. Let T0 + T1 + ...+ TE−1 = T . This means that E = log2((T + 1)/Tmult).

We start by observing that by Proposition E.4, we have that A + BK(0) is (τ, ρ)-stable for τ :=√
‖V (0)‖/λmin(S) and ρ :=

√
1− λmin(S)/‖V (0)‖. We will show that A + BK(i) is (τ, ρ)-

stable for i = 1, ..., E − 1 for ρ := Avg(ρ, 1). By Lemma E.1, this occurs if we can ensure that
‖K(i) −K?‖ ≤ (1−ρ)

2τ‖B‖ . for i = 1, ..., E − 1.

We will also construct bounds Kmax, Vmax,Σmax such that ‖K(i)‖ ≤ Kmax, ‖V (i)‖ ≤ Vmax, and
‖Σ(i)‖ ≤ Σmax for all 0 ≤ i ≤ E − 1. We set the bounds as:

Kmax := max{‖K(0)‖, ‖K?‖+ 1} ,

Vmax := max{‖V (0)‖, τ2

1− ρ2 (‖Q‖+ ‖R‖K2
max)} ,

Σmax := σ2
w(1 + ‖B‖2)n

τ2

1− ρ2 .
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In what follows, we will use the shorthand Creq = Creq(Vmax) and Cerr = Cerr(Vmax,Σmax).

Before we continue, we first argue that our choice of Tmult satisfies for all i = 1, ..., E − 1:

Ti−1 ≥ max{1, τ
2‖B‖2

4(1− ρ)2
,

1

C2
req

}Cerr

σ2α
η,i

polylog(Ti−1, 1/σ
α
i,η, 1/σw, E/δ) . (C.3)

Rearranging, this is equivalent to:

Tmult ≥ max{1, τ
2‖B‖2

4(1− ρ)2
,

1

C2
req

}2Cerrσ
−2
w

1

(2i)1/(1+α)
polylog(Tmult2

i, (2i)α/(1+α), 1/σw, E/δ) .

We first remove the dependence on i on the RHS by taking the maximum over all i. By Proposition F.2,
it suffices to take Tmult satisfying:

Tmult ≥ max{1, τ
2‖B‖2

4(1− ρ)2
,

1

C2
req

}Cerr

σ2
w

poly(α) polylog(Tmult, 1/σw, E/δ) .

We now remove the implicit dependence on Tmult. By Proposition F.4, it suffices to take Tmult

satisfying:

Tmult ≥ max{1, τ
2‖B‖2

4(1− ρ)2
,

1

C2
req

}Cerr

σ2
w

× poly(α) polylog(1/σw, E/δ, τ, ‖B‖, 1/(1− ρ), 1/Creq, Cerr) .

We are now ready to proceed.

First we look at the base case i = 0. Clearly, the bounds work for i = 0 by definition. Now we look
at epoch i ≥ 1 and we assume the bounds hold for ` = 0, ..., i− 1. For i ≥ 1 we define εi as:

εi := inf

{
ε ∈ (0, 1) : Ti−1 ≥

Cerr

ε2

1

σ2α
η,i

polylog(Ti−1, 1/σ
α
η,i, E/δ, 1/ε)

}
.

By Proposition F.1, we have that as long as

Ti−1 ≥ Cerr
1

σ2α
η,i

polylog(Ti−1, 1/σ
α
η,i, E/δ) , (C.4)

then we have that εi satisfies:

ε2
i ≤

Cerr

Ti−1σ2α
η,i

polylog(Ti−1, 1/σ
α
η,i, E/δ) . (C.5)

But (C.4) is implied by (C.3), so we know that (C.5) holds. Therefore, we have ‖K(i) −K?‖ ≤ εi.
Now by (C.5), if:

Cerr

Ti−1σ2α
η,i

polylog(Ti−1, 1/σ
α
η,i, E/δ) ≤ min{1, (1− ρ)2

4τ2‖B‖2 , C
2
req} , (C.6)

then the following is true:
εi ≤ min{1, (1− ρ)/(2τ‖B‖), Creq} .

However, (C.6) is also implied by (C.3), so we have by Assumption 1:

‖K(i) −K?‖ ≤ min{1, (1− ρ)/(2τ‖B‖)} .
This has several implications. First, it implies that:

‖K(i)‖ ≤ ‖K?‖+ 1 ≤ Kmax .

