
Supplements to
“Semi-flat minima and saddle points by embedding

neural networks to overparameterization”

A Definitions

Let Ω be an open domain in Rd, and f : Ω → R be a differentiable function. x0 ∈ Ω is called a
mininum (global minimum) if f(x) ≥ f(x0) for all x ∈ Ω. x0 is a local minimum if there is an open
neighborhood U of x0 such that x0 is a minimum f |U in U . A point x0 ∈ Ω is a saddle point if for
any open neighborhood of x0 has y and z such that f(y) > f(x0) and f(z) < f(x0). Some literature
discuss flat minima [3, 4, 1, 5], which are observed to have link with generalization performance.
In this paper, we introduce semi-flat minima, which is defined as an affine subset V of Ω such that
c = f(x) for any x ∈ V and f(z) ≥ c for any z ∈ Ω.

B Proof of Theorem 2

We show a proof using the original parameterization. We can also use the repameteriation introduced
in Section 3.2, which may give other insights on the local properties, but we omit it here. See also
Figure 3 for the meaning of parameters.

Recall that the gradients of LH with respect to the parameters can be given by the back-propagation,
which computes the derivatives with respect to the weight parameters successively from the output
layer to the input. For simplicity we use the notation

`ν(θ(H)) := `(yν ,f
(H)(xν ;θ(H))). (14)

Let zk,ν = (zk,ν1 , . . . , zk,νHk )T be the input to the Hk units in the k-th layer for xν , i.e.,

zk,νi =

Hk∑
j=1

wkijφ(zk−1,νj ),

where wkij is the weight parameter connecting from Uk−1j to Uki . Let

δk,νi :=
∂`ν(θ(H))

∂zki
.

Then, the back-propagation or generalized delta rule [9] computes the derivatives by

δk,νj =

Hk+1∑
i=1

wk+1
ij δk+1

i φ′(zkj ),
∂LH(θ(H))

∂wkij
=

n∑
ν=1

δk,νi φ(zk−1,νj ). (15)

Now consider the embedding using a unit in the q-th layer. Note that the output of any layer except q
in f (H)(x;θ

(H)
λ ) is equal to that of f (H0)(x;θ

(H0)
∗ ), and the backpropagation of the both networks

gives exactly the same δk,νi to any Uk,i for k > q. It follows that

∂LH(θ(H))

∂V0

∣∣∣
θ(H)=θ

(H)
λ

=
∂LH0(θ(H0))

∂V0

∣∣∣
θ(H0)=θ

(H0)
∗

= O. (16)

The derivatives of LH0 with respect to ζj and uj (1 ≤ j ≤ H0) are given by

∂LH0
(θ(H0))

∂ζj
=

n∑
ν=1

∂`ν(θ(H0))

∂zq+1,ν

∂zq+1,ν

∂ζj
=

n∑
ν=1

δq+1,νϕ(xν ;uj ,W0) (17)

∂LH0(θ(H0))

∂uj
=

n∑
ν=1

∂`ν(θ(H0))

∂zq+1,ν

∂zq+1,ν

∂uj
=

n∑
ν=1

δq+1,νT ζj
∂ϕ(xν ;uj ,W0)

∂uj
, (18)
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Figure 3: Function of neural networks

where δq+1,ν = (δq+1,ν
1 , . . . , δq+1,ν

M )T .

In the same manner, for 1 ≤ j ≤ H0 − 1, the derivatives of LH with respect to uj and wj are given
by

∂LH(θ(H))

∂vj
=

n∑
ν=1

∂`ν(θ(H))

∂zq+1,ν

∂zq+1,ν

∂vj
=

n∑
ν=1

δq+1,νϕ(xν ;wj ,W0) (19)

∂LH(θ(H))

∂wj
=

n∑
ν=1

∂`ν(θ(H))

∂zq+1,ν

∂zq+1,ν

∂wj
=

n∑
ν=1

δq+1,νTvj
∂ϕ(xν ;wj ,W0)

∂wj
. (20)

It is obvious that these derivatives at θ(H) = θ
(H)
λ are equal to those of LH0 at θ(H0)

∗ , and thus equal
to zero.

For H0 ≤ j ≤ H , by the definition of θ(H)
λ , we have

∂LH(θ(H))

∂vj

∣∣∣
θ
(H)
λ

=

n∑
ν=1

δq+1,νϕ(xν ;wj ,W0)
∣∣∣
θ
(H)
λ

=

n∑
ν=1

δq+1,ν
∗ ϕ(xν ;uH0∗,W0∗) (21)

∂LH(θ(H))

∂wj

∣∣∣
θ
(H)
λ

=

n∑
ν=1

δq+1,νTvj
∂ϕ(xν ;wj ,W0)

∂wj

∣∣∣
θ
(H)
λ

= λj

n∑
ν=1

δq+1,ν
∗

T
ζH0∗

∂ϕ(xν ;uH0∗,W0∗)

∂uH0

,

(22)

which are zero from the stationary condition of θ(H0)
∗ . We have also

∂LH(θ(H))

∂W0

∣∣∣
θ
(H)
λ

=

n∑
ν=1

H∑
j=1

δq+1,νTvj
∂ϕ(xν ;wj ,W0)

∂W0

∣∣∣
θ
(H)
λ

=

n∑
ν=1

δq+1,ν
∗

T
H0−1∑
j=1

ζj∗
∂ϕ(xν ;uj∗,W0∗)

∂W0
+

n∑
ν=1

δq+1,ν
∗

T
H∑

j=H0

λjζH0∗
∂ϕ(xν ;uH0∗,W0∗)

