
Supplements for “Multiway clustering via tensor
block models”

A Proofs

A.1 Stochastic tensor block model

The following property shows that Bernoulli distribution belongs to the sub-Gaussian family with a
subgaussianity parameter σ equal to 1/4.

Property 1. Suppose x ∼ Bernoulli(p), then x ∼ sub-Gaussian( 1
4 ).

Proof. For all λ ∈ R, we have

ln(E(eλ(x−p)) = ln
(
peλ(1−p) + (1− p)e−pλ

)
= −pλ+ ln(1 + peλ − p) ≤ λ2

8
.

Therefore E(eλ(x−p)) ≤ eλ2(1/4)/2.

A.2 Proof of Proposition 1

Proof. Let PΘ denotes the (either Gaussian or Bernoulli) tensor block model, where Θ = C ×1

M1 ×2 · · · ×K MK parameterizes the mean tensor. Since the mapping Θ 7→ PΘ is one-to-one,
Θ is identifiable. Now suppose that Θ can be decomposed in two ways, Θ = Θ({Mk}, C) =

Θ({M̃k}, C̃). Based on the Assumption 1, we have

Θ = C ×1 M1 ×2 · · · ×KMK = C̃ ×1 M̃1 ×2 · · · ×K M̃K , (1)

where C, C̃ ∈ RR1×···×RK are two irreducible cores, andMk,M̃k ∈ {0, 1}Rk×dk are membership
matrices for all k ∈ [K]. We will prove by contradiction thatMk and M̃k induce the same partition
of [dk], for all k ∈ [K].

Suppose the above claim does not hold. Then there exists a mode k ∈ [K] such that the Mk,M̃k

induce two different partitions of [dk]. Without loss of generality, we assume k = 1. The definition of
partition implies that there exists a pair of indices i 6= j, i, j ∈ [d1], such that, i, j belong to the same
cluster based on M1, but they belong to different clusters based on M̃1. Let A 6= B,A,B ⊂ [d1]

respectively denote the clusters that i and j belong to, based on M̃1. The left-hand side of (1) implies

Θi,i2,...,iK = Θj,i2,...,iK , for all (i2, . . . , iK) ∈ [d2]× · · · × [dK ]. (2)

On the other hand, (1) implies

Θi,i2,...,iK = Θk,i2,...,iK , for all k ∈ A and all (i2, . . . , iK) ∈ [d2]× · · · × [dK ], (3)

and

Θj,i2,...,iK = Θk,i2,...,iK , for all k ∈ B and all (i2, . . . , iK) ∈ [d2]× · · · × [dK ]. (4)

Combining (2), (3) and (4), we have

Θi,i2,...,iK = Θk,i2,...,iK , for all k ∈ A ∪ B and all (i2, . . . , iK) ∈ [d2]× · · · × [dK ]. (5)

Equation (5) implies that A and B can be merged into one cluster. This contradicts the irreducibility
assumption of the core tensor C̃. Therefore, M1 and M̃1 induce a same partition of [d1], and thus
they are equal up to permutation of cluster labels. The proof is now complete.
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A.3 Proof of Theorem 1

The following lemma is useful for the proof of Theorem 1.

Lemma 1. Suppose Y = Θtrue + E with Θtrue ∈ P . Let Θ̂ = arg minΘ∈P‖Θ̂ − Y‖2F be the
least-square estimator of Θtrue. We have

‖Θ̂−Θtrue‖F ≤ 2 sup
µ∈ P−P′|P−P′|

〈µ, E〉,

where P − P ′ = {Θ−Θ′ : Θ,Θ′ ∈ P} and S/|S| = {s/‖s‖2 : s ∈ S}.

Proof. Based on the definition of least-square estimator, we have

‖Θ̂− Y‖2F ≤ ‖Θtrue − Y‖2F . (6)

Combining (6) with the fact

‖Θ̂− Y‖2F = ‖Θ̂−Θtrue + Θtrue − Y‖2F
= ‖Θ̂−Θtrue‖2F + ‖Θtrue − Y‖2F + 2〈Θ̂−Θtrue,Θtrue − Y〉,

yields

‖Θ̂−Θtrue‖2F ≤ 2〈Θ̂−Θtrue,Y −Θtrue〉 = 2〈Θ̂−Θtrue, E〉.