Next, it implies by Lemma E.1 that A+BK(i) is (τ, ρ)-stable. Next, by Proposition C.1, it implies
that ‖Σ(i)‖ ≤ Σmax. Finally, letting Li := A+BK(i), we have that:

‖V (i)‖ =

∥∥∥∥∥
∞∑
`=0

(Li)
`(Q+ (K(i))TRK(i))(LT

i )`

∥∥∥∥∥
≤ τ2

1− ρ2 (‖Q‖+ ‖R‖K2
max)

≤ Vmax .

30



Thus, by induction we have that ‖K(i)‖ ≤ Kmax, ‖V (i)‖ ≤ Vmax, and ‖Σ(i)‖ ≤ Σmax for all
0 ≤ i ≤ E − 1.

We are now ready to bound the regret. From (C.2), we see the relation J(K;σ2
wI + σ2

ηBB
T) ≤(

1 +
σ2
η‖B‖

2

σ2
w

)
J(K;σ2

wI) holds. Therefore by Lemma C.2 and Lemma C.3,

T∑
t=1

xTt Qxt + uTt Rut − TJ? ≤ T
(

1 +
σ2
η‖B‖2
σ2
w

)
(J? + σ2

w

τ2

1− ρ2 ‖R+BTP?B‖‖K −K?‖2F )− TJ?

+ c
√
nT

τ2

(1− ρ)2
(‖P0‖+ σ2

w + σ2
η‖B‖2)‖Q+KTRK‖ log(1/δ)

≤ T (σ2
w + σ2

η‖B‖2)
τ2

1− ρ2 (‖R‖+ ‖P?‖‖B‖2)‖K −K?‖2F + T
σ2
η‖B‖2
σ2
w

J?

+ c
√
nT

τ2

(1− ρ)2
(‖P0‖+ σ2

w + σ2
η‖B‖2)(‖Q‖+ ‖K‖2‖R‖) log(1/δ) .

Using the inequality above,

Regret(T ) =

E−1∑
i=0

Ti∑
t=1

(x
(i)
t )TQ(x

(i)
t ) + (u

(i)
t )TR(u

(i)
t )− TJ?

≤
E−1∑
i=0

Tiσ
2
w(1 + ‖B‖2)

τ2

1− ρ2 (‖R‖+ ‖V?‖‖B‖2)‖K(i) −K?‖2F + Ti
σ2
η,i‖B‖2
σ2
w

J?

+ c
√
nTiσ

2
w(1 + ‖B‖2)n

τ4

(1− ρ2)4
(‖Q‖+K2

max‖R‖) log(E/δ)

≤ O(1) +

E−1∑
i=1

σ2
w(1 + ‖B‖2)

dτ2

1− ρ2 (‖R‖+ ‖V?‖‖B‖2)C2
err

2

σ2α
η,i

polylog(E/δ, 1/ση,i)

+ Ti
σ2
η,i‖B‖2
σ2
w

J?

+ c
√
nTiσ

2
w(1 + ‖B‖2)n

τ4

(1− ρ2)4
(‖Q‖+K2

max‖R‖) log(E/δ)

= 2

E−1∑
i=1

σ2−2α
w (1 + ‖B‖2)

dτ2

1− ρ2 (‖R‖+ ‖V?‖‖B‖2)Cerr(2
i)α/(1+α) polylog(E/δ, 1/ση,i)

+ Tmult(2
i)α/(1+α)‖B‖2J?

+ c
√
nTiσ

2
w(1 + ‖B‖2)n

τ4

(1− ρ2)4
(‖Q‖+K2

max‖R‖) log(E/δ) +O(1)

≤ σ2−2α
w (1 + ‖B‖2)

dτ2

1− ρ2 (‖R‖+ ‖V?‖‖B‖2)C2
err

α+ 1

α

(
T + 1

Tmult

)α/(α+1)

polylog(T/δ)

+ Tmult‖B‖2J?
α+ 1

α

(
T + 1

Tmult

)α/(α+1)

+O(1)
√
nTσ2

w(1 + ‖B‖2)n
τ4

(1− ρ2)4
(‖Q‖+K2

max‖R‖) log(T/δ) +O(1) .