∂W0

=

n∑
ν=1

δq+1,ν
∗

T
H0∑
j=1

ζj∗
∂ϕ(xν ;uj∗,W0∗)

∂W0
(23)

=
∂LH0

(θ(H0))

∂W0

∣∣∣
θ(H0)=θ

(H0)
∗

= O, (24)

which completes the proof.
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C Embedding by inactive units and propagation for smooth networks

As in Eqs. (17) through (20), stationary conditions for LH0
give, for 1 ≤ i ≤ H0,

∂LH0
(θ(H0))

∂ζi
=

n∑
ν=1

δq+1,νϕ(xν ;ui,W0) = 0

∂LH0
(θ(H0))

∂uj
=

n∑
ν=1

δq+1,νT ζi
∂ϕ(xν ;ui,W0)

∂ui
= 0. (25)

The derivatives of LH with respect to vj and wj are given by

∂LH(θ(H))

∂vj
=

n∑
ν=1

∂`ν(θ(H))

∂zq+1,ν

∂zq+1,ν

∂vj
=

n∑
ν=1

δq+1,νϕ(xν ;wj ,W0) (26)

∂LH(θ(H))

∂wj
=

n∑
ν=1

∂`ν(θ(H))

∂zq+1,ν

∂zq+1,ν

∂wj
=

n∑
ν=1

δq+1,νTvj
∂ϕ(xν ;wj ,W0)

∂wj
. (27)

In the case of inactive units, vj for j ≥ H0 + 1 is arbitrary and the ∂ϕ(xν ;w
(0),W0)

∂wj
is not necessarily

zero, so that Eq. (25) does not necessarily imply that Eq. (27) is zero. In the case of inactive
propagation, wj is arbitrary for j ≥ H0 + 1, which does not mean Eq. (26) is zero in general.

Consider the embedding by making both of units and propagation inactive; i.e.,
vi = ζi (1 ≤ i ≤ H0)

wi = ui (1 ≤ i ≤ H0)

vj = 0 (H0 + 1 ≤ j ≤ H)

wj = w(0) (H0 + 1 ≤ j ≤ H). (28)

Then, for j ≥ H0 + 1, we have ϕ(x;wj ,W0) = 0 at wj = w(0) which means Eq. (26) is zero, and
Eq. (27) vanishes from vj = 0. Therefore, the stationary point of LH0

is embedded to a stationary
point of LH , but there is no flat direction for this stationary point in general.

D Proofs of Lemmas 3, 4, and Theorem 5 in Section 3

In the sequel, we repeatedly use the following relations.

∂

∂b
=

H∑
j=H0

∂

∂wj
,

∂

∂ηc
=

H∑
j=H0

αcj
∂

∂wj
,

∂

∂a
=

H∑
j=H0

λj
∂

∂vj
,

∂

∂ξc
=

H∑
k=H0

λkαck
∂

∂vk
. (29)

D.1 Proof of Lemma 3

It follows from Eq. (29) that

∂f (H)(x;θ(H))

∂b

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

∂f (H)(x;θ(H))

∂wj

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

vj
∂ϕ(x;wj)

∂wj

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

λjζH0

∂ϕ(x;uH0)

∂uH0

=
∂f (H0)(x;θ

(1)
∗ )

∂uH0

,
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since
∑
j λj = 1. Also,

∂f (H)(x;θ(H))

∂ηc

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

αcj
∂f (H)(x;θ(H))

∂wj

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

αcjλjζH0

∂ϕ(x;uH0)

∂uH0

= 0,

since
∑
j αcjλj = 0 by definition of A.

From Eq. (29), we have

∂f (H)(x;θ(H))

∂a

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

λj
∂f (H)(x;θ(H))

∂vj

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
j=H0

λjϕ(x;wj)I
∣∣∣
θ(H)=θ

(H)
λ

= ϕ(x;uH0,∗)I

=
∂f (H0)(x;θ

(H0)
∗ )

∂ζH0

,

and

∂f (H)(x;θ(H))

∂ξc

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
k=H0

λkαck
∂f (H)(x;θ(H))

∂vk

∣∣∣
θ(H)=θ

(H)
λ

=

H∑
k=H0

λkαckϕ(x;uH0
)I = 0.

D.2 Proof of Lemma 4

We use the notation
zν = f (H)(xν ;θ(H)).

(i) First, we compute the blocks related to the derivative with respect to η. We have

∂LH(θ(H))

∂ηc
=

n∑
ν=1

∂`ν(θ(H))

∂zν

∂zν
∂ηc

=

n∑
ν=1

M∑
m=1

∂`ν(θ(H))

∂zν,m

H∑
j=H0

αcjvjm
∂ϕ(xν ;wj)

∂wj
. (30)

It follows from Eqs. (29) and (30) that

∂2LH(θ(H))

∂ηc∂a
=

H∑
k=H0

λk
∂2LH(θ(H))

∂ηc∂vk

=

n∑
ν=1

M∑
m=1

∂2`ν(θ(H))

∂zν∂zν,m

H∑
k=H0

λkϕ(xν ;wk)

H∑
j=H0

αcjvjm
∂ϕ(xν ;wj)

∂wj

+

n∑
ν=1

∂`ν(θ(H))

∂zν

H∑
k=H0

αckλk
∂ϕ(xν ;wk)

∂wk
. (31)

By inserting θ(H) = θ
(H)
λ , the first term is zero since vj = λjζ∗ and

∑
j αcjλj = 0. The second

term is also zero from
∑
k αckλk = 0.
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Differentiation of Eq. (30) with b gives

∂2LH(θ(H))

∂ηc∂b
=

n∑
ν=1

M∑
m,m′=1

∂2`ν(θ(H))

∂zν,m∂zν,m′

H∑
k=H0

vkm′
∂ϕ(xν ;wk)

∂wk

H∑
j=H0

αcjvjm
∂ϕ(xν ;wj)

∂wj

+ δjk

n∑
ν=1

M∑
m=1

∂`ν(θ(H))

∂zν,m

H∑
j=H0

αcjvjm

H∑
k=H0

∂2ϕ(xν ;wk)

∂wk∂wk
. (32)

At θ(H) = θ
(H)
λ , both the terms are zero for the same reason as Eq. (31).