Dividing each side by ‖Θ̂−Θtrue‖F , we have

‖Θ̂−Θtrue‖F ≤ 2

〈
Θ̂−Θtrue

‖Θ̂−Θtrue‖F
, E

〉
.

The desired inequality follows by noting Θ̂−Θtrue

‖Θ̂−Θtrue‖F
∈ P−P′
|P−P′| .

Proof of Theorem 1. To study the performance of the least-square estimator Θ̂, we need to introduce
some additional notation. We view the membership matrixMk as an onto functionMk : [dk] 7→ [Rk].
With a little abuse of notation, we still useMk to denote the mapping function and writeMk ∈ Rdkk
by convention. We useM = {Mk}k∈[K] to denote the collection of K membership matrices, and
writeM = {M : M is the collection of membership matricesMk’s}. For any set J , |J | denotes
its cardinality. Note that |M| ≤

∏
k R

dk
k , because eachMk can be identified by a partition of [dk]

into Rk disjoint non-empty sets.

For ease of notation, we define d =
∏
k dk and R =

∏
k Rk. We sometimes identify a tensor in

Rd1×···×dK with a vector in Rd. By the definition of the parameter space P , the element Θ ∈ P can
be equivalently identified by Θ = Θ(M ,C), where M ∈ M is the collection of K membership
matrices and C = vec(C) ∈ RR is the core tensor. Note that, for a fixed clustering structureM , the
space consisting of Θ = Θ(M , ·) is a linear space of dimension R.

Now consider the least-square estimator

Θ̂ = arg min
Θ∈P

{−2〈Y,Θ〉+ ‖Θ‖2F } = arg min
Θ∈P

{‖Y −Θ‖2F }.

Based on the Lemma 1,

‖Θ̂−Θtrue‖F ≤ 2 sup
Θ∈P

sup
Θ′∈P

〈 Θ−Θ′

‖Θ−Θ′‖F
, E
〉

≤ 2 sup
M ,M ′∈M

sup
C,C′∈RR

〈 Θ(M ,C)−Θ′(M ′,C ′)

‖Θ(M ,C)−Θ′(M ′,C ′)‖F
, E
〉
.
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By union bound, we have, for any t > 0,

P
(
‖Θ̂−Θtrue‖F > t

)
≤ P

(
sup

M ,M ′∈M
sup

C,C′∈RR

∣∣∣∣〈 Θ(M ,C)−Θ′(M ′,C ′)

‖Θ(M ,C)−Θ′(M ′,C ′)‖F
, E
〉∣∣∣∣ > t

2

)

≤
∑

M ,M ′∈M

P
(

sup
C′∈RR

sup
C∈RR

∣∣∣∣〈 Θ(M , C)−Θ′(M ′, C)
‖Θ(M , C)−Θ′(M ′, C)‖F

, E
〉∣∣∣∣ ≥ t

2

)

≤ |M|2CR1 exp

(
−C2t

2

32σ2

)
= exp

(
2
∑
k

dk logRk + C1

∏
k

Rk −
C2t

2

32σ2

)
,

for two universal constants C1, C2 > 0. Here the third line follows from [1] (Theorem 1.19) and the
fact that Θ = Θ(M , ·) lies in a linear space of dimension R. The last line uses |M| ≤

∏
k R

dk
k and

R =
∏
k Rk. Choosing t = Cσ

√∏
k Rk +

∑
k dk logRk yields the desired bound.

A.4 Proof of Theorem 2

First we give a list of notation used in the proof. For ease of notation, we allow the basic arithmetic
operators (+,−,≥, etc) to be applied to pairs of vectors in an element-wise manner.

A.4.1 Notations

Mk = Jm(k)
ir K ∈ {0, 1}dk×Rk : the mode-k membership matrix. The element m(k)

ir = 1 if and only
if the ith slide in mode k belongs to the rth cluster.

Mk,true, M̂k ∈ {0, 1}dk×Rk : the true and estimated mode-k cluster membership matrices, respec-
tively.

p(k) = Jp(k)
r K ∈ [0, 1]Rk : the marginal cluster proportion vector listing the relative cluster sizes along

the mode k. The element p(k)
r = 1

dk

∑dk
i=1 1{m

(k)
ir = 1} denotes the proportion of the rth cluster.

