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1 Proof of Theorem 4.2

Definition 1. LetM be a compact manifold endowed with a continuous measure µ. For any z ∈M,
its (η(τ), τ)-neighborhood N is the neighbourhood with radius η(τ) and measure τ , i.e., µ(N ) = τ ,
N =M∩B2(z, η(τ)), and η(τ) = min{r : µ(M∩B2(z, r)) = τ}.

SinceM is compact, its measure is finite, say µ(M) = A, and the radii of all the τ -neighbourhoods
are bounded by some constant η:

sup
i
|ηi|2 ≤ η2.

Theorem 2 (Full version of Theorem 4.2). Given the dataset X = [X1, X2, · · · , Xn], let each
Xi be independently drawn from a compact manifold M ⊆ Rp with intrinsic dimension d and
endowed with the uniform distribution µ. Fix some q > 0, let Xij , j = 1, . . . , ki be the ki points
falling in the (ηi, q)-neighbourhood of Xi. Together they form a matrix X(i) = [Xi1 , . . . , Xiki

, Xi].
Suppose the i.i.d. projections yi,j ≡ PTXi

(Xij − Xi) where TXi is the tangent space at Xi

obey the same distribution as some ai for all j, i.e., yi,j ∼ ai (∼ means the two vectors are
identically distributed), and the matrix E(ai − Eai)(ai − Eai)∗ has a finite condition number for
each i. In addition, suppose the support of the noise matrix S(i) is uniformly distributed among
all sets of cardinality mi. For any ζ ∈ M, let Tζ be the tangent space of M at ζ and define
µ1 := supζ∈M µ(Tζ). Then as long as qn ≥ c log n, d < ρr min{nq/2, p}µ−1

1 log−2 max{2nq, p},
and mi

pki
≤ 0.4ρs (here c, ρr and ρs are positive numerical constants), then with probability over

1 − c1(nmax{nq/2, p}−10 + exp(−c2nq)) for some constants c1 and c2, the minimizer Ŝ to (2)

with λi = min{ki+1,p}1/2

εi
, and βi = max{ki + 1, p}−1/2 has the error bound∑

i

‖Pi(Ŝ)− S(i)‖2,1 ≤ C
√
pnk̄‖ε‖2.

Here k̄ = maxi ki satisfing nq/2 ≤ k̄ ≤ 2nq, εi = ‖X̃(i) −Xi1
T − T (i) − S(i)‖F , ε = [ε1, ..., εn],

‖·‖2,1 stands for taking `2 norm along columns and `1 norm along the rows, and T (i) is the projection
of X(i) −Xi to the tangent space TXi .

The proof the Theorem 2 uses similar techniques as [3]. The main difference is that in [3], both the
left and the right singular vectors of the data matrix are required to satisfy the coherence conditions,
while here we show that only the left singular vectors that corresponding to the tangent spaces are
relevant. In other words, the recovery guarantee is built solely upon assumptions on the intrinsic
properties of the manifold, i.e., the tangent spaces.
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The proof architecture is as follows. In Section 1.1, we derive the error bound in Theorem 4.2 under
a small coherence condition for both the left and the right singular vectors of L(i). In Section 1.2, we
show that the requirement on the right singular vectors can be removed using the i.i.d. assumption on
the samples.

1.1 Deriving the error bound in Theorem 2 under coherence conditions on both the right
and the left singular vectors

In Section 3 of the main paper, we explained that L(i) = Xi1
T + T (i) corresponds to the linear

approximation of the ith patch. After the centering C(L(i)) = C(T (i)), one gets rid of the first term
and the resulting matrix has a column span coincide with T (i). This indicates that the columns of
C(L(i)) lie in the column space of the tangent space span(T (i)), this also indicates that the rows of
L(i) are in span{1T , T (i)}.

One can view the knowledge that 1T is in the row space of L(i) as a prior knowledge of the left
singular vectors of L(i). Robust PCA with prior knowledge is studied in [3], and we will use some of
the result therein. Specifically, we adapt the dual certificate approach in [3] to our problem to derive
the error bound for our new problem in the theorem, and choose proper λi, i = 1, 2, · · · , n and βi
accordingly.

We first state the following assumptions as from [3]:

Assumption A

In each local patch, L(i) ∈ Rp,ki+1, denote n(1) = max{p, ki + 1}, n(2) = min{p, ki + 1}, let

C(L(i)) = UiΣiV
∗
i ,

be the singular value decomposition for each L(i), where Ui ∈ Rp×d,Σi ∈ Rd×d, V ∗i ∈ Rd×(k+1).
let Ṽi be the orthonormal basis of span{1, Vi}, assume for each i ∈ {1, 2, · · · , n}, the following
hold with a constant ρr that is small enough

max
j
‖U∗i ej‖2 ≤

ρrd

p
, (1)

max
j
‖Ṽ ∗i ej‖2 ≤

ρrd

ki
, (2)

max
j
‖UiV ∗i ‖∞ ≤

√
ρrd

pki
. (3)

and ρr, ρs, p, ki satisfies the following assumptions:

Assumption B([3], Assumption III.2.)

