
Appendix
A Summary of the rates derived in this paper

"A major task of mathematics today is to harmonize the continuous and the discrete, to

include them in one comprehensive mathematics, and to eliminate obscurity from both."

– E.T. Bell, Men of Mathematics, 1937
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Table 3: Summary of the main convergence results for MB-PGF and VR-PGF compared to SGD
with mini-batch or variance reduced gradient estimators. (⇠) indicates a randomized output. For the
definition of the quantities in the rates, check App. D and App. E.

A.1 Correspondences between continuous and discrete-time
We note the following simple correspondences:
1. h corresponds to dt. The rates are not simplified to highlight the equivalence.

2. h'k+1 corresponds to '(t). Indeed, '(t) =
R t
0  (s)ds '

Pk
i=0  kh = 'k+1h.

3. The same argument holds for the exponential and the power, since e
at

' (1 + ah)k.
4. The rates for variance reduction match since by definition T = m h.
5. The difference only comes into a few constants which do not depend on the parameters of the

problem nor on the algorithm. Those differences are due to higher order terms in the algorithm.
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A.2 Algebraic equivalence

In this section we motivate the equivalence outlined in Tb. 3 in the deterministic setting, although
a similar derivation can easily be performed in the stochastic setting using the diffusion operator
instead of the derivative (we introduce this object in App. B). We take inspiration from a concept in
abstract algebra and we combine it with smoothness — a common assumption in optimization.
Definition 1. Let A be an algebra over a field F . A derivation is a linear map D : A ! A that

satisfies Leibniz’s law: D(ab) = aD(b) +D(a)b.

Consider the vector space of d-dimensional sequences over N equipped with pointwise and element-
wise product and sum, which we denote as Rd⇥1; this is trivially an algebra. Next, let us define the
sequence Dh(x) (still in the algebra) pointwise: for all k 2 N

[Dh(x)]k =: Dh(x, k) =
xk+1 � xk

h
.

Notice that GD can be written as Dh(x, k) = �rf(xk), which resembles the gradient flow equation
d
dtX(t) = �rf(X(t)). The crucial question is whether the continuous time derivative d

dt and
the operator Dh have the same properties. This would motivate an algebraic equivalence between
continuous and discrete time in optimization.

To start, we show that Dh is almost a derivation. We denote by x
+ the one-step-ahead x sequence:

x
+
k = xk+1 for all k 2 N.

1. Let x, y 2 Rd⇥1 and k 2 N, Dh(x+ y, k) = Dh(x, k) +Dh(y, k).

2. Let x 2 Rd⇥1 , a 2 R and k 2 N, Dh(ax, k) = aDh(x, k).
3. Let x, y 2 Rd⇥1; for all k 2 N,

Dh(xy, k) =
1

h
(yk+1xk+1 � ykxk)

=
1

h
((yk+1 � yk)xk+1 + ykxk+1 � ykxk) =

yk+1 � yk

h
xk+1 + yk

xk+1 � xk

h
.

Therefore D(xy) = x
+
Dh(y) +Dh(x)y.

Since we will only care about the value of Dh(x) at iteration k, we are going to deal with the
pointwise map Dh(x, k) and deviate from the algebraic definition.

For a complete correspondence to continuous time, we still need a chain rule. For this, we need a bit
more flexibility in the definition of Dh: let g : Rd

! R be L-smooth, we define

Dh(g � x, k) :=
g(xk+1)� g(xk)

h
.

Smoothness gives us a chain rule: we have

g(xk+1)  g(xk) + hrg(xk), xk+1 � xki+
L

2
kxk+1 � xkk

2;

hence

Dh(g�x, k)  hrg(xk),
xk+1 � xk

h
i+

L

2h
kxk+1�xkk

2 = hrg(xk), Dh(x, k)i+
Lh

2
kDh(x, k)k

2
.

We condense our findings in the box below

Let {xk}k2N and {yk}k2N be sequences of Rd vectors and let g : Rd
! R be L-smooth.

• Linearity : Dh(x+ y, k) = Dh(x, k) +Dh(y, k), a 2 R and Dh(ax, k) = aDh(x, k).
• Product rule: Dh(xy, k) = Dh(x, k)yk + xk+1Dh(y, k).

• Chain rule: Dh(g(x), k)  hrg(xk), Dh(x, k)i+
Lh
2 kDh(x, k)k2.

This shows that the operations in continuous time and in discrete time are algebraically very similar,
motivating the success behind the matching rates summarized in Tb. 3. Indeed, taking h ! 0 we
recover the normal derivation rules from calculus.
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B Stochastic Calculus

In this appendix we summarize some important results in the analysis of Stochastic Differential
equations [41, 46]. The notation and the results in this section will be used extensively in all proofs
in this paper. We assume the reader to have some familiarity with Brownian motion and with the
definition of stochastic integral (Ch. 1.4 and 1.5 in [41]).

B.1 Itô’s lemma and Dynkin’s formula

We start with some notation: let (⌦,F , {F(t)}t�0,P) be a filtered probability space. We say that an
event E 2 F holds almost surely (a.s.) in this space if P(E) = 1. We call Lp([a, b],Rd), with p > 0,
the family of Rd-valued F(t)-adapted processes {f(t)}atb such that

Z b

a
kf(t)kpdt  1.

Moreover, we denote by M
p([a, b],Rd), with p > 0, the family of Rd-valued processes {f(t)}atb

in L([a, b],Rd) such that E
hR b

a kf(t)kpdt
i
 1. We will write h 2 L

p
�
R+,Rd

�
, with p > 0, if

h 2 L
p
�
[0, T ],Rd

�
for every T > 0. Same definitions holds for matrix valued functions using the

Frobenius norm kAk :=
qP

ij |Aij |
2.

Let B = {B(t)}t�0 be a one dimensional Brownian motion defined on our probability space and let
X = {X(t)}t�0 be an F(t)-adapted process taking values on Rd.

Definition 2. Let b 2 L
1
�
R+,Rd

�
(the drift) and � 2 L

2
�
R+,Rd⇥m

�
(the volatility). X is an Itô

process if it takes the form

X(t) = x0 +

Z t

0
f(s)ds+

Z t

0
�(s)dB(s).

We shall say that X has the stochastic differential

dX(t) = f(t)dt+ �(t)dB(t). (3)

In this paper we indicate as @xf(x, t) the d-dimensional vector of partial derivatives of a scalar
function f : Rd

⇥ [0,1) ! R w.r.t. each component of x. Moreover, we call @xxf(x, t) the
d⇥ d-matrix of partial derivatives of each component of @xf(x, t) w.r.t each component of x. We
now state the celebrated Itô’s lemma.

Theorem B.1 (Itô’s lemma). Let X be an Itô process with stochastic differential dX(t) =
f(t)dt + �(t)dB(t). Let E (x, t) be twice continuously differentiable in x and continuously

differentiable in t, taking values in R. Then E(X(t), t) is again an Itô process with stochastic

differential

dE(X(t), t) = @tE(X(t), t))dt+ h@xE(X(t), t), f(t)idt

+
1

2
Tr

�
�(t)�(t)T@xxE(X(t), t)

�
dt+ h@xE(x(t), t),�(t)idB(t), (4)

which we sometimes write as

dE = @tEdt+ h@xE , dXi+
1

2
Tr

�
��

T
@xxE

�
dt

Following [41], we introduce the Itô diffusion differential operator A :

A (·) = @t(·) + h@x(·), b(t)i+
1

2
Tr

�
�(t)�(t)T@xx(·)

�
. (5)

It is then clear that, thanks to Itô’s lemma,

dE(X(t), t) = A E(X(t), t)dt+ hEX(X(t), t),�(t)dB(t)i.
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Moreover, by the definition of an Itô process, we know that at any time t > 0,

E(X(t), t) = E(x0, 0) +

Z t

0
A E(X(s), s)ds+

Z t

0
h@xE(X(s), s),�(s)dB(s)i. a.s.

Taking the expectation the stochastic integral vanishes 16 and we have

E[E(X(t), t)]� E(x0, 0) = E
Z t

0
A E(X(t), t)dt

�
. (6)

This result can be generalized for stopping times and is known as Dynkin’s formula.

B.2 Stochastic differential equations

Stochastic Differential Equations (SDEs) are equations of the form

dX = b(X, t)dt+ �(X, t)dB(t).

Notice that this equation is different from Eq. (3), since X also appears on the RHS. Hence, we need
to define what it means for a stochastic process X = {X(t)}t�0 with values in Rd to solve an SDE.
Definition 3. Let X be as above with deterministic initial condition X(0) = x0. Assume b :
Rd

⇥ [0, T ] ! Rd
and � : Rd

⇥ [0, T ] ! Rd⇥m
are Borel measurable; X is called a solution to the

corresponding SDE if

1. X is continuous and F(t)-adapted;

2. b 2 L
1
�
[0, T ],Rd

�
;

3. � 2 L
2
�
[0, T ],Rd⇥m

�
;

4. For every t 2 [0, T ]

X(t) = x0 +

Z t

0
b(X(s), s)ds+

Z t

0
�(X(s), s)dB(s) a.s.