The last inequality holds because:

E−1∑
i=1

(2i)α/(1+α) ≤
∫ E

1

(2x)α/(1+α) dx ≤ 1

log 2

α+ 1

α
(2E)α/(α+1) =

1

log 2

α+ 1

α

(
T + 1

Tmult

)α/(α+1)

.
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Now observe that we can bound

Kmax ≤ Γ? ,

Vmax ≤ 4
τ2

1− ρ2
Γ3
? ,

Σmax ≤ 4σ2
wnΓ2

?

τ2

1− ρ2
,

τ2

1− ρ2
≤ Γ2

?

λmin(S)2
.

Therefore:

Regret(T ) ≤ σ2(1−α)
w d

Γ7
?

λmin(S)2
C2

err

(
T + 1

Tmult

)α/(α+1)

polylog(T/δ)

+ TmultΓ
2
?J?

(
T + 1

Tmult

)α/(α+1)

+O(1)n3/2
√
Tσ2

w

Γ9
?

λmin(S)4
log(T/δ) + oT (1) .

We now turn to the proof of Theorem 2.3 and analyze Algorithm 3 by applying Proposition C.4 with
LSPI (Section B) taking the place of EstimateK. To apply Proposition C.4, we use Theorem 2.2 to
compute the bounds Creq, Cerr that are needed for Assumption 1 to hold. The following proposition
will be used to work out these bounds.

Proposition C.5. Let P1 = dlyap(L,M1) and P2 = dlyap(LT,M2), and suppose both M1 and M2

are n× n positive definite. We have that:

‖P1‖ ≤ n
‖M1‖

σmin(M2)
‖P2‖ .

Proof. We start with the observation that tr(M2P1) = tr(M1P2). Then we lower bound
tr(M2P1) ≥ σmin(M2) tr(P1) ≥ σmin(M2)‖P1‖, and upper bound tr(M1P2) ≤ ‖M1‖ tr(P2) ≤
n‖M1‖‖P2‖.

We use Proposition C.5 to compute the following upper bound for P∞:

‖P∞‖ ≤ n
σ2
w + σ2

η‖B‖2
λmin(S)

‖V?‖ ≤ σ2
wn

Γ2
?

λmin(S)
.

We first compute the Creq term from (2.12):

Creq(‖V (i)‖) = min

{
1,

2 log(‖V (i)‖/λmin(V?))

e
,

‖V?‖2
8µ2 log(‖V (i)‖/λmin(V?))

}
.

We see that Creq is monotonically decreasing in ‖V (i)‖.
Next we compute Cerr from (2.14). First we see that α = 2. Observing we can upper bound
L ≤ Γ2

?‖V (i)‖+, we have that:

Cerr(‖V (i)‖, ‖Σ(i)
0 ‖) =

Γ94
?

(1− µ/(Γ2
?‖V?‖+))2

‖V (i)‖47
+

µ43
(n+ d)4σ2

w

(
‖Σ(i)

0 ‖+ σ2
wn

Γ2
?

λmin(S)
+ σ2

wΓ2
?

)
.

We see that Cerr is monotonically increasing in both ‖V (i)‖ and ‖Σ(i)
0 ‖. This gives the proof of

Theorem 2.3.
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D Properties of the Invariant Metric

Here we review relevant properties of the invariant metric δ∞(A,B) = ‖log(A−1/2BA−1/2)‖ over
positive definite matrices.
Lemma D.1 (c.f. [22]). Suppose that A is positive semidefinite and X,Y are positive definite. Also
suppose that M is invertible. We have:

(i) δ∞(X,Y ) = δ∞(X−1, Y −1) = δ∞(MXMT,MYMT).

(ii) δ∞(A + X,A + Y ) ≤ α
α+β δ∞(X,Y ), where α = max{λmax(X), λmax(Y )} and β =

λmin(A).

Lemma D.2 (c.f. Theorem 4.4, [22]). Consider the map f(X) = A+M(B +X−1)−1MT, where
A,B are PSD and X is positive definite. Suppose that X,Y are two positive definite matrices and A
is invertible. We have:

δ∞(f(X), f(Y )) ≤ max{λ1(MXMT), λ1(MYMT)}
λmin(A) + max{λ1(MXMT), λ1(MYMT)}δ∞(X,Y ) .