(a) ρr ≤ min{10−4, C1},
(b) ρs ≤ min{1− 1.5b1(ρr), 0.0156},
(c) n(1) ≥ max{C2(ρr), 1024},

(d) n(2) ≥ 100 log2 n(1),

(e) (p+ki)
1/6

log(p+ki)
> 10.5

(ρs)1/6(1−5.6561)
√
ρs
,

(f) pki
500 logn(1)

> 1
ρ2
s
,

where b1(ρr), C2(ρr) are some constants related to ρr.

Denote Πi as the linear space of matrices for each local patch (note that this is different from the
tangent space T i of the manifold)

Πi := {UiX∗ + Y Ṽ ∗i , X ∈ Rp,d, Y ∈ Rp,d+1}.

As shown by [3], the following lemma holds, indicating that if incoherence condition is satisfied, then
with high probability, there exists desirable dual certificate (W,F ).

2



Lemma 3 ([3], Lemma V.8, Lemma V.9). For fixed i = 1, 2, · · · , n, if assumptions (1), (2), (3),
Assumption B and other assumptions in Theorem 2 hold, then with probability at least 1− cn−10

(1) ,

‖PΩi
PΠi
‖ ≤ 1/4, where Ωi is the support set of S(i), and β < 3

10 . In addition, there exists a pair
(Wi, Fi) obeying

UiV
∗
i +Wi = β(sgn(S(i)) + Fi + PΩiDi), (4)

with
PΠi

Wi = 0, ‖Wi‖ ≤
9

10
, PΩi

Fi = 0, ‖Fi‖∞ ≤
9

10
, ‖PΩi

Di‖F ≤
1

4
. (5)

Therefore, by union bound, with probability over 1− cnn−10
(1) , for each local patch, there exists a pair

(Wi, Fi) obeying (4) and (5).

In Section 9.1.2, we will show that with our assumption that data is independently drawn from a
manifoldM⊆ Rp with intrinsic dimension d endowed with the uniform distribution, (2) and (3) are
satisfied with high probability, so we only need Assumption B and (1), which is only related to the
property of tangent space of the manifold itself.

In Lemma 5, we prove that in our setting that each Xi is drawn from a manifoldM⊆ Rp indepen-
dently and uniformly, with high probability, for all i = 1, 2, · · ·n, ki is some integer within the range
[qn/2, 2qn]. Now we use that to prove Theorem 2, the result is stated in the following lemma.
Lemma 4. If for all local patch i = 1, 2, · · · , n, there exists a pair (Wi, Fi) obeying (4) and (5),

then the minimizer Ŝ to (2) with λi = min{ki+1,p}1/2

εi
, and βi = max{ki + 1, p}−1/2 has the error

bound ∑
i

‖Pi(Ŝ)− S(i)‖2,1 ≤ C
√
pnk̄‖ε‖2.

Here εi = ‖X̃(i) −Xi1
T − T (i) − S(i)‖F , ε = [ε1, ..., εn] is defined same as Theorem 2.

Proof. To simplify notation, let’s start with the problem for only one local patch:

min λ‖X̃ − L− S‖2F + ‖LG‖∗ + β‖S‖1. (6)

Here X̃ ∈ Rp×(k+1), where k denotes the number of neighbors in each local patch,G = I− 1
k+111

T

is the centering matrix, recall that the noisy data X̃ is X̃ = X+S+E = L+R+S+E, ‖R+E‖F =

‖X̃−L−S‖F ≤ ε (to be more accurate, εi for patch i), X is the clean data on the manifold, L is first
order Talor approximation of X , R is higher order terms, and E denotes random noise. Also denote
the solution to problem (6) as L̂ = L+H1, Ŝ = S +H2. We choose β = 1√

n(1)
= 1√

max{k+1,p}
.

Since L̂, Ŝ are the solution to (6), the following holds:

λ‖X̃ − L− S‖2F + ‖LG‖∗ + β‖S‖1
≥ λ‖X̃ − (L+H1)− (S +H2)‖2F + ‖(L+H1)G‖∗ + β‖S +H2‖1
≥ λ‖H1 +H2 − (R+ E)‖2F + ‖LG‖∗ + 〈H1G,UV

∗ +W0〉+ β‖S‖1 + β〈H2, sgn(S) + F0〉
= λ‖H1 +H2‖2F + λ‖R+ E‖2F − 2λ〈R+ E,H1 +H2〉+ ‖LG‖∗ + 〈H1G,UV

∗〉+ β‖S‖1
+ β〈H2, sgn(S)〉+ ‖PΠ⊥(H1G)‖∗ + β‖PΩ⊥H2‖1.