Moreover, the solution X(t) is said to be unique if any other solution X
?(t) is such that

P {X(t) = X
?(t), for all 0  t  T} = 1.

Notice that the solution to a SDE is an Itô process; hence we can use Itô’s Formula (Thm. B.1).
The following theorem gives a sufficient condition on b and � for the existence of a solution to the
corresponding SDE.

Theorem B.2. Assume that there exist two positive constants K̄ and K such that

1. (Global Lipschitz condition) for all x, y 2 Rd
and t 2 [0, T ]

max{kb(x, t)� b(y, t)k, k�(x, t)� �(y, t)k}  K̄kx� yk
2;

2. (Linear growth condition) for all x 2 Rd
and t 2 [0, T ]

max{kb(x, t)k, k�(x, t)k}  K(1 + kxk).

Then, there exists a unique solution X to the corresponding SDE , and X 2 M
2([0, T ],Rd).

Numerical approximation. Often, SDEs are solved numerically. The simplest algorithm to provide
a sample path (x̂k)k�0 for X , so that X(k�t) u xk for some small �t and for all k�t  M , is called
Euler-Maruyama (Algorithm 1). For more details on this integration method and its approximation
properties, the reader can check [41].

16Because h@xE(X(t), t),�(t)i 2 M2([0, T ],R), see e.g. Thm. 1.5.8 [41]
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Algorithm 1 Euler-Maruyama integration method for a SDE
input The drift b and the volatility �; the initial condition x0

fix a stepsize �t;
initialize x̂0 = x0;
k = 0;
while k 

⌅
T
�t

⇧
do

sample some d-dimensional Gaussian noise Zk ⇠ N (0, Id);
compute x̂k+1 = x̂k +�t b(x̂k, k�t) +

p
�t �(x̂k, k�t)Zk;

k = k + 1;
end while

output the approximated sample path (x̂k)0kb T
�tc

B.3 Functional SDEs

SDEs describe Markovian (also know as memoryless) processes: a Markovian process is a system
where the current state completely determines the future evolution. Indeed, in an SDE, the RHS only
depends on X(t) and on t. To model variance-reduction methods such as SVRG [32], we will need
a continuous time model which also retains some information about the past. This was also noted
in [27].

First, we introduce Functional Stochastic Differential Equations (FSDEs) which are equations of the
form

dX = b(X(0,t], t)dt+ �(X(0,t], t)dB(t),

where X(0,t] is the past history of X up to time t. Here we focus on a particular type of FSDE,
namely Stochastic Differential Delay Equations (SDDEs):

dX(t) = b(X(t), X(t� ⇠(t)), t)dt+ �(X(t), X(t� ⇠(t)), t)dB(t),

where ⇠(t) 2 [0, ⌧ ] is the delay at time t. As we did in the last subsection for SDEs, we need to define
what it means for a stochastic process X = {X(t)}t��⌧ with values in Rd to solve an SDDE
Definition 4. Let X be as above with deterministic initial condition X(s) = x0 for �⌧  s  0.

Assume b : Rd
⇥ Rd

⇥ [0, T ] ! Rd
, ⇠ : R+ ! [0, ⌧ ] and � : Rd

⇥ Rd
⇥ [0, T ] ! Rd⇥m

are Borel

measurable; X is called a solution to the corresponding SDDE if

1. X is continuous and F(t)-adapted;

2. b 2 L
1
�
[0, T ],Rd

�
;

3. � 2 L
2
�
[0, T ],Rd⇥m

�
;

4. For every t 2 [0, T ]

X(t) = x0 +

Z t

0
b(X(s), X(s� ⇠(s)), s)ds+

Z t

0
�(X(s), X(s� ⇠(s)), s)dB(s) a.s.

Moreover, a solution X(t) is said to be unique if any other solution X
?(t) is such that

P {X(t) = X
?(t), for all � ⌧  t  T} = 1.

We state now one existence and uniqueness theorem for SDDEs, which is adapted from equations 5.2
and 5.3 in [41].
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Theorem B.3. Assume that there exist two positive constants K̄ and K such that for all

x, x̄, y, ȳ 2 Rd
and for all t 2 [0, T ]

1. (Lipschitz condition)

max{kb(x, y, t)� b(x̄, ȳ, t)k, k�(x, y, t)� �(x̄, ȳ, t)k}  K̄(kx� x̄k+ ky � ȳk);

2. (Linear growth condition)

max{kb(x, y, t)k, k�(x, y, t)k}  K(1 + kxk+ kyk).

Then there exists a unique solution X to the corresponding SDDE and X 2 M
2([�⌧, T ],Rd).

Numerical approximation. Often, SDSEs are solved numerically. Algorithm 1 can easily be
modified to work with SDDEs (see (Algorithm 2)). For more details on approximation error SDDEs,
we refer the reader to Chapter 5 in [41].

Algorithm 2 Euler-Maruyama integration method for a SDDE
input The drift b and the volatility �; the initial condition x0

fix a stepsize �t

compute q =
⌅
⌧
�t

⇧
;

initialize x̂k = x0 for �q  k  0;
k = 0;
while k 

⌅
T
�t

⇧
do

sample some d-dimensional Gaussian noise Zk ⇠ N (0, Id);
compute x̂k+1 = x̂k +�t b(x̂k, x̂k�q, k�t) +

p
�t �(x̂k, x̂k�q, k�t)Zk;

k = k + 1;
end while

output the approximated sample path (x̂k)�qkb T
�tc

B.4 Time change in stochastic analysis

We conclude this appendix with a useful formula from [47], which is the equivalent to a chain rule
for stochastic processes. We use this formula in Sec. 4.1.

Theorem B.4 (Time change formula for Itô integrals). Let c : R+ ! R+ be a strictly positive

continuous function and �(t) =
R t
0 c(s)ds. Denote by ↵(·) the inverse of �(·) and suppose it

is continuous. Let {B(t)}t�0 be an m-dimensional Brownian Motion and let the stochastic

process {v(s)}s�0 with v(s) 2 Rn⇥m
be Borel measurable in time, adapted to the natural

filtration of B and M
2(R+,Rd). Define

B̃(t) =

Z t

0

p
c(s)dB(s).

Then {B̃(t)}t�0 is a Brownian Motion and we have

Z ↵(t)

0
v(s)dB(s) =

Z t

0

p
↵0(s)v(↵(s))dB̃(s), a.s.

C Existence and Uniqueness of the solution of MB-PGF and VR-PGF

Let A be a positive semidefinite matrix; by the spectral theorem, A can be diagonalized as A =
V DV

T , with V an orthogonal matrix and D a diagonal matrix with non-negative diagonal elements
(the eigenvalues of A). We can define the principal square root A1/2 := V D

1/2
V

T , where D1/2 is the
elementwise square root of D. It is clear that A1/2 is also positive semidefinite and A = A

1/2
A

1/2
.
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In this paper we analyze MB-PGF and VR-PGF, which we report below (see discussion and derivation
in Sec. 2).

dX(t) = � (t)rf(X(t)) dt+  (t)
p

h/b(t) �MB(X(t)) dB(t) (MB-PGF)

dX(t) = � (t)rf(X(t)) dt+  (t)
p

h/b(t) �VR(X(t), X(t� ⇠(t))) dB(t) (VR-PGF)

The volatility of MB-SDE is defined as

�MB(x) =

 
1

N

NX

i=1

(rf(x)�rfi(x)) (rf(x)�rfi(x))
T

!1/2

,

and a similar formula holds for the �VR(·). From Thm. B.2 and Thm. B.3, we know that existence
and uniqueness of the solution to the equations above requires this matrix valued function of x to be
Lipschitz continuous. Previous literature [52, 51, 42, 34], put this condition as a requirement at the
beginning of their analysis. However, since in our case we want to draw a direct connection to the

algorithm, we shall prove that Lipschitzianity is indeed verified.

To start, we remind again to the reader that in this paper we indicate as Cr
b (Rd

,Rm) the family of
r times continuously differentiable functions from Rd to Rm, with bounded r-th derivative. If b is
omitted, it means we just require f to be r times continuously differentiable.

A crucial lemma which can be found as Prop. 6.2 in [29] or as Thm. 5.2.3 in [59].

Lemma 1. Let ⌃ : Rn
! Rn⇥n

be a n ⇥ n real positive semidefinite matrix function of an

input vector x 2 Rn
. Assume each component ⌃ij : Rn

! R be in C
2
b (Rn

,R). Then, ⌃(x)1/2

is globally Lipschitz w.r.t. the Frobenius norm, meaning that there exists a constant K such that

for every q, p 2 Rn ���⌃(q)1/2 � ⌃(p)1/2
���  Kkq � pk.

We proceed with the proofs of existence and uniqueness, which require the following assumption:

(H) Each fi is in C
3
b (Rd

,R) and is L-smooth.

Theorem C.1 (Existence and Uniqueness for MB-PGF). Assume (H). For all initial conditions

X(0) = x0 2 Rd
, MB-PGF has a unique solution (in the sense of Defs. 3 in App. B) on [0, T ],

for any T < 1. Let the stochastic process X = {X(t)}0tT be such solution; almost all (i.e.

with probability 1) realizations of X are continuous functions and E
hR T

0 kX(t)k2dt
i
< 1.