Proof. We first assume that M is invertible. Using the properties of δ∞ from Lemma D.1, we have:

δ∞(f(X), f(Y )) = δ∞(A+M(B +X−1)−1MT, A+M(B + Y −1)−1MT)

≤ α

λmin(A) + α
δ∞(M(B +X−1)−1MT,M(B + Y −1)−1MT)

=
α

λmin(A) + α
δ∞((B +X−1)−1, (B + Y −1)−1)

=
α

λmin(A) + α
δ∞(B +X−1, B + Y −1)

≤ α

λmin(A) + α
δ∞(X−1, Y −1)

=
α

λmin(A) + α
δ∞(X,Y ) ,

where α = max{λmax(M(B+X−1)−1MT), λmax(M(B+X−1)−1MT)}. Now, we observe that:

B +X−1 � X−1 ⇐⇒ (B +X−1)−1 � X .

This means that M(B + X−1)−1MT � MXMT and similarly M(B + Y −1)−1MT � MYMT.
This proves the claim when M is invertible. When M is not invertible, use a standard limiting
argument.

Proposition D.3. Suppose that A,B are positive definite matrices satisfying A � µI , B � µI . We
have that:

δ∞(A,B) ≤ ‖A−B‖
µ

.

Proof. We have that:

‖A−1/2BA−1/2‖ = ‖A−1/2(B −A)A−1/2 + I‖ ≤ 1 +
‖B −A‖

µ
.

Taking log on both sides and using log(1 + x) ≤ x for x ≥ 0 yields the claim.

Proposition D.4. Suppose that B � A1 � A2 are all positive definite matrices. We have that:

δ∞(A1, B) ≤ δ∞(A2, B) .

Proof. The chain of orderings implies that:

I � B−1/2A1B
−1/2 � B−1/2A2B

−1/2 .
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Therefore:

δ∞(A1, B) = log λmax(B−1/2A1B
−1/2) ≤ log λmax(B−1/2A2B

−1/2) = δ∞(A2, B) .

Each step requires careful justification. The first equality holds because I � B−1/2A1B
−1/2 and

the second inequality uses the monotonicity of the scalar function x 7→ log x on R+ in addition to
B−1/2A1B

−1/2 � B−1/2A2B
−1/2.

Proposition D.5. Suppose that A,B are positive definite matrices with B � A. We have that:

‖A−B‖ ≤ ‖A‖(exp(δ∞(A,B))− 1) .

Furthermore, if δ∞(A,B) ≤ 1 we have:

‖A−B‖ ≤ e‖A‖δ∞(A,B) .

Proof. The assumption that B � A implies that A−1/2BA−1/2 � I and that ‖A−B‖ = λmax(B−
A). Now observe that:

‖A−B‖ = λmax(B −A)

= λmax(A1/2(A−1/2BA−1/2 − I)A1/2)

≤ ‖A‖λmax(A−1/2BA−1/2 − I)

= ‖A‖(λmax(A−1/2BA−1/2)− 1)

= ‖A‖(exp(δ∞(A,B))− 1) .

This yields the first claim. The second follows from the crude bound that ex ≤ 1 + ex for x ∈
(0, 1).

E Useful Perturbation Results

Here we collect various perturbation results which are used in Section B.2.

Lemma E.1 (Lemma B.1, [35]). Suppose that K0 stabilizes (A,B), and satisfies ‖(A+BK0)k‖ ≤
τρk for all k with τ ≥ 1 and ρ ∈ (0, 1). Suppose that K is a feedback matrix that satisfies
‖K − K0‖ ≤ 1−ρ

2τ‖B‖ . Then we have that K stabilizes (A,B) and satisfies ‖(A + BK)k‖ ≤
τAvg(ρ, 1)k.

Lemma E.2 (Lemma 1, [26]). Let f1, f2 be two µ-strongly convex twice differentiable functions. Let
x1 = arg minx f1(x) and x2 = arg minx f2(x). Suppose ‖∇f1(x2)‖ ≤ ε, then ‖x1 − x2‖ ≤ ε

µ .

Proposition E.3. Let M � µI and N � µI be a positive definite matrices partitioned as M =[
M11 M12

MT
12 M22

]
and similarly for N . Let T (M) = −M−1

22 M
T
12. We have that:

‖T (M)− T (N)‖ ≤ (1 + ‖T (N)‖)‖M −N‖
µ

.