The cluster proportion vector p(k) = p(k)(Mk) can be viewed as a function ofMk.

p
(k)
true, p̂(k) ∈ [0, 1]Rk : the true and estimated mode-k cluster proportion vectors, respectively.

D(k) = JD(k)
rr′ K ∈ [0, 1]Rk×Rk : the mode-k confusion matrix between clustering Mk,true and M̂k.

The entries in the confusion matrix is D(k)
rr′ = 1

dk

∑dk
i=1 I{m

(k)
ir,true = m̂

(k)
ir′ = 1}. The confusion

matrixD(k) = 1
dk
MT

k,trueM̂k is a function ofMk,true and M̂k.

Jτ = {(M1, . . . ,MK) : p(k)(Mk) ≥ τ for all k ∈ [K]}: the set of all possible partitions that
satisfy the marginal non-degenerating assumption.

I ⊂ 2[d1] × · · · × 2[dK ]: the set of blocks that satisfy the marginal non-degenerating assumption for
all k ∈ [K];

L = inf{|I| : I ∈ I}: the minimum block size in I.

‖A‖max = maxr1,...,rK |ar1,...,rK | for any tensor A = Jai1,...,iK K ∈ RR1×...×RK .

f(x) = x2: the quadratic objective function.

Remark 1. By definition, the confusion matrixD(k) satisfies the following two properties:

1. D(k)1 = p
(k)
true, (D(k))T1 = p̂(k).

2. The estimated clustering matches the true clustering if and only if D(k) equals to the
diagonal matrix up to permutation.
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A.4.2 Auxiliary Results

Recall that the objective function in our tensor block model is

f(C, {Mk}) = 〈Y, Θ〉 − ‖Θ‖
2
F

2
, (7)

where Θ = C ×1 M1 ×2 · · · ×KMK ,

where Y ∈ Rd1×···×dK is the data, C is the core tensor of interest, and {Mk} is the membership matri-
ces of interest. Without loss of generality, we will work with the scaled objective 2∏

k dk
f(C, {Mk}).

With a little abuse of notation, we still denote the scaled function as f(C, {Mk}).

We will prove that, if there is non-negligible mismatch between {M̂k} and {Mk,true}, then {M̂k}
cannot be the optimizer to (7). To show this, we investigate the objective values at the global optimizer
vs. at the true parameter. The deviation between these two values comes from two aspects: the label
assignments (i.e., the estimation of {Mk}) and the estimation of the core tensor. In what follows, we
tease apart these two aspects.

1. First, suppose the partitions {Mk} are given, which are not necessarily equal to {Mk,true}.
We now assess the stochastic error due to estimation of C, conditional on {Mk}. In such
a case, the core Ĉ = arg minC f(C, {Mk}) can be solved explicitly. Specifically, the
optimizer Ĉ = Jĉr1,...,rK K consists of the sample averages of each tensor block, where

ĉr1,...,rK = ĉr1,...,rK ({Mk}) (8)

=
1

d1 · · · dK
1

p
(1)
r1 · · · p

(K)
rK

[
Y ×1 M

T
1 ×2 · · · ×KMT

K

]
r1,...,rK

where the marginal cluster proportion p(k)
rk is induced by the clusteringMk.

Define a new cost function F (M1, . . . ,MK) = −f(Ĉ,M1, . . . ,Mk), where Ĉ =
Jĉi1,...,iK K is expressed in (8). A straightforward calculation shows that the function F (·)
has the form

F (M1, . . . ,MK) =
∑

r1,...,rK

(∏
k

p(k)
rk

)
ĉ2r1,...,rK . (9)

Let G(M1, . . . ,Mk) = E(F (M1, . . . ,MK)), where the expectation is taken with respect
to the Ĉ = Jĉr1,...,rK K. We have that

G(M1, . . . ,MK) =
∑

r1,...,rK

(∏
k

p(k)
rk

)
µ2
r1,...,rK , (10)

where

µr1,...,rK = E(ĉr1,...,rK ) =
1∏
k p

(k)
rk

[
C ×1 D

(1)T ×2 · · · ×K D(K)T
]
r1,...,rK

is the expectation of the average of yi1,...,iK over the tensor block indexed by (r1, . . . , rK),
andD(k) = JD(k)

ikjk
K is the confusion matrix betweenMk,true andMk.