Proof. We basically need to check the conditions of Thm. B.2. First, we notice that rf and �MB are
both Borel measurable because they are continuous.

Drift : We now verify the Lipschitz condition for the drift term. For every t  0 we trivially have
that, since  (t)  1 and f is L-smooth,

k (t)rf(x)�  (t)rf(y)k  krf(x)�rf(y)k  Lkx� yk.

Next, we verify the linear growth condition. For every t � 0, using the reverse triangle inequality
and the fact that  (t) 2 (0, 1] and  (0) = 1,

Lkxk � k (t)rf(x)�  (t)rf(0d)k � (|k (t)rf(x)k � krf(0d)k|) .

Thus, we have linear growth with constant K := max {krf(0)k, L}: for every t 2 [0, T ] and
x 2 Rd,

k (t)rf(x)k  K(1 + kxk).

Volatility : We need to verify the same conditions for the volatility matrix �MB. Let us define
gi(x) := rf(x)�rfi(x). Using the definition of Frobenius norm, the linearity of E, the cyclicity
of the trace functional, and the fact that  (t) 2 (0, 1] for all t � 0, we get
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k (t)
p

h/b(t) �MB(x)k
2 =  (t)2

h

b(t)
Tr

�
E
⇥
gi(x)gi(x)

T
⇤�

=  (t)2
h

b(t)
E
⇥
Tr(gi(x)

T
gi(x))

⇤
=  (t)2

h

b(t)
Ekgi(x)k2.

Since gi(x) is L-Lipschitz, by the same argument used above for the drift term, we have kgi(x)k2 

C(1 + kxk
2) for some C > 0 and all i 2 [N ]. Plugging this in, since b(t) � 1

k (t)
p
h/b(t) �MB(x)k

2 = D(1 + kxk
2),

for some finite positive D. To conclude the proof of linear growth, we notice that for any p 2 R,p
1 + p2  2(1 + |p|). Thus for B := 2D, we have

k (t)
p
h/b(t) �MB(x)k  B(1 + kxk).

Last, the global Lipschitzianity of �MB follows directly from Lemma 1 using the fact that f is
C
3
b (Rd

,R) and each fi is C3
b (Rd

,R), because then the gradients are of class C2 and �MB is a smooth
function of these gradients. ⌅

Theorem C.2 (Existence and Uniqueness for VR-PGF). Assume (H). For any initial condition

x0, such that X(s) = x0 for all t 2 [�⌧, 0], VR-PGF has a unique solution (in the sense

of Def. 4 in App. B) on [�⌧, T ], for any T < 1. Moreover, let X = {X(t)}0tT be such

solution; almost all realizations of X are continuous functions and E
hR T

0 kX(t)k2dt
i
< 1.

Proof. This time we need to check the conditions of Thm. B.3. The requirements on the drift term
are satisfied, as already shown in the proof for MB-PGF, since there is no delay in the drift. To verify
the conditions on �VR : Rd

⇥ Rd
! Rd⇥d we proceed again as in the proof for MB-PGF, using

Lemma 1 but this time on the joint vector (x, x̃) 2 Rd
⇥ Rd (n in the lemma is 2d), using the norm

subadditivity. ⌅

D Convergence proofs in continuous-time

Fon convenience of the reader, we report here again the equations we are about to analyze continuous-
time models, which we analyse in this paper, are

dX(t) = � (t)rf(X(t)) dt+  (t)
p

h/b(t) �MB(X(t)) dB(t) (MB-PGF)

dX(t) = � (t)rf(X(t)) dt+  (t)
p

h/b(t) �VR(X(t), X(t� ⇠(t))) dB(t) (VR-PGF)

where

• ⇠ : R+ ! [0,T], the staleness function, is s.t. ⇠(hk) = ⇠k for all k � 0;

•  (·) 2 C
1(R+, [0, 1]), the adjustment function, is s.t.  (hk) =  k for all k � 0 and d (t)

dt  0;

• b(·) 2 C
1(R+,R+), the mini-batch size function is s.t. b(hk) = bk for all k � 0 and b(t) � 1;

• {B(t)}t�0 is a d�dimensional Brownian Motion on some filtered probability space.

For existence and uniqueness we need to assume the following:

(H) Each fi(·) is in C
3 with bounded third derivative and L-smooth.

We also recall some of assumptions introduced in the main paper.

(HWQC) f(·) is C1 and exists ⌧ > 0 and x
? s.t. hrf(x), x� x

?
i � ⌧(f(x)� f(x?)) for all x 2 Rd.

(HPŁ) f(·) is C1 and there exists µ > 0 s.t. krf(x)k2 � 2µ(f(x)� f(x?)) for all x 2 Rd.

(HRSI) f(·) is C1 and there exists µ > 0 s.t. hrf(x), x� x
?
i �

µ
2 kx� x

?
k
2 for all x 2 Rd.
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D.1 Supporting lemmas

The following bound on the spectral norm also be found in [42, 34]. We report the proof for
completeness.

Lemma 2. Consider two symmetric d�dimensional square matrices P and Q. We have

Tr(PQ)  d · kPkS · kQkS .

Proof. Let Pj and Qj be the j-th row(column) of P and Q, respectively.

Tr(PQ) =
dX

j=1

P
T
j Qj 

dX

j=1

kPjk · kQjk 

dX

j=1

kPkS · kQkS = d · kPkS · kQkS ,

where we first used the Cauchy-Schwarz inequality, and then the following inequality:

kAkS = sup
kzk1

kAzk � kAejk = kAjk,

where ej is the j-th vector of the canonical basis of Rd. ⌅

We use the previous lemma to derive another key result below.

Lemma 3. Assume (H). For any volatility matrix �(·) such that k��
T
kS is upper bounded by

�
2
⇤ , we have

Tr
�
��

T
�
 d�

2
⇤, Tr

�
��

T
r

2
f(x)

�
 Ld�

2
⇤.

Proof. We will just prove the first inequality, since the proof for the second is very similar.

Tr
�
��

T
r

2
f(x)

�
 dkr

2
f(x)kSk��

T
kS  Ld�

2
⇤,

where in the equality we used the cyclicity of the trace, in the first inequality we used Lemma 2 and
in the last inequality we used and smoothness. ⌅

D.2 Analysis of MB-PGF

We provide a non-asymptotic analysis and then derive asymptotic rates.

D.2.1 Non-asymptotic rates

These rates for MB-PGF are sketched in Sec. 3. We define '(t) :=
R t
0  (s)ds. As [42, 34], we

introduce a bound on the volatility in order to use Lemma 3.

(H�) �2
⇤ := supx2Rd k�MB(x)�MB(x)T kS < 1, where k · kS denotes the spectral norm.

Theorem D.1 (Restated Thm. 1). Assume (H), (H�). Let t > 0 and t̃ 2 [0, t] be a random time

point with distribution
 (t̃)
'(t) for t̃ 2 [0, t] (and 0 otherwise). The solution to MB-PGF is s.t.

E
⇥
krf(X(t̃))k2

⇤


f(x0)� f(x?)

'(t)
+

L d �
2
⇤h

2 '(t)

Z t

0

 (s)2

b(s)
ds.

Proof. Define the energy E 2 C
2(Rd

,R+) such that E(x) := f(x)� f(x?). First, we find a bound
on the infinitesimal diffusion generator of the stochastic process {E(X(t))}t�0, which generalizes
the concept of derivative for stochastic systems and is formally defined in App. B.1.

A E(X(t)) =
h (t)2

2b(t)
Tr

�
�MB(X(t))�MB(X(t))T@xxE(X(t))

�
+ h@xE(X(t)),� (t)rf(X(t))i


h L d  (t)2

2b(t)
�
2
⇤ �  (t)krf(X(t))k2,
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where in the inequality we used Lemma 3.

Note that the definition of A E(X(t)) in Eq. (5) does not include the term h@xE ,�(t)dB(t)i that
vanishes when taking the expectation of the stochastic integral in Eq. (6). Therefore, integrating the
bound above yields

E[E(X(t), t)]� E(x0, 0) 
hLd�

2
⇤

2

Z t

0

 (s)2

b(s)
ds� E

Z t

0
 (s)krf(X(s))k2ds

�
. (7)

Next, notice that, since
R t
0
 (s)
'(t) dt = 1, the function s 7!

 (s)
'(t) defines a probability distribution. Let

t̃ 2 [0, t] have such distribution; using the law of the unconscious statistician

E[krf(X(t̃)k2] =
1

'(t)

Z t

0
 (s)krf(X(s))k2ds.

This trick was also used in the original SVRG paper [32]. To conclude, we plug in the last formula
into Eq. (7):

E[E(X(t), t)]� E(x0, 0) 
hLd�

2
⇤

2

Z t

0

 (s)2

b(s)
ds� '(t)E

⇥
krf(X(t̃)k2

⇤
.

The result follows after dividing both sides by '(t), which is always positive for t > 0. ⌅

Theorem D.2 (Restated Thm. 2). Assume (H), (H�), (HWQC). Let t̃ be as in Thm. 1. The solution

to MB-PGF is s.t.

E
⇥
f(X(t̃))� f(x?)