Here we choose W0 and F0 such that 〈H1G,W0〉 = ‖PΠ⊥(H1G)‖∗, 〈H2, F0〉 = ‖PΩ⊥H2‖1 same
as [1]. Note that LG = UΣV ∗, G = I − 1

k+111
T is orthogonal projector, LG1 = 0 implies

V ∗1 = 0, we have

〈H1G,UV
∗〉 = 〈H1, UV

∗G〉 = 〈H1, UV
∗(I − 1

k + 1
11T )〉 = 〈H1, UV

∗〉,

PΠ⊥(H1G) = (I−UU∗)H1G(I− Ṽ Ṽ ∗) = (I−UU∗)H1(I− 1

k + 1
11T )(I− Ṽ Ṽ ∗) = PΠ⊥H1.

For the second equality we use the fact that 1 lies on the subspace spanned by Ṽ , so (I− Ṽ Ṽ ∗)1 = 0.
And for any matrix M , PΠ⊥M = (I − UU∗)M(I − Ṽ Ṽ ∗).

3



Denote H = H1 +H2, plug in the equations above, we obtain

2λ〈R+ E,H〉 ≥ λ‖H‖2F + 〈H1 +H2, UV
∗〉+ 〈H2, βsgn(S)− UV ∗〉+ ‖PΠ⊥H1‖∗ + β‖PΩ⊥H2‖1

≥ λ‖H‖2F − ‖H‖F ‖UV ∗‖F + 〈H2,W − βF − βPΩD〉+ ‖PΠ⊥H1‖∗ + β‖PΩ⊥H2‖1

≥ λ‖H‖2F −
√
n(2)‖H‖F −

9

10
‖PΠ⊥H2‖∗ −

9

10
β‖PΩ⊥H2‖1 −

β

4
‖PΩH2‖F+

‖PΠ⊥H1‖∗ + β‖PΩ⊥H2‖1.

In the 3rd inequality we used

|〈H2,W 〉| = |〈H2,PΠ⊥W 〉| = |〈PΠ⊥H2,W 〉| ≤ ‖PΠ⊥H2‖∗‖W‖ ≤
9

10
‖PΠ⊥H2‖∗,

|〈H2, F 〉| = |〈H2,PΩ⊥F 〉| = |〈PΩ⊥H2, F 〉| ≤ ‖PΩ⊥H2‖1‖F‖∞ ≤
9

10
‖PΩ⊥H2‖1,

|〈H2,PΩD〉| ≤ |〈PΩH2,PΩD〉| ≤
1

4
‖PΩH2‖F .

Assume ‖R+ E‖F ≤ ε, for all i = 1, 2, · · · , n. Also note that

‖PΩH2‖F ≤ ‖PΩPΠH2‖F + ‖PΩPΠ⊥H2‖F

≤ 1

4
‖H2‖F + ‖PΠ⊥H2‖F

≤ 1

4
‖PΩH2‖F +

1

4
‖PΩ⊥H2‖F + ‖PΠ⊥H2‖F ,

then we have

‖PΩH2‖F ≤
1

3
‖PΩ⊥H2‖F +

4

3
‖PΠ⊥H2‖F ≤

1

3
‖PΩ⊥H2‖1 +

4

3
‖PΠ⊥H2‖∗.

Plug into the previous inequality, also note that for n(1) ≥ 16, β = 1√
n(1)
≤ 1

4 , it gives

2λε‖H‖F ≥ λ‖H‖2F −
√
n(2)‖H‖F − (

9

10
+
β

3
)‖PΠ⊥H2‖∗ +

β

60
‖PΩ⊥H2‖1 + ‖PΠ⊥H1‖∗

≥ λ‖H‖2F −
√
n(2)‖H‖F +

β

60
‖PΩ⊥H2‖1 +

1

60
‖PΠ⊥H1‖∗ +

59

60
(‖PΠ⊥H1‖∗ − ‖PΠ⊥H2‖∗)

= λ‖H‖2F −
√
n(2)‖H‖F +

β

60
‖PΩ⊥H2‖1 +

1

60
‖PΠ⊥H1‖∗ +

59

60
(‖PΠ⊥H1‖∗ − ‖PΠ⊥(−H2)‖∗)

≥ λ‖H‖2F −
√
n(2)‖H‖F +

β

60
‖PΩ⊥H2‖1 +

1

60
‖PΠ⊥H1‖∗ −

59

60
‖PΠ⊥(H1 +H2)‖∗

≥ λ‖H‖2F −
√
n(2)‖H‖F +

β

60
‖PΩ⊥H2‖1 +

1

60
‖PΠ⊥H1‖∗ − ‖H‖∗.

The last inequality is due to

‖PΠ⊥H‖∗ = sup
‖X‖2≤1

〈PΠ⊥H,X〉 = sup
‖X‖2≤1

〈H,PΠ⊥X〉 ≤ sup
‖P

Π⊥X‖2≤1

〈H,PΠ⊥X〉 ≤ sup
‖X‖2≤1

〈H,X〉 = ‖H‖∗.

Note that ‖H‖∗ ≤
√
n(2)‖H‖F , then we obtain

2λε‖H‖F ≥ λ‖H‖2F − 2
√
n(2)‖H‖F +

β

60
‖PΩ⊥H2‖1 +

1

60
‖PΠ⊥H1‖∗.