Proof. Fix a unit norm x. Define f(u) = (1/2)xTM11x + (1/2)uTM22u + xTM12u and g(u) =
(1/2)xTN11x+ (1/2)uTN22u+ xTN12u. Let u? = T (N)x. We have that

∇f(u?) = ∇f(u?)−∇g(u?) = (M22 −N22)u? + (M12 −N12)Tx .

Hence, ‖∇f(u?)‖ ≤ ‖M12 − N12‖ + ‖M22 − N22‖‖u?‖. We can bound ‖u?‖ = ‖T (N)x‖ ≤
‖T (N)‖. The claim now follows using Lemma E.2.

Proposition E.4. Let K,K0 be two stabilizing policies for (A,B). Let V, V0 denote their respective
value functions and suppose that V � V0. We have that for all k ≥ 0:

‖(A+BK)k‖ ≤
√
λmax(V0)

λmin(S)
(1− λmin(V −1

0 S))k/2 .
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Proof. This proof is inspired by the proof of Lemma 5.1 of Abbasi-Yadkori et al. [3]. Since V is the
value function for K, we have:

V = (A+BK)TV (A+BK) + S +KTRK

� (A+BK)TV (A+BK) + S .

Conjugating both sides by V −1/2 and defining H := V 1/2(A+BK)V −1/2,

I � V −1/2(A+BK)TV (A+BK)V −1/2 + V −1/2SV −1/2

= HTH + V −1/2SV −1/2 .

This implies that ‖H‖2 = ‖HTH‖ ≤ ‖I − V −1/2SV −1/2‖ = 1 − λmin(S1/2V −1S1/2) ≤ 1 −
λmin(S1/2V −1

0 S1/2). The last inequality holds since V � V0 iff V −1 � V −1
0 , Now observe:

‖V 1/2(A+BK)kV −1/2‖ = ‖Hk‖ ≤ ‖H‖k ≤ (1− λmin(V −1
0 S))k/2

Next, for M positive definite and N square, observe that:

‖MNM−1‖ =
√
λmax(MNM−2NTM)

≥
√
λmin(M−2)λmax(MNNTM)

=
√
λmin(M−2)λmax(NTM2N)

≥
√
λmin(M−2)λmin(M2)‖N‖2

=
‖N‖
κ(M)

.

Therefore, we have shown that:

‖(A+BK)k‖ ≤
√
κ(V )(1− λmin(V −1

0 S))k/2 ≤
√
λmax(V0)

λmin(S)
(1− λmin(V −1

0 S))k/2 .

Proposition E.5. Let A be a (τ, ρ) stable matrix, and let |||·||| be either the operator or Frobenius
norm. We have that:

|||dlyap(A,M)||| ≤ τ2

1− ρ2
|||M ||| . (E.1)

Proof. It is a well known fact that we can write P =
∑∞
k=0(Ak)TM(Ak). Therefore the bound

follows from triangle inequality and the (τ, ρ) stability assumption.

Proposition E.6. Suppose that A1, A2 are stable matrices. Suppose furthermore that ‖Aki ‖ ≤ τρk
for some τ ≥ 1 and ρ ∈ (0, 1). Let Q1, Q2 be PSD matrices. Put Pi = dlyap(Ai, Qi). We have that:

‖P1 − P2‖ ≤
τ2

1− ρ2
‖Q1 −Q2‖+

τ4

(1− ρ2)2
‖A1 −A2‖(‖A1‖+ ‖A2‖)‖Q2‖ .

Proof. Let the linear operators F1, F2 be such that Pi = F−1
i (Qi), i.e. Fi(X) = X − AT

i XAi.
Then:

P1 − P2 = F−1
1 (Q1)− F−1

2 (Q2)

= F−1
1 (Q1 −Q2) + F−1

1 (Q2)− F−1
2 (Q2)

= F−1
1 (Q1 −Q2) + (F−1

1 − F−1
2 )(Q2) .