Similarly, for si = vi or wi (1 ≤ i ≤ H0 − 1),

∂2LH(θ(H))

∂ηc∂si
=
∂2LH(θ(H))

∂ηc∂si

=

n∑
ν=1

M∑
m=1

∂2`ν(θ(H))

∂zν∂zν,m

∂zν
∂si

H∑
j=H0

αcjvjm
∂ϕ(xν ;wj)

∂wj
,

which is zero at θ(H) = θ
(H)
λ from

∑
j αcjλj = 0.

Next, from Eqs. (29) and (30), we have

∂2LH(θ(H))

∂ηc∂ξd
=

n∑
ν=1

∂2`ν(θ(H))

∂zν∂zν

H∑
k=H0

αdkλkϕ(xν ;wk)

H∑
j=H0

αcjvj
∂ϕ(xν ;wj)

∂wj

+

n∑
ν=1

∂`ν(θ(H))

∂zν

H∑
k=H0

αdkαckλk
∂ϕ(xν ;wk)

∂wk
. (33)

At θ(H) = θ
(H)
λ , the first trem vanishes and the second term reduces to

∂2LH(θ
(H)
λ )

∂ηc∂ξd
= (AΛAT )cd

n∑
ν=1

∂`ν(θ
(H0)
∗ )

∂zν

∂ϕ(xν ;uH0,∗)

∂uH0

,

which is (AΛAT )cdF .

The block LH(θ
(H)
λ )

∂ηc∂ηd
can be computed in a similar way to Eq. (33):

∂2LH(θ(H))

∂ηc∂ηd
=

n∑
ν=1

M∑
m,m′=1

∂2`ν(θ(H))

∂zν,m′∂zν,m

H∑
j=H0

αcjvjm
∂ϕ(xν ;wj)

∂wj

H∑
k=H0

αdkvkm′
∂ϕ(xν ;wk)

∂wk

+

n∑
ν=1

M∑
m=1

∂`ν(θ(H))

∂zν,m

H∑
j=H0

αcjαdjvjm
∂2ϕ(xν ;wj)

∂wjwj
.

By plugging θ(H) = θ
(H)
λ , the first term is zero, and the second term is reduced to

H∑
j=H0

λjαcjαdj

n∑
ν=1

∂`ν(θ(H))

∂zν
ζH0,∗

∂2ϕ(xν ;uH0,∗)

∂uH0
∂uH0

, (34)

which is (AΛAT )cdG.

(ii) Second, we will compute the remaining second derivatives including ξc. From Eq. (29), the first
derivative with respect to ξc is given by

∂LH(θ(H))

∂ξc
=

n∑
ν=1

∂`ν(θ(H))

∂zν

H∑
j=H0

λjαcjϕ(xν ;wj). (35)

14



From this expression,

∂2LH(θ(H))

∂ξc∂vk

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

∂2`ν(θ
(H)
λ )

∂zν∂zν

H∑
j=H0

λjαcj
(
ϕ(xν ;uH0,∗)

)2
= 0,

which means ∂2LH(θ
(H)
λ )

∂ξc∂ξd
and ∂2LH(θ

(H)
λ )

∂ξc∂a
are zero.

It follows from Eqs. (35) and (29) that

∂2LH(θ(H))

∂ξc∂b

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

M∑
m=1

∂2`ν(θ
(H)
λ )

∂zν∂zν,m

H∑
j=H0

λjαcjϕ(xν ;uH0,∗)

H∑
k=H0

vkm
∂ϕ(xν ;uH0,∗)

∂uH0

+

n∑
ν=1

∂`ν(θ(H))

∂zν

H∑
j=H0

λjαcj
∂ϕ(xν ;uH0,∗)

∂uH0

,

which is zero from
∑
j αcjλj = 0.

It is also easy to see that for si = vi or wi (1 ≤ i ≤ H0 − 1)

∂2LH(θ(H))

∂ξc∂si

∣∣∣
θ(H)=θ

(H)
λ

= 0.

(III) We compute the upper-left four blocks. We have

∂LH(θ(H))

∂a
=

n∑
ν=1

∂`ν(θ(H))

∂zν

H∑
j=H0

λjϕ(xν ;wj), (36)

from which

∂2LH(θ(H))

∂a∂a

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

∂2`ν(θ
(H0)
∗ )

∂zν∂zν
ϕ(xν ;uH0,∗)

2 =
∂2LH0(θ

(H0)
∗ )

∂ζH0
∂ζH0

and

∂2LH(θ(H))

∂a∂b

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

M∑
m=1

∂2`ν(θ(H))

∂zν∂zν,m

H∑
j=H0

λjϕ(xν ;wj)

H∑
k=H0

vkm
∂ϕ(xν ;wk)

∂wk

∣∣∣
θ(H)=θ

(H)
λ

+

n∑
ν=1

∂`ν(θ(H))

∂zν

H∑
j=H0

λj
∂ϕ(xν ;wj)

∂wj

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

∂2`ν(θ
(H0)
∗ )

∂zν∂zν
ζH0,∗ϕ(xν ;uH0,∗)

∂ϕ(xν ;uH0,∗)

∂uH0

+

n∑
ν=1

∂`ν(θ
(H0)
∗ )

∂zν

∂ϕ(xν ;uH0,∗)

∂uH0

=
∂2LH0

(θ
(H0)
∗ )

∂ζH0∂uH0

.