⇤


kx0 � x
?
k
2

2 ⌧ '(t)
+

h d �
2
⇤

2 ⌧ '(t)

Z t

0

 (s)2

b(s)
ds (W1)

E [(f(X(t))� f(x?))] 
kx0 � x

?
k
2

2 ⌧ '(t)
+

h d �
2
⇤

2 ⌧ '(t)

Z t

0
(L ⌧ '(s) + 1)

 (s)2

b(s)
ds. (W2)

Proof. We prove the two formulas separately.

First formula. Define the energy E 2 C
2(Rd

,R+) such that E(x) := 1
2kx � x

?
k
2. First, we find a

bound on the infinitesimal diffusion generator of the stochastic process {E(X(t))}t�0.

A E(X(t)) =

=
h  (t)2

2b(t)
Tr

�
�MB(X(t))�MB(X(t))T@xxE(X(t))

�
+ h@xE(X(t)),� (t)rf(X(t))i


h d  (t)2

2b(t)
�
2
⇤ �  (t)hrf(X(t)), X(t)� x

?
i


h d  (t)2

2b(t)
�
2
⇤ � ⌧ (t)(f(X(t))� f(x?)),

where in the first inequality we used Lemma 3 and in the second inequality we used weak-quasi-
convexity. Integrating this bound (see Eq. (6)), we get

E[E(X(t), t)]� E(x0, 0) 
hd�

2
⇤

2

Z t

0

 (s)2

b(s)
ds� ⌧E

Z t

0
 (s)(f(X(s))� f(x?))ds

�
.

Proceeding again as in the proof of Thm. 1 (above), we get the desired result.

Second formula : Define the energy E 2 C
2(Rd

⇥ R,R+) such that E(x, t) := ⌧'(t)(f(x) �
f(x?))+ 1

2kx�x
?
k
2. First, we find a bound on the infinitesimal diffusion generator of the stochastic
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process {E(X(t), t)}t�0.

A E(X(t), t) =

= @tE(X(t), t) +
h  (t)2

2b(t)
Tr

�
�MB(X(t))�MB(X(t))T@xxE(X(t), t)

�

+ h@xE(X(t), t),� (t)rf(X(t))i

 ⌧ (t)(f(X(t))� f(x?)) +
h d  (t)2

2b(t)
(L⌧'(t) + 1)�2

⇤

+ h⌧'(t)rf(X(t)) +X(t)� x
?
,� (t)rf(X(t))i

 ⌧ (t)(f(X(t))� f(x?))�  (t)hrf(X(t)), X(t)� x
?
i+

h d  (t)2

2b(t)
(L⌧'(t) + 1)�2

⇤


h d �

2
⇤

2

(L⌧'(t) + 1) (t)2

b(t)
,

where in the first inequality we used the fact that '̇(t) =  (t) and Lemma 3; in the second inequality
we discarded a negative term; in the third inequality we used weak-quasi-convexity. Next, after
integration (see Dynkin formula Eq. (6)), plugging in the definition of E , we get

⌧'(t)E [f(X(t))� f(x?)]+
1

2
E
⇥
kX(t)� x

?
k
2
⇤


1

2
kx0�x

?
k
2+

dh�
2
⇤

2

Z t

0

(L⌧'(s) + 1) (s)2

b(s)
.

Discarding the positive term 1
2E

⇥
kX(t)� x

?
k
2
⇤

on the LHS and dividing17 everything by ⌧'(t) we
get the result. ⌅

Theorem 6 (Restated Thm. 3). Assume (H), (H�), (HPŁ). The solution to MB-PGF is s.t.

E[f(X(t))� f(x?)]  e
�2µ'(t)(f(x0)� f(x?)) +

h L d �
2
⇤

2

Z t

0

 (s)2

b(s)
e
�2µ('(t)�'(s))

ds.

Proof. Define the energy E 2 C
2(Rd

⇥ R,R+) such that E(x, t) := e
2µ'(t)(f(x) � f(x?)). First,

we find a bound on the infinitesimal diffusion generator of the stochastic process {E(X(t), t)}t�0.

A E(X(t), t) =

= @tE(X(t), t) +
h  (t)2

2b(t)
Tr

�
�MB(X(t))�MB(X(t))T@xxE(X(t), t)

�

+ h@xE(X(t), t),� (t)rf(X(t))i

 2µ  (t) e2µ'(t)(f(X(t))� f(x?)) +
h d L  (t)2

2b(t)
�
2
⇤e

2µ'(t)
�  (t) e2µ'(t)krf(X(t))k2


h d L  (t)2

2b(t)
�
2
⇤e

2µ'(t)
,

where in the first inequality we used the fact that '̇(t) =  (t) and Lemma 3 and in the second
inequality we used the PŁ assumption.

Finally, after integration (see Eq. (6)), plugging in the definition of E , we get

e
2µ'(t)E[f(X(t))� f(x?)]  f(x0)� f(x?) +

h d L �
2
⇤

2

Z t

0

 (s)2

2b(s)
e
2µ'(s)

ds.

The statement follows once we divide everything by e
2µ'(t). ⌅

17'(t) is the integral of  (t), which starts positive, so it is positive for t > 0.
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D.3 Asymptotic rates for decreasing adjustment function

Corollary 1. Assume (H), (H�). Let t > 0 and t̃ 2 [0, t] be a random time point with

distribution
 (t̃)
'(t) for t̃ 2 [0, t] (and 0 otherwise). If  (·) has the form  (t) = 1/(t+ 1)a and

b(t) = b � 1 then MB-PGF is s.t.

E
⇥
krf(X(t̃))k2

⇤


8
>>>><

>>>>:

O
�

1
ta

�
0 < a <

1
2

O

⇣
log(t)p

t

⌘
a = 1

2

O
�

1
t1�a

�
1
2 < a < 1

O

⇣
1

log(t)

⌘
a = 1

.

Proof. Thanks to Prop. 1, we have

E
⇥
krf(X(t̃))k2

⇤


f(x0)� f(x?)

'(t)
+

L d �
2
⇤h

2 b '(t)

Z t

0
 (s)2ds.

First, notice that if a > 1, limt!1 '(t) < 1 and we cannot retrieve convergence. Else, for
0 < a < 1, the deterministic term f(x0)�f(x?)

'(t) is O
�
t
1�a

�
and O

�
log�1(t)

�
for a = 1. The

stochastic term 1
'(t)

R t
0  (s)

2
ds is O (t�a) for a 2 (0, 1/2) [ (1/2, 1), O

⇣
log(t)p

t

⌘
for a = 1

2 and
O(1) for a = 1. The assertion follows combining asymptotic rates just derived for the deterministic
and the stochastic term. ⌅

Corollary 2. Assume (H), (H�), (HWQC). Let t̃ be as in Thm. 1. If  (·) has the form  (t) =
1/(t+ 1)a and b(t) = b � 1, then the solution to MB-PGF is s.t.

E
⇥
f(X(t̃))� f(x?)

⇤


8
>>>><

>>>>:

O
�

1
ta

�
0 < a <

1
2

O

⇣
log(t)p

t

⌘
a = 1

2

O
�

1
t1�a

�
1
2 < a < 1

O

⇣
1

log(t)

⌘
a = 1

.

Moreover, for
1
2  a  1 we can avoid taking a randomized time point:

E [f(X(t))� f(x?)] 

8
>>>><

>>>>:

O
�

1
t2a�1

�
1
2 < a <

2
3

O

⇣
log(t)
t1/3

⌘
a = 2

3

O
�

1
t1�a

�
2
3 < a < 1

O

⇣
1

log(t)

⌘
a = 1

.

Proof. The first part is identical to Cor. 1 using this time Prop. 2. Regarding the second part, again
from Prop. 2 we have

E
⇥
f(X(t̃))� f(x?)

⇤


kx0 � x
?
k
2

2 ⌧ '(t)
+

h d �
2
⇤

2 ⌧ b '(t)

Z t

0
 (s)2ds.

The deterministic term 1
2⌧'(t)kx0 � x

?
k
2 is O

�
1

t1�a

�
for 0 < a < 1, O

⇣
1

log(t)

⌘
for a = 1 and O(1)

(i.e. does not converge to 0) for a > 1.

The stochastic term h d �2
⇤

2 ⌧ '(t)

R t
0  (s)

2
ds requires a more careful analysis : first of all notice that

(L⌧'(t) + 1) (t)2 is O
�
max

�
t
1�3a

, t
�2a

 �
. Hence its integral is O

�
max

�
t
2�3a

, t
1�2a

 �
for

1
2 < a <

2
3 , is O(1) for a >

2
3 and has a more complicated asymptotic behavior for a 6= 1

2 ,
2
3 . First,

it is clear that, since the integral is bounded for 2
3 < a, the asymptotic convergence rate in this case is
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O

⇣
1
'(t)

⌘
= O

�
1

t1�a

�
for 2

3 < a < 1 and O

⇣
1

log(t)

⌘
for a = 1. Next, we get the two pathological

cases out of our way:

• For a = 1
2 we do not have converge, since the partial integral term d�2

⇤
2⌧'(t)

R t
0 L⌧'(s) (s)2ds

is of the same order as '(t).