Rewrite this inequality gives

β

60
‖PΩ⊥H2‖1 +

1

60
‖PΠ⊥H1‖∗ ≤ −λ‖H‖2F + 2(

√
n(2) + λε)‖H‖F

= −λ(‖H‖F − (

√
n(2) + λε

λ
))2 + (

√
n(2)√
λ

+
√
λε)2

≤ (

√
n(2)√
λ

+
√
λε)2.
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Recall that in our original optimization problem, we should consider above inequalities for the
summation of all the local patches, denote hi ≡ ‖H(i)‖F , then

n∑
i=1

βi
60
‖PΩ⊥i

H
(i)
2 ‖1 +

1

60

n∑
i=1

‖PΠ⊥i
H

(i)
1 ‖∗

≤
n∑
i=1

−λi‖H(i)‖2F + 2
√

min{ki + 1, p}‖H(i)‖F + 2λiεi‖H(i)‖F

=

n∑
i=1

−λih2
i + 2

√
min{ki + 1, p}hi + 2λiεihi

=

n∑
i=1

−λi(hi −
√

min{ki + 1, p}+ λiεi
λi

)2 + (

√
min{ki + 1, p}√

λi
+
√
λiεi)

2

≤ 4

n∑
i=1

√
min{ki + 1, p}εi,

where we choose λi =

√
min{ki+1,p}

εi
, and βi = 1√

max{ki+1,p}
.

Then we have the bound for
∑n
i=1 ‖PΠ⊥i

H
(i)
1 ‖∗ and

∑n
i=1 ‖PΩ⊥i

H
(i)
2 ‖1

n∑
i=1

‖PΠ⊥i
H

(i)
1 ‖∗ ≤ C

√
min{k̄, p}

n∑
i=1

εi ≤ C
√

min{k̄, p}
√
n‖ε‖2,

n∑
i=1

‖PΩ⊥i
H

(i)
2 ‖1 ≤ C

√
max
i

max{ki, p}
n∑
i=1

√
min{ki, p}εi

= C
√

max{k̄, p}
n∑
i=1

√
min{ki, p}εi

≤ C
√

max{k̄, p}min{k̄, p}
n∑
i=1

εi

≤ C
√
pk̄
√
n‖ε‖2.

Denote H(i)
2 ≡ Pi(Ŝ)− S(i), to estimate the error bound of

∑n
i=1 ‖H

(i)
2 ‖2,1, we decompose H(i)

2
into three parts, for each i = 1, 2, · · ·n

‖H(i)
2 ‖F ≤ ‖(I − PΩi)H

(i)
2 ‖F + ‖(PΩi − PΩiPΠi)H

(i)
2 ‖F + ‖PΩiPΠiH

(i)
2 ‖F

≤ ‖PΩ⊥i
H

(i)
2 ‖F + ‖PΠ⊥i

H
(i)
2 ‖F +

1

4
‖H(i)

2 ‖F ,

which leads to

‖H(i)
2 ‖F ≤

4

3
(‖PΩ⊥i

H
(i)
2 ‖F + ‖PΠ⊥i

H
(i)
2 ‖F )

=
4

3
(‖PΩ⊥i

H
(i)
2 ‖1 + ‖PΠ⊥i

H
(i)
1 ‖∗ + ‖PΠ⊥i

H(i)‖F )

≤ 4

3
(‖PΩ⊥i

H
(i)
2 ‖1 + ‖PΠ⊥i

H
(i)
1 ‖∗ + ‖H(i)‖F ).

Next, we need to bound
∑n
i=1 ‖H(i)‖F , note that λi =

√
min{ki+1,p}

εi
and

n∑
i=1

−λih2
i + 2

√
min{ki + 1, p}hi + 2λiεihi ≥ 0,
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which gives

4
√

min{k̄ + 1, p}
n∑
i=1

hi ≥ 4

n∑
i=1

√
min{ki + 1, p}hi ≥

n∑
i=1

√
min{ki + 1, p} h

2
i

εi
≥
√

min{k + 1, p}
n∑
i=1

h2
i

εi
,

by Cauchy inequality
n∑
i=1

h2
i

εi
≥

(
∑n
i=1 hi)

2∑n
i=1 εi

≥
(
∑n
i=1 hi)

2

√
n‖ε‖2

,

then we obtain
n∑
i=1

hi ≤ 4

√
min{k̄ + 1, p}
min{k + 1, p}

√
n‖ε‖2 ≤ C

√
n‖ε‖2,

the last inequality is due to nq
2 ≤ k ≤ k̄ ≤ 2nq, which is guaranteed with high probability by Lemma

5, thus
n∑
i=1

‖H(i)
2 ‖F ≤

4

3
(

n∑
i=1

‖PΩ⊥i
H

(i)
2 ‖1 +

n∑
i=1

‖PΠ⊥i
H

(i)
1 ‖∗ +

n∑
i=1

‖H(i)‖F )

=
4

3
(
n∑
i=1

‖PΩ⊥i
H

(i)
2 ‖1 +

n∑
i=1

‖PΠ⊥i
H

(i)
1 ‖∗ +

n∑
i=1

hi)

≤ C
√
pk̄n‖ε‖2.