Hence ‖P1−P2‖ ≤ ‖F−1
1 ‖‖Q1−Q2‖+ ‖F−1

1 −F−1
2 ‖‖Q2‖. Now for any M satisfying ‖M‖ ≤ 1

‖F−1
i (M)‖ =

∥∥∥∥∥
∞∑
k=0

(AT
i )kMAki

∥∥∥∥∥ ≤ τ2

1− ρ2
.
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Next, we have that:

‖F−1
1 − F−1

2 ‖ = ‖F−1
1 (F2 − F1)F−1

2 ‖ ≤ ‖F−1
1 ‖‖F−1

2 ‖‖F1 − F2‖ ≤
τ4

(1− ρ2)2
‖F1 − F2‖ .

Now for any M satisfying ‖M‖ ≤ 1,

‖F1(M)− F2(M)‖ = ‖AT
2MA2 −AT

1MA1‖
= ‖(A2 −A1)TMA2 +AT

1M(A2 −A1)‖
≤ ‖A1 −A2‖(‖A1‖+ ‖A2‖) .

The claim now follows.

F Useful Implicit Inversion Results

Proposition F.1. Let T ≥ 2 and suppose that α ≥ 1. Define ε as:

ε = inf

{
ε ∈ (0, 1) : T ≥ 1

ε2
logα(1/ε)

}
,

then we have

ε ≤ log(α+1)/2(T )√
T

.

As a corollary, if T ≥ 2C then if we define ε as:

ε = inf

{
ε ∈ (0, 1) : T ≥ C

ε2
logα(1/ε)

}
,

then we have

ε ≤
√
C

T
log(α+1)/2(T/C) .

Proof. First, we know that such a ε exists by continuity because limε→1−
1
ε2 logα(1/ε) = 0.

Suppose towards a contradiction that ε > logβ(T )/
√
T where 2β = α+ 1. Note that we must have

logβ(T )/
√
T < 1, since if we did not, we would have

1 ≥ ε > logβ(T )/
√
T ≥ 1 .

Therefore, by the definition of ε,

T <
T

log2β(T )
logα(

√
T/ logβ(T )) ≤ T

log2β(T )
logα(

√
T ) .

This implies that:

log2β(T ) ≤ logα(
√
T ) =

1

2α
logα(T ) .

Using the fact that 2β = α+ 1, this implies:

log(T ) ≤ 1/2α =⇒ T ≤ exp(1/2α) ≤ exp(1/2) .

But this contradicts the assumption that T ≥ 2.

The corollary follows from a change of variables T ← T/C.

Proposition F.2. Let C ≥ 1 and α ≥ 1. We have that:

sup
i=0,1,2,...

1

(2i)1/α
polylog(C2i) ≤ poly(α) polylog(C) .
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Proof. Let β ≥ 1. We have that:

1

(2i)1/α
logβ(C2i) =

1

(2i)1/α
(log(C) + log(2i))β

≤ 2β−1

(2i)1/α
(logβ(C) + logβ(2i))

≤ 2β−1 logβ(C) + 2β−1 iβ

(2i)1/α
logβ(2) .

Next, we look at:

f(i) :=
iβ

(2i)1/α
.

We have that:
d

di
log2 f(i) =

β

i log 2
− 1

α
.

Setting the derivative to zero we obtain that i = αβ/ log 2. Therefore:

sup
i=0,1,2,...

f(i) ≤ β
(
αβ

log 2

)β
.

The claim now follows.

Proposition F.3. Let C > 0. Then for any ε ∈ (0,min{1/e, C2}), we have the following inequality
holds:

ε log(1/ε) ≤ C .

As a corollary, let M > 0, then for ε ∈ (0,min{M/e,C2/M}) we have that:

ε log(M/ε) ≤ C .

Proof. Let f(ε) := ε log(1/ε). We have that limε→0+ f(ε) = 0 and that f ′(ε) = log(1/ε) − 1.
Hence f is increasing on the interval ε ∈ [0, 1/e], and f(1/e) = 1/e. Therefore, if C ≥ 1/e then
f(ε) ≤ C for any ε ∈ (0, 1/e).

Now suppose that C < 1/e. One can verify that the function g(x) := 1/x+2 log x satisfies g(x) ≥ 0
for all x > 0. Therefore:

g(C) ≥ 0⇐⇒ 1/C + 2 logC ≥ 0

⇐⇒ 1/C ≥ log(1/C2)

⇐⇒ C ≥ C2 log(1/C2)

⇐⇒ f(C2) ≤ C .