Finally, using

∂LH(θ(H))

∂b
=

n∑
ν=1

∂`ν(θ(H))

∂zν

∂zν
∂b

=

n∑
ν=1

M∑
m=1

∂`ν(θ(H))

∂zν,m

H∑
j=H0

vjm
∂ϕ(xν ;wj)

∂wj
,
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we have

∂2LH(θ(H))

∂b∂b

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

M∑
m,m′=1

∂2`ν(θ(H))

∂zν,m∂zν,m′

H∑
j=H0

vjm
∂ϕ(xν ;wj)

∂wj

H∑
k=1

vkm′
∂ϕ(xν ;wk)

∂wk

∣∣∣
θ(H)=θ

(H)
λ

+

n∑
ν=1

M∑
m=1

∂`ν(θ(H))

∂zν,m

H∑
j=H0

vjm
∂2ϕ(xν ;wj)

∂wj∂wj

∣∣∣
θ(H)=θ

(H)
λ

=

n∑
ν=1

(
ζTH0,∗

∂2`ν(θ
(H0)
∗ )

∂z∂z
ζH0,∗

)∂ϕ(xν ;uH0,∗)

∂uH0

∂ϕ(xν ;uH0,∗)

∂uH0

+

n∑
ν=1

∂`ν(θ(H))

∂zν
ζH0,∗

∂2ϕ(xν ;uH0,∗)

∂uH0
uH0

=
∂2LH0

(θ
(H0)
∗ )

∂uH0
∂uH0

.

(iv) Finally, it is similarly proved that for si = vi or wi (1 ≤ i ≤ H0 − 1)

∂2LH(θ(H))

∂a∂si

∣∣∣
θ(H)=θ

(H)
λ

=
∂2LH0

(θ
(H0)
∗ )

∂ζH0
∂si

∂2LH(θ(H))

∂b∂si

∣∣∣
θ(H)=θ

(H)
λ

=
∂2LH0

(θ
(H0)
∗ )

∂uH0
∂si

.

This completes the proof.

D.3 Proof of Theorem 5

Let F̃ := (AΛAT )⊗ F and G̃ := (AΛAT )⊗G. Since λj 6= 0 (∀j) and A is of full rank, (AΛAT )

is of full rank. (i) Under the assumption, G̃ is invertible. Then, the lower-right four blocks of the
Hessian has the expression(

I −F̃ G̃−1
O I

)(
O F̃
F̃T G̃

)(
I O

−F̃ G̃−1 I

)
=

(
−F̃T G̃−1F̃ O

O G̃.

)
. (37)

If G is positive definite, so is G̃, and thus −F̃T G̃−1F̃ has negative eigenvalues for F 6= O. The
Hessian of LH at θ(H)

λ has both of positive and negative eigenvalues, which implies θ(H)
λ is a saddle

point. The case of negative definite G is similar. (ii) If G has positive and negative definite, so does
G̃. This means that the Hessian of LH at θ(H)

λ has positive and negative eigenvalues.

Remark. If F is of full rank, which is r = (H −H0) min{D,M}, then the matrix F̃T G̃−1F̃ has r
positive eigenvalues. Thus, the number of positive and negative eigenvalues of the matrix in Eq. (37)
are (H −H0) ×D and r, respectively. When F has positive and negative engenvalues, the index
depends on the eigenvectors of F̃ and G̃, and not easy to tell.

E Local minima for smooth networks of 1-dimensional output

The special property of M = 1 is caused by vanishing F̃ in the Hessian. In fact, the stationarity

condition ∂LH0
(θ

(H0)
∗ )

∂uH0
= 0 implies

ζH0,∗

n∑
ν=1

∂`ν(θ
(H0)
∗ )

∂zν

∂ϕ(xν ;uH0∗)

∂uH0

= 0.
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Note that ζH0 is a scalar, and if we assume ζH0∗ 6= 0, the above condition implies F = 0. Then the
corresponding part of the Hessian takes the form(

O O
O G̃

)
,

which does not have negative eigenvalues if G is non-negetive definite. The zero blocks of the
Hessian correspond to the directions ξc (c = H0 + 1, . . . ,H), which make an affine subspace of
Πrepl(θ

(H0)
λ ) having the same value LH(θ(H)) = LH0(θ

(H0)
∗ ). Therefore, only the Hessian in the

directions (a, b,ηH0+1, . . . ,ηH) matters to determine if θ(H)
λ is a minimum or saddle point. Note

also that for M ≥ 2 the stationarity condition gives

n∑
ν=1

M∑
m=1

∂`ν(θ
(H0)
∗ )

∂zν,m
ζH0,m∗

∂ϕ(xν ;uH0,∗)

∂uH0

= 0,

which does not necessary mean F = O.

The following theorem is a slight extension of Fukumizu and Amari [2, Theorem 3], in which only
the case H = H0 + 1 is discussed.

Theorem 11. Suppose that the dimension of the output is 1 and θ(H0)
∗ is a minimum of LH0 with

positive definite Hessian matrix. In the following, the matrix G and the parameter θ(H)
λ are used in

the same meaning as in Lemma 4.

(1) Assume that the matrix G is positive definite.

(a) θ(H)
λ with

∑H
j=H0

λj = 1 and λj > 0 (∀j) is a minimum of LH .

(b) θ(H)
λ with

∑H
j=H0

λj = 1 and λj < 0 for some j is a saddle point of LH .