• For a = 2
3 , d�2

⇤
2⌧'(t)

R t
0 (L⌧'(s) + 1) (s)2ds is O (log(t)). Hence, the resulting asymptotic

bound is O
⇣

log(t)
'(t)

⌘
= O

⇣
log(t)
t1/3

⌘
.

Last, since for 1
2 < a <

2
3 the integral term is O

�
max

�
t
2�3a

, t
1�2a

 �
= O(t2�3a), the convergence

rate is O
⇣

t2�3a

'(t)

⌘
= O(t1�2a). This completes the proof of the assertion. ⌅

Remark 1. The best achievable rate in the context of the previous corollary is corresponding to

 (t) = 1p
t

if we look at the infimum, but is instead corresponding to  (t) = 1
t2/3

if we just look at

the final point.

Corollary 3. Assume (H), (H�), (HPŁ). If (·) has the form (t) = 1/(t+1)a and b(t) = b � 1,

then he solution to MB-PGF is s.t.

E [f(X(t))� f(x?)]  O

✓
1

ta

◆
.

Proof. We start from Prop. 3:

E[f(X(t))� f(x?)]  e
�2µ'(t)(f(x0)� f(x?)) +

h L d �
2
⇤

2b

Z t

0
 (s)2e�2µ('(t)�'(s))

ds.

For 0 < a < 1, the term e
�2µ'(t) goes down exponentially fast. Thus, we just need to consider the

second addend. Let t̂ 2 [0, t], then

Z t

0
 (s)2e�2µ('(t)�'(s))

ds 

Z t̂

0
 (s)2e�2µ('(t)�'(s))

ds+

Z t

t̂
 (s)2e�2µ('(t)�'(s))

ds

 e
�2µ('(t)�'(t̂))

Z t̂

0
 (s)2ds+

 (t̂)

2µ

Z t

t̂
2µ (s)e�2µ('(t)�'(s))

ds.

Pick t̂ = t/2, notice that, since for  (t) = 1
(1+t)a ,

R t/2
0  (s)2ds grows at most polynomially in t.

Hence, first addend in the last formula decays exponentially fast. Then again we just need to consider
the second addend of the last formula; in particular notice that

Z t

t̂
2µ (s)e�2µ('(t)�'(s))

ds = e
�2µ'(t)

Z t

t̂
2µ (s)e2µ'(s))ds

= e
�2µ'(t)

⇣
e
2µ'(t)

� e
2µ'(t/2)

⌘

= 1� e
�2µ('(t)�'(t/2))

.

Hence, for t big enough, the considered integral will be less than 1. All in all, we asymptotically have
E[f(X(t))� f(x?)]  O( (t)), which gives the desired result.

⌅
Remark 2. We retrieve in continuous time the bound in [44]: the rate is always ⌦

�
1
t

�
.
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Figure 3: Simulation of MB-PGF for f(x) =
1
2µkxk

2 with x 2 R2, �2
⇤ = 0.1 and µ = 2.

Simulation with Euler-Maruyama (stepzize =
10�4).
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Figure 4: Simulation of MB-PGF for f(x) =
1
2µkxk

2 with x 2 R100, �2
⇤ = 0.1 and µ = 2.

Simulation with Euler-Maruyama (stepzize =
10�4).

Condition Limit Bound
(H), (H�) limt!1 E

⇥
krf(X(t̃))k2

⇤ Ld�2
⇤

2b

(H), (H�), (HWQC) limt!1 E
⇥
f(X(t̃))� f(x?)

⇤ Ld�2
⇤

2⌧b

(H), (H�), (HPŁ) limt!1 E [f(X(t))� f(x?)]
Ld�2

#

4µb

Table 4: Ball of convergence of MB-PGF under constant  (t) = 1, b(t) = b. For t > 0, t̃ 2 [0, t] has
probability distribution  (s)

'(t) for s 2 [0, t] (and 0 otherwise).

D.3.1 Limit sub-optimality under constant adjustment function

In this paragraph we pick  (t) = 1. The results can be found in Tb. 4. The only non-obvious limit is
the one for PŁ functions. By direct calculation,

E[f(X(t))� f(x?)]  e
�2µ'(t)(f(x0)� f(x?)) +

h d L

2b

Z t

0
�
2
⇤e

�2µ(t�s)
ds

= e
�2µ'(t)(f(x0)� f(x?)) +

h d L �
2
⇤

2

1� e
�2µt

2 b µ
.

The result follows taking the limit.
Example D.1. We can verify the results in Tb. 4 using the quadratic function f(x) = µ

2 kxk
2
, which is

PŁ. This function is isotropic, so µ = L. Under persistent noise �
2
⇤Id, where Id is the identity matrix,

the MB-PGF is dX(t) = �µX(t)dt+h�⇤dB(t). This has solution E[f(X(t)] = f(x0)e�2µt+ hd�2
⇤

4 ,

which perfectly matches the bound in Tb. 4. In Fig. 3 and 4 one can see a simulation for d = 1 and

d = 100, keeping the noise constant at �
2
⇤ = 0.1 and µ = 2. One can clearly see that the bound is

increasing with the number of dimensions. Moreover, by the law of large numbers, the variance in

f(X) is decreasing with the number of dimensions (it is a sum of �
2

distributions).

D.4 Analysis of VR-PGF

We remind the reader that the SVRG gradient estimate (see Sec. 2), with mini-batch size b(t) = 1
(always assumed here) is defined as

GVR(xk) := rfik(xk)�rfik(x̃k) +rf(x̃k),
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where f(x) = 1
N

PN
i=1 fi(x), with {fi}

N
i=1 a collection of functions s.t. fi : Rd

! R for any
i 2 {1, · · · , N}. We call x? the unique global minimum of f . The stochastic gradient index ik is
sampled uniformly from {1, . . . , N} and x̃k 2 {x0, x1, . . . , xk�1} is the pivot used at iteration k.
SVRG builds a sequence (xk)k�0 of estimates of the solution x

? in a recursive way:

xk+1 = xk � hGVR(xk, x̃k�⇠k), (SVRG)

where h � 0. ⇠k is picked to be the sawtooth wave function with period m 2 N+. Also, after m
iterations, the standard discrete-time SVRG analysis [32, 53, 54, 3, 4] requires "jumping" and set
xk = xr̂k , where r̂k is picked at random from {k �m, . . . , k � 1}. This is known as Option II [32],
as opposed to Option I which performs no jumps. The latter variant is widely used in practice [26],
but, unfortunately, is not typically analyzed in the discrete-time literature.

As in App. E.1.1, we denote by {Fk}k�0 the natural filtration induced by the stochastic process with
jumps {xk}k�0. The conditional mean and covariance matrix of GVR are

EFk�1 [GVR(xk)] = rf(xk), (8)
⌃VR(xk, x̃k) := CovFk�1 [GVR(xk)] (9)

= EFk�1

h
(GVR(xk)�rf(xk)) (GVR(xk)�rf(xk))

T
i
.

We start with a lemma and a corollary, which will be used both in continuous and in discrete time and
that are partially derived in [32] and [4].

Lemma 4. Assume (H). We have

Tr (⌃VR(xk, x̃k))  EFk�1

⇥
kGVR(xk)k

2
�

 2EFk�1krfi(xk)�rfi(x
?)k2 + 2EFk�1krfi(x̃k)�rfi(x

?))k2.

Proof. Let us define ✏VR(xk, x̃k) := GVR(xk, x̃k)�rf(xk). First notice that, ✏VR(xk, x̃k) has zero
mean, and

Tr (⌃VR(xk, x̃k)) = Tr
�
EFk�1 [✏VR(xk, x̃k)✏VR(xk, x̃k)

T ]
�
=

= EFk�1

⇥
Tr(✏VR(xk, x̃k)✏VR(xk, x̃k)

T
⇤

= EFk�1

⇥
Tr(✏VR(xk, x̃k)

T
✏VR(xk, x̃k))

⇤
= EFk�1k✏VR(xk, x̃k)k

2
, (10)

where the second equality is given by the linearity of the trace and third equality by the cyclic
property of the trace. Notice that, since for any random variable ⇣ we have EFk�1 [k⇣ �EFk�1⇣k

2] =
EFk�1 [k⇣k

2]� kEFk�1 [⇣]k
2
 EFk�1 [k⇣k

2], then

EFk�1 [k✏VR(xk, x̃k)k
2]  EFk�1 [kGVR(xk, x̃k)k

2].