Now let’s divideH(i)
2 into columns to get the `2,1 norm error bound, denote (H

(i)
2 )j as the jth column

in H(i)
2 , then we can derive the `2,1 norm error bound in Lemma 4

C

√
pk̄n‖ε‖2 ≥

n∑
i=1

‖H(i)
2 ‖F =

n∑
i=1

√√√√ki+1∑
j=1

‖(H(i)
2 )j‖22

&
n∑
i=1

√√√√ 1

ki
(

ki∑
j=1

‖(H(i)
2 )j‖2)2

&
1√
k̄

n∑
i=1

ki∑
j=1

‖(H(i)
2 )j‖2.

Then we obtain ∑
i

‖Pi(Ŝ)− S(i)‖2,1 =

n∑
i=1

ki+1∑
j=1

‖(H(i)
2 )j‖2 ≤ C

√
pnk̄‖ε‖2.

Lemma 5. If qn ≥ 9 log n, with probability at least 1 − 2 exp(−c3qn), qn2 ≤ ki ≤ 2qn, for all
i = 1, 2, · · · , n, here c3 is some constants not related to q and n.

Proof. Since each Xi is drawn from a manifoldM ⊆ Rp independently and uniformly, for some
fixed (ηi0 , q)-neighborhood of Xi0 , for each j = {1, 2, · · · , n}\{i0}, the probability that Xj falls
into (ηi0 , q)-neighborhood is q. Since {Xi}i=1,2,···n, ki follows i.i.d binomial distribution B(n, q),
we can apply large deviations inequalities to derive an upper and lower bound for ki. By Theorem 1
in [2], we have that for each i = 1, 2, · · · , n

P(ki > 2qn) ≤ exp(− (qn)2

2(qn(1− q) + qn/3)
) ≤ exp(−3

8
qn),

P(ki <
qn

2
) ≤ exp(− (qn/2)2

2qn
) = exp(−1

8
qn).
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Therefore by Union Bound Theorem

P(
qn

2
≤ ki ≤ 2qn,∀i = 1, 2, · · ·n) ≥ 1− n(exp(−3

8
qn) + exp(−1

8
qn))

≥ 1− 2n exp(−1

8
qn)

= 1− 2 exp(−1

8
qn+ log n)

≥ 1− 2 exp(− 1

72
qn).

1.2 Removing (2) and (3) in Assumption A

We will show that under our assumption that points are uniformly drawn from the manifold, (2)
and (3) in Assumption A automatically hold provided (1) holds, thus they can be removed from the
requirements.

Let us again restrict our attention to an individual patch and for the simplicity of notation, ignore
the superscript i (the treatment for all patches are the same). Recall that C(L) = C(T ) = UΣV ∗,
and Ṽ is the orthonormal basis of span([1, V ]), since 0 = C(T )1 = UΣV ∗1, we have V ∗1 = 0,
then 1 ⊥ span(V ), thus we can write one basis for span([1, V ]) as [ 1√

k+1
1, V ], which indicates

that in order to remove (2), we only need to show that with high probability, V has small coherence.
Also, recall that T (i) = PTXi

(X(i) − Xi1
T ), since each Xi is independent, each column in T (i)

is also independent. In addition, each column is in the span of the tangent space with U being an
orthonormal basis. Therefore T = UΛ ≡ U [α1, α2, ..., αk, 0], where αi, i = 1, 2, · · · , k is the ith
column of Λ, which corresponds to the coefficients of the ith column of T under U , the last column
is zero vector since it corresponds to Xi itself. Since columns of T are i.i.d, then αis are also i.i.d.,
so they all obey the same distribution as a random vector α. We establish the following lemma for
the right singular vectors of T .
Lemma 6. Let C(T ) = UΣV ∗ be the reduced singular vector decomposition of C(T ), assume C ≡
E((α−Eα)(α−Eα)∗) has a finite condition number. Then, with probability at least 1−2d exp(−ck),
the right singular vector V obeys

max
1≤j≤k

‖V ∗ej‖2 ≤
c

k
,

and with (1) in Assumption A

‖UV ∗‖∞ ≤

√
cd

pk
.

Proof. As discussed above, C(T ) has the following representation

C(T ) = TG = U [α1, α2, · · · , αk,0]G ,

where U ∈ Rp,d is an orthonormal basis of the tangent space, and Λ = [α1, α2, ..., αk,0] ∈ Rd,k+1

is the coefficients of randomly drawn points in a neighbourhood projected to the tangent space.

Since points are randomly drawn from an neighbourhood contained in a ball of radius at most η, one
can easily verify that ‖αj‖2 ≤ η for each j = 1, ..., k. Assume TG and Λ have the reduced SVD of
the form

TG = UΣV ∗, ΛG = UΛΣΛV
∗
Λ ,

Then T can be written as
TG = UΣV ∗ = UUΛΣΛV

∗
Λ .