(2) Assume that the matrix G is negative definite.

(a) If
∑H
j=H0

λj = 1 and there is only one i0 such that λi0 > 0 and λj < 0 (∀j 6= i0),

θ
(H)
λ is a minimum of LH .

(b) If
∑H
j=H0

λj = 1 and λj > 0 for at least two indices, θ(H)
λ is a saddle point of LH .

(3) If the matrix G has both of positive and negative eigenvalues, θ(H)
λ is a saddle point for any

λ with
∑H
a=H0

λa = 1 and λa 6= 0 (∀a).

Proof. For notational simplicity, the proof is given only for H0 = 1; ζ1 and u1 are written by ζ and
u, respectively. Extension to a general H0 is easy and we omit it. In the proof, let ÃT := (1HA

T ),
which is invertible by assumption. Note also that ζ, vj are scalar parameters in the case of M = 1.

(1-a). We first show that if G is positive definite, the lower-right block of the Hessian, ∂
2LH(θ

(H)
λ )

∂η∂η =

(AΛAT ) ⊗ G, is positive definite. This can be proved if AΛAT is positive definite, since the
eigenvalues of the tensor product is given by the products of respective eigenvalues of AΛAT and
G. By the assumptions, AΛAT is non-negative definite. Suppose AΛATs = 0 for s ∈ RH−1\{0}.
Then, ATs = 0, and this implies ÃT s̃ = 0 for s̃ = (sT , 0)T ∈ RH . This is impossible by the
invertible assumption of Ã.

Now consider the Hessian ∇2LH(θ
(H)
λ ) in Lemma 4. It is obvious that this Hessian is non-negative

definite, but not positive definite, as the blocks corresponding to (ξj)
H
j=2 are zero. Let Π

θ
(H0)
∗

be the
(H − 1) dimensional affine plane in the parameter space of NH such that

Π
θ
(H0)
∗

:= {(a, ξ2, . . . , ξH ; b,η2, . . . ,ηH) | a = ζ∗, b = u∗,η2 = · · · = ηH = 0}.

This plane includes θ(H)
λ , and is parallel to the subspace spanned by ξj axes. The function LH takes

the same value as L1(θ
(1)
∗ ) on the whole of Π

θ
(H0)
∗

. Thus, θ(H)
λ is a minimum of LH if the Hessian
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𝒂, 𝒃, 𝜼𝑐

Π ≔ 𝜽(𝐻) 𝒂 = 𝜻, 𝒃 = 𝒖, 𝜼𝑐 = 0

𝝃𝑐

𝝃𝑑
The set of stationary points 

given by (𝜆𝑗): σ𝑗=𝐻0
𝐻 𝜆𝑗 = 1

𝜽𝝀
(𝐻)

Figure 4: All the parameters on the affine subspace Π has the same function as f (H)(x;θ
(H)
λ ), and

the affine subspace (in red) is a set of stationary points of LH(θ(H)). The local behavior of LH
around θ(H)

λ is determined by the second derivative along the a, b,ηc directions.

is positive definite along the directions compliment to Π
θ
(H0)
∗

(see Figure 4). From Lemma 4, the

Hessian at θ(H)
λ along the directions (a, b,ηj) is given by(

∂2L1(θ
(1)
∗ )

∂θ
(H0)
∗ ∂θ

(H0)
∗

O

O (AΛAT )⊗G

)
,

which is positive definite. This completes the proof of (1-a).

(1-b) From Aλ = 0, it is easy to see that

ÃΛÃT =

(
1 0

0T AΛAT

)
.

Thus, the eigenvalues of ÃΛÃT is the eigenvalues of AΛAT and 1. By Sylvester’s law of inertia,
the signature (the pair of the number of positive eigenvalues and that of negative ones) of ÃΛÃ
coincides with the signature of Λ. Since some λi are negative by the assumption, AΛAT has a
negative eigenvalue. Thus, under the assumption that G is positive definite, (AΛAT ) ⊗ G has a

negative eigenvalue. Since ∂2LH(θ
(H)
λ )

∂a∂a is positive definite, the Hessian of LH(θ(H)) at θ(H) = θ
(H)
λ

has positive and negative eigenvalues, which means θ(H)
λ is a saddle point.

(2-a) It suffices to show that AΛAT is negative definite. Then, (AΛAT )⊗G is positive definite, and
the assertion is proved by the same argument as (1-a). Without loss of generality, we can assume that
λj < 0 for 1 ≤ j ≤ H − 1 and λH > 0. Let A = (A0,h) where A0 is an invertible matrix of size
H − 1, and let λT = (λT0 , λH) with λ0 ∈ RH−1. The elements of λ0 are all negative by assumption.
It follows that

A0λ0 + λHh = 0,

H∑
j=1

λj = 1.

A simple computation using h = − 1
λH
A0λ0 provides

AΛAT = A0

(
Λ0 +

1

λH
λ0λ

T
0

)
AT0 ,
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where Λ0 = Diag(λ1, . . . , λH−1). It is then sufficient to show that B0 := Λ0 + 1
λH
λ0λ

T
0 is negative

definite. If s ∈ RH−1\{0} is orthogonal to λ0, we have sTB0s = sTΛ0s < 0. Additionally,

λT0 B0λ0 =

H−1∑
j=1

λ3j +
1

λH

(H−1∑
j=1

λ2j

)2
=

1

λH

{(
1−

H−1∑
j=1

λj

)(H−1∑
j=1

λ3j

)
+
(H−1∑
j=1

λ2j

)2}

=
1

λH

{(H−1∑
j=1

λ3j

)
+
∑
i6=j

λ2iλ
2
j −

∑
i 6=j

λiλ
3
j

}

=
1

λH

{(H−1∑
j=1

λ3j

)
+
∑
i6=j

λ2iλ
2
j −

∑
i 6=j

λiλj
λ2i + λ2j

2

}

=
1

λH

{(H−1∑
j=1

λ3j

)
−
∑
i6=j

1

2
λiλj(λi − λj)2

}
,

which is negative as well. This proves the assertion.