Hence, we found that Tr (⌃VR(xk, x̃k))  EFk�1 [kGVR(x)k2]. We further bound this term with a
simple calculation

EFk�1kGVR(x)k
2 = EFk�1krfi(xk)�rfi(x̃k) +rf(x̃k)k

2

= EFk�1krfi(xk)�rfi(x
?)� [rfi(x̃k)�rfi(x

?)�rf(x̃k)]k
2

 2EFk�1krfi(xk)�rfi(x
?)k2 + 2Ekrfi(x̃k)�rfi(x

?)�rf(x̃k)k
2

= 2EFk�1krfi(xk)�rfi(x
?)k2

+ 2EFk�1krfi(x̃k)�rfi(x
?)� EFk�1 [rf(x̃k)�rfi(x

?)]k2

 2EFk�1krfi(xk)�rfi(x
?)k2 + 2EFk�1krfi(x̃k)�rfi(x

?))k2,
(11)

where in the first inequality we used the parallelogram law; in the third equality we used
EFk�1 [rfi(x?)] = 0 and in the second inequality we used again the fact that for any random
variable ⇣, EFk�1k⇣ � EFk�1⇣k

2 = EFk�1k⇣k
2
� kEFk�1⇣k

2
 EFk�1k⇣k

2
. ⌅
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Using the previous lemma, we can derive the following result.
Corollary 4. Assume (H). Then

Tr (⌃VR(xk, x̃k))  EFk�1

⇥
kGVR(xk)k

2
⇤

 2L2EFk�1

⇥
kxk � x

?
k
2
⇤
+ 2L2EFk�1

⇥
kx̃k � x

?
k
2
⇤
.

Proof. Using first smoothness we have, starting from Lemma 4

Tr (⌃VR(xk, x̃k))  EFk�1

⇥
kGVR(xk)k

2
�

 2EFk�1krfi(xk)�rfi(x
?)k2 + 2EFk�1krfi(x̃k)�rfi(x

?))k2

 2L2EFk�1

⇥
kxk � x

?
k
2
⇤
+ 2L2EFk�1

⇥
kx̃k � x

?
k
2
⇤
.

⌅

Next, we provide a convergence rate for Option II.

D.4.1 Convergence rate under Option II

We consider, the case b(t) =  (t) = 1. Therefore, VR-PGF reads

dX(t) = �rf(X(t)) dt+
p

h �VR(X(t), X(t� ⇠(t))) dB(t).

As for standard SVRG with Option II, every T seconds we perform a jump.

Theorem 7 (Restated Thm. 4). Assume (H), (HRSI) and choose ⇠(t) = t�
P1

j=1 �(t�jT) (saw-

tooth wave), where �(·) is the Dirac delta. Let {X(t)}t�0 be the solution to VR-PGF with

additional jumps at times (jT)j2N: we pick X(jT + T) uniformly in {X(s)}jTs<(j+1)T.

Then,

E[kX(jT)� x
?
k
2] =

✓
2hL2T+ 1

T(µ� 2hL2)

◆j

kx0 � x
⇤
k
2
.

Proof. Define the energy E 2 C
2(Rd

,R+) such that E(x) := 1
2 ||x� x

?
||
2. First, we find a bound on

the infinitesimal diffusion generator of the stochastic process {E(X(s))}jTs(j+1)T:

A E(X(s)) = �hrf(X(s)), X(s)� x
?
ids+

h

2
Tr(⌃VR(X(s), X(s� ⇠(s))))ds

 �
µ

2
kX(s)� x

?
k
2
ds+ hL

2
�
kX(s)� x

?
k
2 + kX(s� ⇠(s))� x

?
k
2
�
ds

where in the first inequality we used Lemma 4 and the RSI. Using Dynkin’s formula (Eq. (6)), since
X(s� ⇠(s)) = X(jT) for s 2 [jT, jT+ T] by our choice of ⇠(·),

1

2
E
⇥
kX(jT+ T)� x

?
k
2
⇤
�

1

2
E
⇥
kX(jT)� x

?
k
2
⇤

 �
T

2
(µ� 2hL2)

Z jT+T

jT
E[kX(s)� x

?
k
2]
ds

T
+ hL

2TE[kX(jT)� x
?
k
2],

which gives

Z jT+T

jT
E[kX(s)� x

?
k
2]
ds

T


2hL2T+ 1

T(µ� 2hL2)
E[kX(jT)� x

?
k
2].

By redefining (jumping to) X(jT+T) uniformly from {X(s)}jTsjT+T, E[kX(jT+T)�x
?
k
2] =R jT+T

jT E[kX(s)� x
?
k
2]dsT and therefore, for all j 2 N
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E[kX(jT+ T)� x
?
k
2] 

2hL2T+ 1

T(µ� 2hL2)
E[kX(jT)� x

?
k
2].

⌅

E Analysis in discrete-time

For ease of consultation of this appendix, we briefly describe here again our setting: {fi}Ni=1 is a col-
lection of L-smooth18 functions s.t. fi : Rd

! R for any i 2 {1, . . . , N} and f(·) := 1
N

PN
i=1 fi(·).

Trivially, f(·) is also L-smooth; our task is to find a minimizer x? = argminx2Rd f(x).

(H-) Each fi(·) is L-smooth.

Mini-Batch SGD builds a sequence of estimates of the solution x
? in a recursive way, using the

stochastic gradient estimate GMB:

xk+1 = xk � ⌘kG ({xi}0ik, k) , (SGD)

where (⌘k)k�0 is a non-increasing deterministic sequence of positive numbers called the learning

rate sequence. We define, as in Sec. 2,

• h := ⌘0.

• adjustment factor sequence ( k)k�0 s.t. for all k � 0,  k = ⌘k/h.

• {Fk}k�0 the natural filtration induced by the stochastic process {xk}k�0.

• E the expectation operator over all the information F1.

• EFk the conditional expectation given the information at step k.

We also report from the main paper some assumptions we might use

(HWQC) f(·) is C1 and exists ⌧ > 0 and x
? s.t. hrf(x), x� x

?
i � ⌧(f(x)� f(x?)) for all x 2 Rd.

(HPŁ) f(·) is C1 and there exists µ > 0 s.t. krf(x)k2 � 2µ(f(x)� f(x?)) for all x 2 Rd.

(HRSI) f(·) is C1 and there exists µ > 0 s.t. hrf(x), x� x
?
i �

µ
2 kx� x

?
k
2 for all x 2 Rd.

E.1 Analysis of MB-SGD

E.1.1 Non-asymptotic rates

In Sec. 2, we defined ⌃MB(x) to be the one-sample conditional covariance matrix. So that
CovFk�1 [GMB(xk, k)] = ⌃MB(xk)

bk
, where bk is the mini-batch size. As commonly done in the

literature [22] and to match the continuous time analysis, we make the following assumption.

(H�) �2
⇤ := supx2Rd k�MB(x)�MB(x)T kS < 1, where k · kS denotes the spectral norm.

Last, we define — to match existing proofs of related results [11, 22, 43], ✏k := GMB(xk, k)�rf(xk).
It follows that E[k✏kk2] = d�2

⇤
bk

.

Moreover for k � 0 we define 'k+1 =
Pk

i=0  i. We are now ready to show the non-asymptotic
results. But first, we need two (well-known) classic lemmas.

Lemma 5. Assume (H-), then

E[f(xk+1)� f(xk)] 

✓
L⌘

2
k

2
� ⌘k

◆
E
⇥
krf(xk)k

2
⇤
+

L d �
2
⇤ ⌘

2
k

2 bk
.

18As already mentioned in the main paper, we say a function f 2 C1(Rd,Rm) is L-smooth if, for all
x, y 2 Rd, we have krf(x)�rf(y)k  Lkx� yk
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Proof. Thanks to the L-smoothness assumption, we have the classic result (see e.g. [45])

f(xk+1)� f(xk)  hrf(xk), xk+1 � xki+
L

2
kxk+1 � xkk

2
a.s. (12)

After plugging the definition of mini-batch SGD, taking the expectation and using Fubini’s theorem,

E[f(xk+1)� f(xk)]

 �⌘kE
⇥
EFk�1 [hrf(xk),GMB(xk, k)i]

⇤
+

L⌘
2
k

2
E[kGMB(xk, k)k

2]

 �⌘kE[hrf(xk),EFk�1 [GMB(xk, k)]i] +
L⌘

2
k

2
E[krf(xk) + ✏kk

2]

 �⌘kE
⇥
krf(xk)k

2
⇤
+

L⌘
2
k

2
E
⇥
krf(xk)k

2 + k✏kk
2 + 2h✏k,rf(xk)i

⇤



✓
L⌘

2
k

2
� ⌘k

◆
E
⇥
krf(xk)k

2
⇤
+

L⌘
2
k

2
EFk�1

⇥
k✏kk

2
⇤
+ L⌘

2
kE

⇥
hEFk�1 [✏k],rf(xk)i

⇤



✓
L⌘

2
k

2
� ⌘k

◆
E
⇥
krf(xk)k

2
⇤
+

Ld�
2
⇤⌘

2
k

2bk
.

⌅

Lemma 6. Assume (H-), then

E
⇥
krf(xk)k

2
⇤
 2LE[f(xk)� f(x?)].

Proof. We have that

E[f(x?)� f(xk)]  E

f

✓
xk �

1

L
rf(xk)

◆
� f(xk)

�
 �

1

2L
E
⇥
krf(xk)k

2
⇤
,

where the first inequality holds since x
? is the minimum and the last inequality uses Lemma 5 in the

special case �2
⇤ = 0. ⌅

The following theorem (statement and proof technique) has to be compared to Thm. 1 for MB-PGF.

Theorem E.1. Assume (H-), (H�). For k � 0 let k̃ 2 [0, k] be a random index picked with

probability  j/'j+1 for j 2 {0, . . . , k} (and 0 otherwise). If h 
1
L , then we have:

E
⇥
krf(xk̃)k

2
⇤


2 (f(x0)� f(x?))