Since C < 1/e we have C2 ≤ C and therefore f(ε) ≤ f(C2) ≤ C for all ε ∈ (0, C2). This proves
the first part.

To see the second part, use the variable substitution ε← ε/M , C ← C/M .

Proposition F.4. Let β ≥ 1 and C ≥ (e/β)β . Let x denote the solution to:

x = C logβ(x) .

We have that x ≤ e(α−1)βββ · C logβ(βC1/β), where α = 2− log(e− 1).

Proof. Let W (·) denote the Lambert W function. It is simple to check that x =

exp(−βW (− 1
βC1/β )) satisfies x = C logβ(x). From Theorem 3.2 of ? ], we have that for any

t > 0:

W (−e−t−1) > − log(t+ 1)− t− α , α = 2− log(e− 1) .
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We now write:

W

(
− 1

βC1/β

)
= W

(
−elog( 1

βC1/β
)
)

= W
(
−e− log(βC1/β)

)
= W (−e−t−1) , t = log(βC1/β)− 1

> − log(t+ 1)− t− α .
where the last inequality uses the result from Alzahrani and Salem and the assumption that C ≥
(e/β)β . We now upper bound x:

x = exp

(
−βW

(
− 1

βC1/β

))
≤ exp(β log(t+ 1) + βt+ αβ)

= exp(β log log(βC1/β)) exp(β log(βC1/β)) exp((α− 1)β)

= exp((α− 1)β)ββC logβ(βC1/β) .

G Experimental Evaluation Details

In this section we briefly describe the other algorithms we evaluate in Section 4, and also describe
how we tune the parameters of these algorithms for the experiments.

Define the function J(K;W ) as:

J(K;W ) := lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
(G.1a)

s.t. xt+1 = Axt +But + wt , ut = Kxt , wt ∼ N (0,W ) . (G.1b)

Certainty equivalence (nominal) control uses data to estimate a model (Â, B̂) ≈ (A,B) and then solve
for the optimal controller to (G.1) via the Riccati equations. On the other hand, both policy gradients
and DFO are derivative-free random search algorithms on J(K;W ). For policy gradients, one uses
action-space perturbations to obtain an unbiased estimate of the gradient of J(K;σ2

wI + σ2
ηBB

T).
For DFO, random finite differences are used to obtain an unbiased estimate of the gradient of
Jση (K) := Eξ[J(K + σηξ;σ

2
wI)], where each entry of ξ is drawn i.i.d. from N (0, 1). Below, we

describe each method in more detail.

Certainty equivalence (nominal) control. The certainty equivalence (nominal) controller solves
(G.1) by first constructing an estimate (Â, B̂) ≈ (A,B) and then outputting the estimated controller
K̂ via:

K̂ = −(B̂TP̂ B̂ +R)−1B̂TP̂ Â ,

P̂ = dare(Â, B̂, S,R) .

The estimates (Â, B̂) are constructed via least-squares. In particular, N trajectories each of length
T are collected {x(i)

t }T,Nt=1,i=1 using the random input sequence u(i)
t ∼ N (0, σ2

uI), and (Â, B̂) are
formed as the solution to:

(Â, B̂) = arg min
(A,B)

1

2

N∑
i=1

T−1∑
t=1

‖x(i)
t+1 −Ax

(i)
t −Bu(i)

t ‖2 .

For our experiments, we set σu = 1.
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Policy gradients. The gradient estimator works as follows. A large horizon length T is fixed.
A trajectory {xt} is rollout out for T timesteps with the input sequence ut = Kxt + ηt, with
ηt ∼ N (0, σ2

ηI). Let τs:t = (xs, us, xs+1, us+1, ..., xt, ut) denote a sub-trajectory, and let c(τs:t)
denote the LQR cost over this sub-trajectory, i.e. c(τs:t) =

∑t
k=s x

T
kSxk + uTkRuk. The policy

gradient estimate is:

ĝ =
1

T

T∑
t=1

c(τt:T )

σ2
η

ηtx
T
t .

Of course, one can use a baseline function b(τ1:t−1, xt) for variance reduction as follows:

ĝ =
1

T

T∑
t=1

c(τt:T )− b(τ1:t−1, xt)

σ2
η

ηtx
T
t .