(2-b) If there are two positive eigenvalues, the corresponding eigenspaces of at least two dimensions
must intersects with the H − 1 dimensional subspace spanned by the row vectors of A. Thus, AΛAT

has at least one positive eigenvalue, which means (AΛAT ) ⊗ G has negative eigenvalues. The
remaining proof is similar to (1-b).

(3) AΛAT is of full rank, and thus (AΛAT )⊗G has both of positive and negative eigenvalues. The
assertion is proved by the same argument as the case (1-b).

F Proof of Proposition 8 and Theorem 10 in Section 4

F.1 Proof of Proposition 8

First, note that, from uTH0∗xν 6= 0(∀ν), there is δ > 0 such that for each xν the sign of (uH0,∗ +∑H
c=H0+1 αcjηc)

Txν equals to that of uTH0,∗xν for any j = H0, . . . ,H and (ηc)
H
c=H0+1 such that

‖(ηH0+1, · · · ,ηH)‖ ≤ δ.

Fix xν , and assume first uTH0,∗xν > 0. Then, (uH0,∗ +
∑H
c=H0+1 αcjηc)

Txν > 0 holds for (ηc)c
with ‖(ηc)c‖ ≤ δ. With the notation

FH0
:=

H0−1∑
i=1

viϕ(xν ;wi) =

H0−1∑
i=1

ζi,∗ϕ(xν ;ui,∗), (38)

for any θ(H) ∈ Bηδ (θ
(H)
γ,β ), we have

f (H)(xν ;θ(H)) = FH0
+

H∑
j=H0

γjζH0,∗ ϕ
(
βj
(
uH0,∗ +

H∑
c=H0+1

αcjηc
)T
xν

)

= FH0
+

H∑
j=H0

γjζH0,∗ βj

(
uH0,∗ +

H∑
c=H0+1

αcjηc

)T
xν

= FH0
+

H∑
j=H0

γjβjζH0,∗u
T
H0,∗xν + ζH0,∗

H∑
c=H0+1

H∑
j=H0

αcjγjβjη
T
c xν

= FH0
+ ζH0,∗u

T
H0,∗xν

= f (H0)(xν ;θ
(H0)
∗ ),
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where we used
∑
j γjβj = 1 and

∑
j αcjγjβj = 0.

Next, if uTH0,∗xν < 0, we have

f (H0)(xν ;θ
(H0)
∗ ) = FH0 ,

and

f (H)(xν ;θ(H)) = FH0 +

H∑
j=H0

γjζH0,∗ ϕ
(
βj
(
uH0,∗ +

H∑
c=H0+1

αcjηc
)T
xν

)
= FH0 ,

which completes the proof.

F.2 Proof of Theorem 10

We use the same reparameterization (v1, . . . ,vH0−1,a,w1, . . . ,wH0−1, b, ξH0+1, . . . , ξH ,ηH0+1, . . . ,ηH)
as in Section 4.1 with Aγ = 0. We focus on the behavior of LH for a change of ξc,ηc with the
others fixed at the values of θ(H)

γ . Note that, by the assumption uTH0
xν 6= 0 for any ν, LH(θ(H)) is

differrentiable at θ(H)
γ with respect to ξc,ηc. By the same manner as Lemma 3, we have

∂LH(θ(H))

∂ηc

∣∣∣
θ(H)=θ

(H)
γ

= O,
∂LH(θ(H))

∂ξc

∣∣∣
θ(H)=θ

(H)
γ

= O,

which means LH is stationary at θ(H)
γ as a function of ηc and ξc.

From Lemma 4, we have
∂2LH(θ(H))

∂ξc∂ξd

∣∣∣
θ(H)=θ

(H)
γ

= O

and
∂2LH(θ(H))

∂ξc∂ηd

∣∣∣
θ(H)=θ

(H)
γ

= (AΛAT )cd
∑

ν:uTH0∗
xν>0

∂`ν(θ
(H)
γ )

∂zν
xTν .

Using the fact ∂
2ϕ(xν ;uH0∗)

∂uH0
uH0

= 0, we have

∂2LH(θ(H))

∂ηc∂ηd

∣∣∣
θ(H)=θ

(H)
γ

= O.

Therefore, the Hessian of LH at θ(H)
γ with respect to ξa,ηb is given by(

O F̃
F̃T O

)
where F̃ = (AΛAT )⊗F . Under the assumption that F 6= O, the eigenvalues of the above Hessian are
{δi,−δi}ri=1, where {δi}ri=1 is the singular values of F̃ . This means there are increasing directions
and decreasing directions of LH around θ(H)

γ , and thus it is a saddle point.

G PAC-Bayesian bound of generalization

G.1 Brief summary of general PAC-Bayes bound

The PAC-Bayesian framework [6, 7] has been developed for bounding generalization performance of
learning models. It has been recently applied also to analysis of generalization of neural networks [8].
The following form of the bound is taken from [6].

Let f(x;θ) be a real-valued function of x with parameter θ ∈ Θ. We consider the case that the loss
function `(y; z) is bounded, and without loss of generality assume `(y, z) ∈ [0, 1]. Training data
(x1,y1), . . . , (xn,yn) is an i.i.d. sample from a distribution D on (x,y). Given function f(x;θ),
the training error (or empirical risk) is evaluated by

L̂(θ) =
1

n

n∑
ν=1

`(f(xν ,θ),yν)
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and the generalization error (or risk) is defined by

L(θ) = ED[`(f(xν ,θ),yν)].