(h'k+1)
+

h d L �
2
⇤

(h'k+1)

kX

i=0

 
2
i

bi
h.

Proof. Consider the continuous-time inspired (see Thm. 1) Lyapunov function E(k) := f(xk) �

f(x?). We have, directly from Lemma 5 and using the fact that ⌘k 
1
L (hence L⌘2k

2 � ⌘k  �
⌘k
2 ),

E[E(k + 1)� E(k)] = E[f(xk+1)� f(xk)]



✓
L⌘

2
k

2
� ⌘k

◆
E
⇥
krf(xk)k

2
⇤
+

Ld�
2
⇤⌘

2
k

2bk

 �
⌘k

2
E
⇥
krf(xk)k

2
⇤
+

Ld�
2
⇤⌘

2
k

2bk

Finally, by linearity of integration,
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E[E(k + 1)� E(0)] = E
"

kX

i=0

E(i+ 1)� E(i)

#

=
kX

i=0

E[E(i+ 1)� E(i)]

= �
1

2

kX

i=0

⌘iE
⇥
krf(xi)k

2
⇤
+

L d �
2
⇤

2

kX

i=0

⌘
2
i

bi

= �
h

2
E
"

kX

i=0

 ikrf(xi)k
2

#
+

L d h �
2
⇤

2

kX

i=0

 
2
i

bi
(13)

Next, notice that, since
Pk

i=0
 i

'k+1
= 1, the function i 7!

 i

'k+1
defines a probability distribution.

Let k̃ 2 {0, . . . , k} have this distribution; then conditioning on all the past iterations {x0, . . . , xk}

and using the law of the unconscious statistician

EFk�1 [krf(xk̃)k
2] =

1

'k+1

kX

i=0

 (i)krf(xi)k
2
ds,

which, once plugged in Eq. (13), gives

h'k+1E[krf(xk̃)k
2]  2E(0) +

L d h
2
�
2
⇤

2

kX

i=0

 
2
i

bi
.

The proof ends by using the definition of E . ⌅

The following proposition has to be compared to Thm. 2 for MB-PGF.

Theorem E.2. Assume (H-), (H�), (HWQC) and let k̃ be defined as in Thm. E.1. If 0 < h 
⌧
2L ,

then we have:

E
⇥
f(xk̃)� f(x?)]

⇤


kx0 � x
?
k
2

⌧ (h'k+1)
+

d h �
2
⇤

⌧ (h'k+1)

kX

i=0

 
2
i

bi
h.

Moreover, if 0  h 
�
2
L �

1
⌧L

�
, then for all k � 0 we have:

E [f(xk+1)� f(x?)] 
kx0 � x

?
k
2

2 ⌧ (h'k+1)
+

h d �
2
⇤

2 ⌧ (h'k+1)

kX

i=0

(1 + ⌧'i+1L)
 
2
i

bi
h.

Proof. We prove the two rates separately.

Proof of the first formula : consider the continuous-time inspired (see Thm. 2) Lyapunov function
E(k) := 1

2kxk � x
?
k
2. We have

E[E(k + 1)� E(k)] =

=
1

2
E
⇥
kxk � x

?
� ⌘kGMB(xk, k)k

2
⇤
�

1

2
E
⇥
kxk � x

?
k
2
⇤

= �⌘kE
⇥
EFk�1 [hGMB(xk, k), xk � x

?
i]
⇤
+
⌘
2
k

2
E
⇥
kGMB(xk, k)k

2
⇤

= �⌘kE
⇥⌦
EFk�1 [GMB(xk, k)], xk � x

?
↵⇤

+
⌘
2
k

2
E
⇥
krf(xk)k

2
⇤
+
⌘
2
k

2
EFk�1

⇥
k✏kk

2
⇤

= �⌘kE [hrf(xk), xk � x
?
i] +

⌘
2
k

2
E
⇥
krf(xk)k

2
⇤
+

d⌘
2
k�

2
⇤

2bk
,
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where in the second equality we used Fubini’s theorem. We proceed using weak-quasi-convexity and
Lemma 6:

E[E(k + 1)� E(k)]  �⌘k⌧E [f(xk)� f(x?)] +
⌘
2
k

2
E
⇥
krf(xk)k

2
⇤
+

d⌘
2
k�

2
⇤

2bk

 �⌘k⌧E [f(xk)� f(x?)] + ⌘
2
kLE[f(xk)� f(x?)] +

d⌘
2
k�

2
⇤

2bk

 (L⌘2k � ⌧⌘k)E [f(xk)� f(x?)] +
d⌘

2
k�

2
⇤

2bk
.

Next, using the fact that �⌧⌘k + L⌘
2
k  �⌧

⌘k
2 for ⌘k 

⌧
2L we get

E[E(k + 1)� E(k)]  �
⌘k⌧

2
E[f(xk)� f(x?)] +

⌘
2
k�

2
⇤d

2bk
(14)

Finally, by linearity of integration,

E[E(k + 1)� E(0)] = E
"

kX

i=0

E(i+ 1)� E(i)

#

=
kX

i=0

E[E(i+ 1)� E(i)]

 �
⌧

2

kX

i=0

⌘iE [(f(xi)� f(x?))] +
d�

2
⇤

2

kX

i=0

⌘
2
i

bi

= �
⌧

2
E
"

kX

i=0

⌘i(f(xi)� f(x?))

#
+

d�
2
⇤

2

kX

i=0

⌘
2
i

bi
.

Proceeding again as in Thm. E.1, we get the desired result.

Proof of the second formula : consider the continuous-time inspired (see Thm. 2) Lyapunov function

E(k) := ⌧h'k(f(xk)� f(x?)) +
1

2
kxk � x

?
k
2
.

Then, with probability one,
E(k + 1)� E(k)

= ⌧h'k+1(f(xk+1)� f(x?)) +
1

2
kxk+1 � x

?
k
2
� ⌧h'k(f(xk)� f(x?))�

1

2
kxk � x

?
k
2

= ⌧h'k+1(f(xk+1)� f(xk)) + ⌧⌘k(f(xk)� f(x?))

+
1

2
kxk � x

?
� ⌘kGMB(xk, k)k

2
�

1

2
kxk � x

?
k
2

= ⌧'k+1(f(xk+1)� f(xk)) + ⌧⌘k(f(xk)� f(x?))

+
⌘
2
k

2
kGMB(xk, k)k

2
� ⌘khGMB(xk, k), xk � x

?
i.

 ⌧⌘0'k+1(f(xk+1)� f(xk)) + ⌧h⌘k(f(xk)� f(x?))

+
⌘
2
k

2
krf(xk) + ✏kk

2
� ⌘khrf(xk), xk � x

?
i � ⌘kh✏k, xk � x

?
i.

 ⌧h'k+1(f(xk+1)� f(xk)) +
⌘
2
k

2
krf(xk) + ✏kk

2
� ⌘kh✏k, xk � x

?
i,
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where in the second equality we added and subtracted ⌧⌘k(f(xk) � f(x?)) (recall that for k � 0,
h'k+1 =

Pk
i=0 ⌘i) and in the second inequality the weak-quasi-convexity assumption. Next, thanks

to Lemma 5,

E[E(k + 1)� E(k)] =

 ⌧h'k+1E[f(xk+1)� f(xk)] +
⌘
2
k

2
E[krf(xk)k

2] +
⌘
2
k

2
E[k✏kk2]

= ⌧h'k+1E[f(xk+1)� f(xk)] +
⌘
2
k

2
E[krf(xk)k

2] +
⌘
2
k

2
EFk�1 [k✏kk

2]

 ⌧h'k+1E[f(xk+1)� f(xk)] +
⌘
2
k

2
Ekrf(xk)k

2 +
⌘
2
kd�

2
⇤

2bk

 ⌧h'k+1

✓✓
L⌘

2
k

2
� ⌘k

◆
E
⇥
krf(xk)k

2
⇤
+

Ld�
2
⇤⌘

2
k

2bk

◆
+
⌘
2
k

2
E[krf(xk)k

2] +
⌘
2
kd�

2
⇤

2



✓
⌘
2
k

2
+ ⌧⌘0'k+1

✓
L⌘

2
k

2bk
� ⌘k

◆◆
E
⇥
krf(xk)k

2
⇤
+
⌘
2
kd�

2
⇤(1 + L⌧'k+1)

2bk
.

If h  2/L, then L⌘2k
2 � ⌘k  0. Moreover, under this condition, since for all k � 0 we have

'k+1 � ⌘k, it is clear that 'k+1

⇣
L⌘2k
2 � ⌘k

⌘
 ⌘k

⇣
L⌘2k
2 � ⌘k

⌘
. Hence

E[E(k + 1)� E(k)] 

✓
⌘
2
k

2
+ ⌧⌘k

✓
L⌘

2
k

2
� ⌘k

◆◆
E
⇥
krf(xk)k

2
⇤
+
⌘
2
kd�

2
⇤(1 + L⌧'k+1)

2bk
.