DFO. We use the two point estimator. As in policy gradients, we fix a horizon length T . We first
draw a random perturbation ξ. Then, we rollout one trajectory {xt}Tt=1 with ut = (K + σηξ)xt, and
we rollout another trajectory {x′t}Tt=1 with u′t = (K − σηξ)x′t. We then use the gradient estimator:

ĝ =
1
T

∑T
t=1 ct − 1

T

∑T
t=1 c

′
t

2ση
ξ , ct = xTt Sxt + uTt Rut , c

′
t = (x′t)

TSx′t + (u′t)
TRu′t .

MFLQ. We update the policy every 100 iterations and do not execute a random exploratory action
since we found that it negatively affected the performance of the algorithm in practice. In terms of
the parameters described in Algorithm 1 of Abbasi-Yadkori et al. [3] we execute v2 of the algorithm
and set Ts = ∞ and Tv = 100. We also chose to use all data collected throughout an experiment
when updating the policy.

Optimal. The optimal controller simply solves for the optimal controller to G.1 given the true
matrices A and B. That is, it uses the controller

K = −(BTPB +R)−1BTPA ,

P = dare(A,B, S,R) .

Offline setup details. Recall that we use stochastic gradient descent with a constant step size µ
as the optimizer for both policy gradients and DFO. After every iteration, we project the iterate
Kt onto the set {K : ‖K‖F ≤ 5‖K?‖F }, where K? is the optimal LQR controller (we assume
the value ‖K?‖F is known for simplicity). We tune the parameters of each algorithm as follows.
We consider a grid of step sizes µ given by [10−3, 10−4, 10−5, 10−6] and a grid of ση’s given by
[1, 10−1, 10−2, 10−3]. We fix the rollout horizon length T = 100 and choose the pair of (ση, µ) in
the grid which yields the lowest cost after 106 timesteps. This resulted in the pair (ση, µ) = (1, 10−5)
for policy gradients and (ση, µ) = (10−3, 10−4) for DFO. As mentioned above, we use the two
point evaluation for derivative-free optimization, so each iteration requires 2T timesteps. For policy
gradient, we evaluate two different baselines bt. One baseline, which we call the simple baseline,
uses the empirical average cost b = 1

T

∑T
t=1 ct from the previous iteration as a constant baseline.

The second baseline, which we call the value function baseline, uses b(x) = xTV (K)x with
V (K) = dlyap(A + BK,S + KTRK) as the baseline. We note that using this baseline requires
exact knowledge of the dynamics (A,B); it can however be estimated from data at the expense of
additional sample complexity (c.f. Section 2.1). For the purposes of this experiment, we simply
assume the baseline is available to us.

Online setup details. In the online setting we warm-start every algorithm by first collecting 2000
datapoints collected by feeding the input Kxt + ηt to the system where K is a stabilizing controller
and ηt is Gaussian distributed aditive noise with standard deviation 1. We then run each algorithm
for 10, 000 iterations. In the case of LSPI we set the initial number of policy iterations N to be 3
and subsequently increase it to 4 at 2000 iterations, 5 at 4000 iterations, and 6 at 6000 iterations.
We also follow the experimental methodology of Dean et al. [13] and set Ti = 10(i + 1) and set

σ2
η,i = 0.01

(
1
i+1

)2/3

where i is the epoch number. Finally we repeat each experiment for 100 trials.
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G.1 Additional Experiments

In this section we include the results of additional experiments we ran in the online setting. We ran
the nominal, LSPI, and MFLQ algorithms in the same online setting described previously, keeping
track of relative error (J(K̂)− J?)/J? between the current controller and the optimal controller.

0 2000 4000 6000 8000 10000
timesteps
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10−2
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LSPI
MFLQ

Figure 2: The cost suboptimality of MFLQ, LSPI, and the nominal controller when compared with the baseline
of the optimal controller in the adaptive setting. The shaded regions represent the median to upper 90th percentile
over 100 trials. Here, LSPI is Algorithm 3 using LSPIv1, MFLQ is from Abbasi-Yadkori et al. [3], nominal is
the ε-greedy adaptive certainty equivalent controller (c.f. [13]), and optimal has access to the true dynamics.

As Figure 2 shows, both LSPI and MFLQ perform similarly with LSPI slightly outperforming MFLQ
towards the end of the experiment. Nominal significantly outperforms both model-free algorithms.
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