In PAC-Bayes bound, we introduce a "prior" distribution P on the parameter space with an assumption
that P does not depend on the training sample, and an arbitrary probability distribution Q on Θ. The
distribution Q may depend on the training sample. Then, for any δ > 0, the inequality

EQ[L(θ)] ≤ EQ[L̂(θ)] + 2

√
2(KL(Q||P ) + ln n

δ )

n− 1
(39)

holds for sufficiently large n with probability greater than 1− δ.

First, we can see that, if the distribution of Q is concentrated on a parameter set that gives very close
values to L(θ̂) or L̂(θ̂) at a parameter θ̂ obtained by learning, then we have

EQ[L(θ)] ≈ L(θ̂), EQ[L̂(θ)] ≈ L̂(θ̂).

In such cases, Eq. (39) shows the behavior of generalization error by its upper bound involving the
approximate training error and the complexity term, which is expressed by the KL-divergence.

G.2 Generalization error bounds of embedded networks

The difference of the semi-flatness between networks of the smooth and ReLU activation can be
related to the different generalization abilities of these models trough the PAC-Bayes bound Eq. (39).

G.2.1 Choice in general cases

First we consider the general problem of choosing P and Q appropriately when the minimum of
L̂(θ) is sharp (non-flat) and can be approximated locally by a quadratic function around θ̂, which
is a minimum of L̂(θ(H)). The prior P should be non-informative, and thus if Θ = Rd, a normal
distributionN(0, σ2Id) with a large σ is a reasonable choice. To relate the PAC-Bayes bound Eq. (39)
to the generalization error at θ̂, the distribution Q (posterior) should distribute on parameters that do
not change the empirical risk values so much from the values given by θ̂. Under the assumption that
L̂(θ) is well approximated by a quardatic function, We set Q by a normal distribution N(0, τ2H−1)
whereH is the Hessian

H := ∇2L̂(θ̂)

with a small value of τ . Using the variance-covariance matrices based on the inverse Hessian is
confirmed as follows. Suppose we set Q by N(θ̂,Σ) with a general Σ such that Σ� σ2. Then, the
Taylor series approximation of L̂(θ(H)) gives

EQ[L̂(θ(H))] ≈ L̂(θ̂(H)) +
1

2
Tr[HΣ],

and thus the right hand side of Eq. (39) is approximated by

L̂(θ̂(H)) +
1

2
Tr[HΣ] + 2

√
2(KL(Q||P ) + ln n

δ )

n− 1
. (40)

It is well known that KL(Q||P ) with P and Q normal distributions is given by

KL(Q||P ) =
1

2

[
log
|σ2Id|
|Σ|

+ Tr[σ−2Σ] +
‖θ̂‖2

σ2
− d
]

To minimize Eq. (40) with respect to Σ, the differentiation provides the stationary condition

H+ λ
(
−Σ−1 + σ−2Id

)
= O

with some positive constant λ. From the assumption σ2 � Σ, by neglecting σ−2Id, an approximate
solution is given by

Σopt ≈ τ2H−1,
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where τ > 0 is a scalar. Plugging this to Eq. (40) provides

L̂(θ̂(H)) +
τ2

2
d+ 2

√
2
{
d log σ2

τ2 + log detH+ τ2

σ2 Tr
[
H−1

]
+ ‖θ̂‖2

σ2 − d
}

+ 2 ln n
δ

n− 1
.

The second term is linear to τ2, and the main factor in the third term is (d log σ2

τ2 )1/2n−1/2 when
σ � 1 and τ � 1.

G.2.2 The case of inactive units

We now discuss the embedding of the smooth and ReLU networks by inactive units when the training
error achieves zero error. As discussed in Section 5.1, some of the parameters give flat-directions,
which requires some modification of the arguments in Section G.2.1.

As notations, θ(H)
sm ∈ Rdsm and θ(H)

rl ∈ Rdrl are used for the parameters of networks with smooth
and ReLU activation, respectively, and they are decomposed as θ(H)

sm = (θ
(H)
sm,0,θ

(H)
sm,1,θ

(H)
sm,2) and

θ
(H)
rl = (θ

(H)
rl,0 ,θ

(H)
rl,1 ,θ

(H)
rl,2 ), corresponding to the components of a copy of θ(H0), (vj)

H
j=H0+1,

and (wj)
H
j=H0+1. Note that the both models have the same number of surplus parameters, i.e.

dim(θ
(H)
sm,1) = dim(θ

(H)
sm,2) =: d1 and dim(θ

(H)
rl,1 ) = dim(θ

(H)
rl,2 ) =: d2. Different choices of P and Q

are employed in the smooth and ReLU networks: we use Psm, Qsm for the smooth networks and
Prl, Qrl for the ReLU case.

For the smooth activation, as in Section G.2.1, a non-informative prior
Psm : N(0, σ2I)

is used with σ � 1. For the distribution Qsm, we reflect the Hessian at the embedding by inactive
units. By the definition, the directions of (vj)

H
j=H0+1 give flat surface to LH . The Hessian with

respect to (vj ,wj)
H
j=H0+1 is thus given in the form(

O O
O S

)
,

where S is an (H −H0)×D dimensional symmetric matrix given by

Sjk =

n∑
ν=1

vTj
∂2`ν(θ̂)

∂z∂z
vk
∂ϕ(xν ;w(0))

∂wj

∂ϕ(xν ;w(0))

∂wk
+ δjk

n∑
ν=1

∂`ν(θ̂)

∂z
vj
∂2ϕ(xν ;w(0))

∂wj∂wk
.