It can be verified that null(TG) is the span of columns in (VΛ)C , then we have span(VΛ) = span(V ),
since both VΛ and V are orthonormal, they are equal up to a rotation, i.e. ∃R ∈ Rd,d, R∗R = RR∗ =
I , such that V = VΛR. Then

max
1≤j≤k

‖V ∗ej‖2 = max
1≤j≤k

‖R∗V ∗Λej‖2 = max
1≤j≤k

‖V ∗Λej‖2.
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Next we bound the coherence of VΛ. Since V ∗Λ = Σ−1
Λ U∗ΛΛG, we have

max
1≤j≤k

‖Σ−1
Λ U∗ΛΛGej‖ ≤ ‖Σ−1

Λ ‖ max
1≤i≤k

‖U∗ΛΛGej‖

= ‖Σ−1
Λ ‖ max

1≤j≤k
‖ΛGej‖

≤ ‖Σ−1
Λ ‖ max

1≤j≤k
‖αj − ᾱ‖

≤ 2η‖Σ−1
Λ ‖.

Recall that

ΛG = [α1, α2, · · · , αk, 0](I − 1

k + 1
11T )

= [α1 − ᾱ, α2 − ᾱ, · · · , αk − ᾱ,−ᾱ]

= [α1 − Eα, α2 − Eα, · · · , αk − Eα, 0]− [ᾱ− Eα, ᾱ− Eα, · · · , ᾱ− Eα, ᾱ],

where ᾱ = 1
k+1

∑k
i=1 αi, thus

|σd(ΛG)− σd([α1 − Eα, α2 − Eα, · · · , αk − Eα, 0])|
≤‖[ᾱ− Eα, ᾱ− Eα, · · · , ᾱ− Eα, ᾱ]‖2
≤‖[ᾱ− Eα, ᾱ− Eα, · · · , ᾱ− Eα, ᾱ− Eα]‖2 + ‖Eα‖2

≤
√
k + 1‖ 1

k + 1

k∑
i=1

(αi − Eα)− 1

k + 1
Eα‖2 + η

≤‖ 1√
k + 1

k∑
i=1

(αi − Eα)‖2 + 2η

(7)

Fitst, we want to use Bernstein Matrix Inequality to bound the `2-norm in the last inequality. Denote
βi = 1√

k+1
(αi − Eα), Z =

∑k
i=1 βi, then βi is independent, we also have

Eβi = 0, ‖βi‖2 ≤
1√
k + 1

(‖αi‖2 + ‖Eα‖2) ≤ 2η√
k
,

which means βi has mean zero and is uniformly bounded, also
ν(Z) = max{‖E(ZZ∗)‖2, ‖E(Z∗Z)‖2}

= max{‖
n∑
i=1

E(βiβ
∗
i )‖2, ‖

n∑
i=1

E(β∗i βi)‖2}

=
k

k + 1
max{‖E(αi − Eα)(αi − Eα)T ‖2,E tr((αi − Eα)(αi − Eα)T ))}

< max{‖C‖2, tr(C)}
< dσ1(C).

By assumption, C has finite condition number, and d� k, by Matrix Bernstein inequality, we are
able to bound the spectral norm of Z

P (‖Z‖2 ≥ t) ≤ (d+ 1) exp(
−t2

dσ1(C) + 2ηt

3
√
k

)

Let t =

√
σd(C)k

4 ,we have

P (‖Z‖2 ≥
√
σd(C)k

4
) ≤ d exp(−ck). (8)

Next, equipped with Matrix Bernstein inequality again, we can prove that σd([α1 − Eα, α2 −
Eα, · · · , αk − Eα, 0]) concentrates around σd(C). Note that σ2

d([α1 − Eα, α2 − Eα, · · · , αk −
Eα, 0]) = σd(

∑k
i=1(αi − Eα)(αi − Eα)T ), we consider

|σd(
k∑
i=1

(αi − Eα)(αi − Eα)T )− kσd(C)| ≤ ‖
n∑
i=1

(αi − Eα)(αi − Eα)T − kC‖2

8



Similar as what we discussed above, let Zj = (αj − Eα)(αj − Eα)T − C, j = 1, 2, · · · , k. It can
be verified that Zj is bounded

‖Zj‖2 ≤ ‖αj − Eα‖22 + σ1(C) ≤ 2η2 + σ1(C) ≡ c4.

Since Zj follows i.i.d distribution, we also have ν(Z) ≤ kc5 for some constant c5 which represents
the variance of Zj . Applying matrix Bernstein inequality, we obtain

P
(
‖

k∑
j=1

(αj − Eα)(αj − Eα)T − kC‖2 ≥ t
)
≤ 2d exp(− t2

kc5 + c4t
3

)

further, take t = 3kσd(C)
4 , then with probability over 1 − 2d exp(−c6k) for some constant c6, the

following holds

|σd(
k∑
i=1

(αi − Eα)(αi − Eα)T )− kσd(C)| ≤ ‖
n∑
i=1

(αi − Eα)(αi − Eα)T − kC‖2 <
3kσd(C)

4
,

which leads to

σ2
d([α1 − Eα, α2 − Eα, · · · , αk − Eα]) = σd(

k∑
i=1

(αi − Eα)(αi − Eα)T ) >
kσd(C)

4
,

thus

σd([α1 − Eα, α2 − Eα, · · · , αk − Eα]) >

√
kσd(C)

2
. (9)

Combine (7), (8) and (9), we have proved that with probability at least 1− d exp(−ck), σd(ΛP ) %√
k, therefore ‖Σ−1

Λ ‖ -
1√
k

, which further gives max
1≤j≤k+1

‖V ∗ej‖2 - 1
k .