It is easy to see that ⌘
2
k
2 + ⌧⌘k

⇣
L⌘2k
2 � ⌘k

⌘
 0 if and only if h 

2⌧�1
⌧L . Under this condition, since

E
⇥
krf(xk)k2

⇤
� 0,

E[E(k + 1)� E(k)] 
⌘
2
kd�

2
⇤(1 + L⌧'k+1)

2bk
.

Finally, by linearity of integration,

E[E(k + 1)� E(0)] = E
"

kX

i=0

E(i+ 1)� E(i)

#

=
kX

i=0

E[E(i+ 1)� E(i)] =
d�

2
h
2

2

kX

i=0

 
2
i (1 + L⌧'i+1)

bi
.

The result then follows from the definition of E . ⌅

The following proposition has to be compared to Thm. 3 for MB-PGF.

Theorem E.3. Assume (H), (H�), (HPŁ). If h  1/L, then for all k � 0 we have:

E [(f(xk+1)� f(x?))] 
 

kY

i=0

(1� µ h i)

!
(f(x0)� f(x?)) +

h d L �
2
⇤

2

kX

i=0

Qk
`=0(1� µ h `)Qi
j=0(1� µ h l)

 
2
i

bi
h.
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Proof. Starting from Lemma 5 we apply the PŁ property. If L⌘2k
2 � ⌘k  0, that is ⌘k  2/L for all

k, then

E[f(xk+1)� f(xk)] 

✓
L⌘

2
k

2
� ⌘k

◆
E
⇥
krf(xk)k

2
⇤
+

Ld�
2
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2
k

2

 2µ

✓
L⌘

2
k

2
� ⌘k

◆
E[f(xk)� f(x?))] +

Ld�
2
⇤⌘

2
k

2

Furthermore, if ⌘k  1/L for all k then L⌘2k
2 � ⌘k  �

⌘k
2bk

:

E[f(xk+1)� f(xk)]  �µ⌘kE[f(xk)� f(x?)] +
Ld�

2
⇤⌘

2
k

2bk
. (15)

Consider now the Lyapunov function inspired by the continuous time prospective (see Thm. 3):

E(k) :=

(Qk�1
i=0 (1� ⌘iµ)�1(f(xk)� f(x?)) k > 0

(f(xk)� f(x?)) k = 0
.

We have, for k � 0,

E[E(k + 1)� E(0)]

= E
"

kX

i=0

E(i+ 1)� E(i)

#

=
kX

i=0

E[E(i+ 1)� E(i)]

=
kX

i=0

0

@
iY

j=0

(1� ⌘jµ)
�1

1

AE [f(xi+1)� f(x?)� (1� ⌘iµ)(f(xi)� f(x?))]

=
kX

i=0

0

@
iY

j=0

(1� ⌘jµ)
�1

1

AE [f(xi+1)� f(xi) + ⌘iµ(f(xi)� f(x?))] .

Using Lemma 5,

E[E(k + 1)� E(0)]



kX

i=0

0

@
iY

j=0

(1� ⌘jµ)
�1

1

A
✓
�µ⌘iE[f(xi)� f(x?)] +

Ld�
2
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2
i

2bi
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@
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2
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2bi
,

where in the first inequality we used Eq. (15) . By plugging in the definition of E ,

kY

i=0

(1� ⌘iµ)
�1EFk [(f(xk+1)� f(x?))]  f(x0)� f(x?) +

kX

i=0

0

@
iY

j=0

(1� ⌘jµ)
�1

1

A Ld�
2
⇤⌘

2
i

2bi

which gives the desired result. ⌅
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Condition Limit Bound
(H-), (H�) limk!1 E

⇥
krf(xk̃)k

2
⇤ L d �2

⇤ h
b

(H-), (H�), (HWQC) limk!1 E
⇥
f(xk̃)� f(x?)

⇤ L d �2
⇤ h

⌧ b

(H-), (H�), (HPŁ) limk!1 E [f(xk)� f(x?)] L d �2
⇤h

2 µ b

Table 5: Ball of convergence of MB-PGF under constant  k = 1 and bk = b. For k � 0, 'k+1 =Pk
i=0  i and k̃ 2 [0, k] is a random index picked with distribution  j/'j+1 for j 2 {0, . . . , k} and

0 otherwise.

E.1.2 Asymptotic rates under decreasing adjustment factor

Can be derived easily using the same arguments as in App. D.3, with the same final results.

E.1.3 Limit sub-optimality under constant adjustment factor

In this paragraph we pick  k = 1 and bk = b for all k and study the ball of convergence of SGD. The
results can be found in Tb. 5. The only non-trivial limit is the one for PŁ functions.

By direct calculation.

E [(f(xk+1)� f(x?))]  (1� hµ)k+1(f(x0)� f(x?)) +
Ld�

2
⇤h

2

2b

kX

i=0

(1� hµ)i

 (1� hµ)k+1(f(x0)� f(x?)) +
Ld�

2
⇤h

2

2b

1X

i=0

(1� hµ)i

= (1� hµ)k+1(f(x0)� f(x?)) +
Ld�

2
⇤h

2

2hbµ
.

Where we used the fact that for any ⇢ < 1,
P1

i=0 ⇢i =
1

1�⇢ . The result then follows taking the limit.

E.1.4 Convergence rates for VR-SGD (SVRG)

Theorem E.4. Assume (H-), (HRSI) and choose ⇠k = k�
P1

j=1 �k�jm (sawtooth wave), where

� is the Kronecker delta. Let {xk}k�0 be the solution to SGD with VR with additional jumps at

times (jm)j2N: we jump picking x(j+1)m uniformly in {xk}jmk<(j+1)m. Then,

E[kxjm � x
?
k
2] =

✓
1 + 2L2

h
2
m

hm(µ� 3L2h)

◆j

kx0 � x
⇤
k
2
.

Proof. Start by computing

1

2
E
⇥
kxk+1 � x

?
k
2
⇤

=
1

2
E
⇥
kxk � x

?
� hGVR(k)k

2
⇤

= �hE [hrf(xk), xk � x
?
i] + L

2
h
2E[kGVR(k)k

2]
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where we used the fact that GVR is unbiased. Consider iterations jm  k  j(m+ 1). Our choice of
⇠ fixes the pivot to xjm. Using smoothness, Cor. 4 and the restricted-secant-inequality, we get,

1

2
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⇥
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?
k
2
⇤
�

1

2
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⇥
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?
i] + L

2
h
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⇥
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?
k
2
⇤
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2
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2
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�
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⇥
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2
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2
h
2E

⇥
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k
2
⇤
.

Finally, summing from jm to j(m+ 1), we have

1

2
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⇥
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Therefore, dropping the first term,

E
⇥
kx(j+1)m � x

?
k
2
⇤
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1

m

jm+m�1X

k=jm

E
⇥
kxk � x
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.

Redefining (jumping to) xj(m+1) ⇠ U({xk}jmk(j+1)m), we get

E[kxj(m+1) � x
?
k
2] 

1 + 2L2
h
2
m

hm(µ� 2L2h)
E
⇥
kxjm � x

?
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.

⌅

F Time stretching
Theorem F.1 (Restated Thm. 5). Let {X(t)}t�0 satisfy PGF and define ⌧(·) = '

�1(·), where

'(t) =
R t
0  (s)ds. For all t � 0, X (⌧(t)) = Y (t) in distribution, where {Y (t)}t�0 satisfies

dY (t) = �rf(Y (t))dt+

s
h  (⌧(t))

m(⌧(t))
�(⌧(t)) dB̃(t),

where {B̃(t)}t�0 is a Brownian Motion.

Proof. By definition, X(t) is such that

X(t) = �

Z t

0
 (r)rf(X(r)) dr +

Z t

0
 (r)

s
h

m(r)
�(r) dB(r).

Therefore

X(⌧(t)) = �

Z ⌧(t)

0
 (r)rf(X(r)) dr

| {z }
:=A

+

Z ⌧(t)

0
 (r)

s
h

m(r)
�(r) dB(r)

| {z }
:=B

.

Using the change of variable formula for Riemann integrals, we get

A =

Z ⌧(t)

0
 (r)rf(X(r))dr = �

Z t

0
⌧
0(r) ·  (⌧(r)) ·rf(X(⌧(r)))dr =

=

Z t

0

⇠⇠⇠⇠ (⌧(r))

⇠⇠⇠⇠ (⌧(r))
rf(X(⌧(r)))dr.
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Using the time change formula (Thm. B.4) for stochastic integrals, with v(r) :=  (r)
q

h
m(r)�(r),

B =

Z ⌧(t)

0
 (r)

s
h

m(r)
�(r) dB(r) =

Z t

0

 (⌧(r))p
⌧ 0(r)

s
h

m(⌧(r))
�(⌧(r)) dB̃(r) =

=

Z t

0

s
h  (⌧(r))

m(⌧(r))
�(⌧(r)) dB̃(r).

All in all, we have found that

X(⌧(t)) = �

Z t

0
rf(X(⌧(r)))dr +

Z t

0

s
h  (⌧(r))

m(⌧(r))
�(⌧(r)) dB̃(r).

By Def. 2, this is equivalent to saying that Y := X � ⌧ satisfies the differential in the theorem
statement. ⌅
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