For the flat directions of (vj)
H
j=H0+1, the same distribution as P is optimal for the upper bound.

Reflecting this, we set

Qsm : N(θ̂
(H)
sm,0, τ

2H−1sm)×N(θ̂
(H)
sm,1, σ

2Id1)×N(θ̂
(H)
sm,2, τ

2S−1),

where θ̂(H)
sm is the embedded point and Hsm := ∇2LH0

(θ
(H0)
∗,sm) is the Hessian of the narrower

network.

For the ReLU networks, we first fix K > 1 as a constant. Since in the direction of (wj)
H
j=H0+1 we

can presume the existence of the bonded flat subset BH−H0

K , we define the prior Prl by

Prl : N(0, σ2Id0)×N(0, σ2Id1)× Unif
B
H−H0
K

.

Reflecting the flat directions, the posterior Qrl is defined by

Qrl : N(θ̂
(H)
rl,0 , τ

2H−1rl )×N(θ̂
(H)
rl,1 , σ

2Id1)× Unif
B
H−H0
K

,

whereHrl := ∇2LH0(θ
(H0)
∗,rl ) is the Hessian of the narrower network.

With these choices, the KL divergence of the smooth case is given by

KL(Qsm||Psm) =
1

2

[
d0sm log

σ2

τ2
+ d1 log

σ2

τ2
+ log detHsm + log detS

+ Tr

[
τ2

σ2

(
H−1sm + S−1

)]
+
‖θ̂sm‖2

σ2
− d0sm + d1

]
,
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while in the case of ReLU networks,

KL(Qrl||Prl) =
1

2

[
d0rl log

σ2

τ2
+ log detHrl + Tr

[
τ2

σ2
H−1rl

]
+
‖θ̂rl‖2

σ2
− d0rl

]
.

With σ � 1 and τ � 1, the major difference between these divergences comes from the term

d1 log
σ2

τ2

in the smooth networks. This suggests the advantage of the ReLU network in the overparameterized
realization of zero training error in terms of the PAC-Bayesian upper bound of generalization error.

G.2.3 The Hessian for the zero error cases

We summarize the Hessian matrix for the embedding of a global minimum that attains zero training
error. For simplicity, we write only the four blocks corresponding to the surplus units.

Smooth activation

(I) Unit replication: As discussed in Sections 3.2 and 5.1, the the part of the Hessian is given by(
O O
O G̃

)
. (41)

(II) Inactive units: The part of the Hessian is given by(
O O
O S1

)
, (42)

where

(S1)jk =
∂2LH(θ̂)

∂wj∂wk
=

n∑
ν=1

vTj
∂2`ν(θ̂)

∂zν∂zν
vk
∂ϕ(xν ;w(0))

∂w

∂ϕ(xν ;w(0))

∂w

T

+ δjk

n∑
ν=1

∂`ν(θ̂)

∂zν
vj
∂2ϕ(xν ;w(0))

∂w∂w
.

(III) Inactive propagations: The part of the Hessian is given by(
S2 O
O O

)
, (43)

where

(S2)jk =
∂2LH(θ̂)

∂vj∂vk
=

n∑
ν=1

∂2`ν(θ̂)

∂zν∂zν
ϕ(xν ;wj)ϕ(xν ;wk).

We see that in all of the three cases the part of the Hessian for the surplus parameters contains a
non-zero block.

ReLU

(I)R Unit replication: As discussed in Sections 4.2, the the part of the Hessian is given by
(
O F̃
F̃T O

)
.

Since the embedded point must not be a saddle, we have F̃ = O. As a result, the part of the Hessian
is constant zero.

(II)R Inactive units: As discussed in Section 5.1, the part of the Hessian is zero.

(III)R Inactive propagations: In this case, the part of the Hessian is given by(
S3 O
O O

)
, (44)

where

(S2)jk =
∂2LH(θ̂)

∂vj∂vk
=

n∑
ν=1

∂2`ν(θ̂)

∂zν∂zν
ϕ(xν ;wj)ϕ(xν ;wk)

which is not necessarily zero unless ϕ(xν ;wj) = 0 for all ν.

We can see that the embedding by inactive units and unit replication give zero matrix for the part of
Hessian, while the inactive propagation does not necessarily has zero matrix.

23



References
[1] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. T. Chayes,

L. Sagun, and R. Zecchina. Entropy-SGD: Biasing gradient descent into wide valleys. CoRR,
abs/1611.01838, 2017.

[2] K. Fukumizu and S. Amari. Local minima and plateaus in hierarchical structures of multilayer
perceptrons. Neural Networks, 13(3):317–327, 2000.

[3] S. Hochreiter and J. Schmidhuber. Simplifying neural nets by discovering flat minima. In
Advances in Neural Information Processing Systems 7, pages 529–536. MIT Press, 1995.

[4] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997. doi:
10.1162/neco.1997.9.1.1.

[5] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch
training for deep learning: Generalization gap and sharp minima. CoRR, abs/1609.04836, 2017.

[6] D. McAllester. Simplified PAC-Bayesian margin bounds. In Learning Theory and Kernel
Machines. Lecture Notes in Computer Science, volume 2777, pages 203–215, 2003.

[7] D. A. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355–363, Dec 1999.
[8] B. Neyshabur, S. Bhojanapalli, and N. Srebro. A PAC-bayesian approach to spectrally-normalized

margin bounds for neural networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors, Parallel
distributed processing, volume 1, pages 318–362. MIT Press, Cambridge, 1986.

24