Finally, with (1) in Assumption A, (3) is also satisfied with the same probability, since

‖UV ∗‖∞ ≤ max
j
‖U∗ej‖2 max

l
‖V ∗el‖2 ≤

√
cd

pk
.

Hence (3) in Assumption A can also be removed.

The above discussion is valid for each patch individually, i.e., with probability at least 1 −
d exp(−cki) ≥ 1 − d exp(−ck), (2) and (3) hold for any fixed i = 1, 2, · · ·n. By union bound
inequality, with probability at least 1− nd exp(−ck), (2) and (3) hold for all the local patches.

Note that 1 − nd exp(−ck) = 1 − exp(−ck + log n), here we omit d since it is very small. By
Lemma 5, with probability at least 1− 2 exp(−c1qn), nq2 ≤ ki ≤ 2nq, for all i = 1, 2, · · ·n. Using
the assumption in Theorem 4.2, qn ≥ c2 log n for some constant c2 larger enough, we can see that
with probability over 1 − exp(−c3k), the requirement (2) and (3) automatically hold due to i.i.d
assumption on the samples, which enable us to remove these assumptions in Theorem 4.2.

1.3 Proof of the convergence of λ̂i−λ∗i
λ∗i

as k →∞

When k is large enough, min{k + 1, p} = p, λ̂i =
√
p

ε̂i
, λ∗i =

√
p

εi
, then

λ̂i − λ∗i
λ∗i

=

√
p

ε̂i
−
√
p

εi√
p

εi

=
εi − ε̂i
ε̂i

=
εi
ε̂i
− 1.

9



In order to show | λ̂i−λ∗i
λ∗i
| k→∞−−−−→ 0, it is sufficient to prove that ε2i−ε̂

2
i

ε̂2i
=

ε2i
ε̂2i
− 1

k→∞−−−−→ 0, thus
εi
ε̂i

k→∞−−−−→ 1, hence λ̂i−λ∗i
λ∗i

k→∞−−−−→ 0. Notice that

∣∣∣∣ε2i − ε̂2iε̂2i

∣∣∣∣ =
∣∣∣‖R

(i) +N (i)‖2F −
(
(k + 1)pσ2 +

k∑
j=1

‖Xi−Xij
‖42

4 Γ̄2(Xi)
)

(k + 1)pσ2 +
k∑
j=1

‖Xi−Xij
‖42

4 Γ̄2(Xi)

∣∣∣

≤
∣∣∣
(
‖N (i)‖2F − (k + 1)pσ2

)
+
(
‖R(i)‖2F −

k∑
j=1

‖Xi−Xij
‖42

4 Γ̄2(Xi)
)

+ 〈N (i), R(i)〉

kpσ2

∣∣∣
≤
∣∣‖N (i)‖2F − (k + 1)pσ2

kpσ2

∣∣+
∣∣‖R(i)‖2F −

k∑
j=1

‖Xi−Xij
‖42

4 Γ̄2(Xi)

kpσ2

∣∣+
∣∣∑k

j=1〈N
(i)
j , R

(i)
j 〉

(k + 1)pσ2

∣∣.
Since each entry in N (i) follows i.i.d. obeying N (0, σ2), 〈N (i)

j , R
(i)
j 〉 are also i.i.d. with

E(〈N (i)
j , R

(i)
j 〉) = 0, by law of large numbers, the first and third term approximates 0 when k →∞.

Also, by (12) and (13) in §5, the second term also approximates 0, thus ε2i−ε̂
2
i

ε̂2i

k→∞−−−−→ 0.

2 More numerical simulations

2.1 High dimensional Swiss roll

In the main paper, we demonstrated the superior performance of NRPCA on the 3D Swiss roll under
the mixed noise model. We carried out the same simulation on a high dimension Swiss roll, and
obtained better distinguishability among 1)-3). We also observed an overall improvement of the
performance of NRPCA, which matches our intuition that the assumptions of Theorem 4.2 are more
likely to be satisfied in high dimensions. The denoised results are displayed in Figure 1, where we
clearly see that the neighbour update step effectively reduced more sparse noise, and the use of X̂
instead of X̃ − Ŝ allows a significant amount of Gaussian noise to be removed from the data.

In the high dimensional simulation, we generated a Swiss roll in R20 as following:

1. Choose the number of samples n = 2000;

2. let t be the vector of length n containing the n uniform grid points in the interval [0, 4π] with grid
space 4π/(n− 1);

3. Set the first three dimensions of the data the same way as the 3D Swiss roll, for i = 1, ..., n,

Xi(1) = (t(i) + 1) cos(t(i));

Xi(2) = (t(i) + 1) sin(t(i));

Xi(3) ∼ unif([0, 8π]),

where unif([0, 8π]) means the uniform distribution on the interval [0, 8π].

4. Set the 4-20 dimensions of the data to contain pure sinusoids with various frequencies

Xi(k) = t(i) sin(fkt(i)), k = 4, ..., 20, .

where fk = k/21 is the frequency for the kth dimension. The noisy data is obtained by adding i.i.d.
Gaussian noise N (0, 0.25) to each entry of X and adding sparse noise to 600 randomly chosen
entries where the noise added to each chosen entry obeys N (5, 0.09).

2.2 MNIST

We observe some interesting dimension reduction results of the MNIST dataset with the help of
NRPCA. It is well-known that the handwritten digits 4 and 9 have so high a similarity that some
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Figure 1: NRPCA applied to the noisy 20D Swiss roll data set. X̃ − Ŝ is the result after subtracting
the estimated sparse noise via NRPCA with T = 1 “X̃ − Ŝ with one neighbor update” is that with
T = 2, i.e., patches are reassigned once; X̂ is the denoised data obtained via fitting the tangent spaces
in NRPCA with T = 2; “Patch-wise Robust PCA” refers to the ad-hoc application of the vanilla
RPCA to each local patch independently, whose performance is clearly worse than the proposed
joint-recovery formulation.

popular dimension reduction methods, such as Isomap and Laplacian Eigenmaps (LE) are not able
to separate them into two clusters (first column of Figure 2). Despite the similarity, a few other
methods (such as t-SNE) are able to distinguish them to a much higher degree, which suggests the
possibility of improving the results of Isomap and LE with proper data pre-processing. We conjecture
that the overlapping parts in Figure 2 (the left column) are caused by personalized writing styles with
different beginning or finishing strokes. This type of differences can be better modelled by sparse
noise than Gaussian or Poisson noises.

-0.01 -0.005 0 0.005 0.01 0.015

Laplacian1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

L
a
p
la

c
ia

n
2

Original, Laplacian

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Laplacian1

-0.015

-0.01

-0.005

0

0.005

0.01

L
a
p
la

c
ia

n
2

Denoised Laplacian

-25 -20 -15 -10 -5 0 5 10 15 20 25

Isomap1

-20

-15

-10

-5

0

5

10

15

Is
o
m

a
p
2

Original Isomap

-15 -10 -5 0 5 10 15 20

Isomap1

-10

-5

0

5

10

15

Is
o
m

a
p
2

Denoised Isomap

Figure 2: Laplacian eigenmaps and Isomap results for the original and the NRPCA denoised digits 4
and 9 from the MNIST dataset.

The right column of Figure 2 confirms this conjecture: after the NRPCA denoising (with k = 6),
we see a much better separability of the two digits using the first two coordinates of Isomap and
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Laplacian Eigenmaps. Here we used 2000 randomly drawn images of 4 and 9 from the MNIST
training dataset. Figure 2 in the main paper used another random set of the same cardinally, but they
both demonstrated that the denoising step greatly facilitates the dimensionality reduction.

In addition, we observe some emerging trajectory (or skeleton) patterns in the plot of the denoised
embedding (right column of Figure 2). Mathematically speaking, this is due to the nuclear norm
penalty on the tangent spaces in the optimization formulation that forces the denoised data to have a
small intrinsic dimension. However, since the small intrinsic dimensionality is not manually inputted
but implicitly imposed via an automatic calculation of the data curvature and the weight parameter
λi, we do not think the trajectory pattern is a human artifact. To further examine the meaning the
trajectories, we replaced the dots in the bottom two scattered plots in Figure 2 by their original
images of the digits, and obtained Figure 3 and Figure 4. We can see that 1). the digits are better
grouped in the denoised embedding than the orignal one and 2). the trajectories in the denoised
embedding correspond to graduate transitions between the two images on the two ends. If two images
are connected by two trajectories, then it indicates two ways for one image to gradually deform into
the other. Furthermore, Figure 5 listed a few images of 4 and 9 before and after denoising, which
shows which part of the image is detected as sparse noise and changed by NRPCA.

Figure 3: Isomap embedding using the original data from the MNIST dataset.

Figure 4: Isomap embedding using the Denoised data via NRPCA.
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Original images for digit 4 Denoised images for digit 4

Original images for digit 9 Denoised images for digit 9

Figure 5: A comparison of the original and the NRPCA denoised images of digit 4 and 9.

Figure 6 shows the results for NRPCA denoising with more iterations of patch-reassignment, we can
see that the results almost have no visible difference after T > 2. Since the patch-reassignment is in
the outer iteration, increasing its frequency greatly increases the computation time. Fortunately, we
find that often times two iterations are enough to deliver a good denoising result.

Noisy images Denoised images with T=1 Denoised images with T=2

Denoised images with T=3 Denoised images with T=4 Denoised images with T=5

Figure 6: NRPCA Denoising results with more iterations of patch-reassignment.
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