The deviation F (M1, . . . ,MK) − G(M1, . . . ,MK) quantifies the stochastic error
caused by the core tensor estimation. We sometimes use G(D(1), . . . ,D(K)) to denote
G(M1, . . . ,Mk) if we want to emphasize the error caused by mismatch in label assign-
ments. Based on (9) and (10), we define a residual tensor for the block means:

R(M1, . . . ,MK) = JRr1,...,rK K,where (11)
Rr1,...,rK = ĉr1,...,rK − µr1,...,rK , for all (r1, . . . , rK) ∈ [R1]× · · · × [RK ].

Note that, conditional on {Mk}, the entries Rr1,...,rK in the residual tensor are independent
sub-Gaussian with parameter depending on the size of the (r1, . . . , rK)th block.
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2. Next, we free {Mk} and quantify the total stochastic deviation. Note that optimizing (7) is
equivalent to optimizing (9) with respect to {Mk}. So the least-square estimator of {Mk}
can be expressed as

(M̂1, . . . ,M̂K) = arg max
(M1,...,MK)∈Jτ

F (M1, . . . ,MK).

The expectation (with respect to Ĉ) of the objective value at the true parameter is

G(M1,true, . . . ,MK,true) =
∑

r1,...,rK

p
(1)
r1,true · · · p

(K)
rK ,truec

2
r1,...,rK ,true

We useG(D(1), . . . ,D(K))−G(M1,true, . . . ,MK,true) to measure the stochastic deviation
caused by mismatch in label assignments; and use F (M1, . . . ,MK)−G(D(1), . . . ,D(K))
to measure stochastic deviation caused by estimation of core tensors.

The following lemma shows that, if there is non-negligible mismatch betweenMk,true and M̂k, then
M̂k cannot be the global optimizer to the objective function (7).

Lemma 2. Consider partitions that satisfying (M1, . . . ,MK) ∈ Jτ , for some τ > 0. Define
the minimal gap between block means δ(k) = minrk 6=r′k maxr1,...,rk−1,rk+1,...,rK (cr1,...,rk,...,rK −
cr1,...,r′k,...,rK )2 > 0 and assume δmin = mink δ

(k) > 0. For any fixed ε > 0, suppose
MCR(Mk,true,M̂k) ≥ ε for some k ∈ [K]. Then, we have

G(D(1), . . . ,D(K))−G(M1,true, . . . ,MK,true) ≤ −
1

4
ετK−1δmin,

whereD(k) is the confusion matrix betweenMk,true and M̂k.

Proof of Lemma 2. For ease of notation, we drop the subscript “true” and simply write p(k)
rk ,Mk, C,

etc. as the true parameters. The corresponding estimators are denoted as p̂(k)
rk , M̂k, etc. Recall that

G(D(1), . . . ,D(K)) =
∑

r1,...,rK

p̂(1)
r1 · · · p̂

(K)
rK µ2

r1,...,rK ,

where p̂(k)
rk is the marginal cluster proportion induced by M̂k, and µr1,...,rK is the expected block

mean induced by M̂k:

µr1,...,rK = µr1,...,rK (M̂1, . . . ,M̂K) =
1∏
k p̂

(k)
rk

[
C ×1 D

(1)T ×2 · · · ×K D(K)T
]
r1,...,rK

.

We provide the proof for k = 1. The proof for other k ∈ [K] is similar. The condition on MCR
implies that, there exist some r1 ∈ [R1] and some a1 6= a′1 ∈ [R1], such that min{D(1)

a1r1 , D
(1)
a′1r1
} ≥ ε.

Because the minimal gap between tensor block means are non-zero, we choose (a2, . . . , aK) such
that (ca1,a2,...,aK − ca′1,a2,...,aK )2 = max

a2,...,aK
(ca1,a2,...,aK − ca′1,a2,...,aK )2 > 0.

LetN = Jc2a1,...,aK K ∈ RR1×···×RK be the quadratic loss evaluated at block,Wr1,...,rK =
∏
k p̂

(k)
rk >

0 the size for the block indexed by (r1, . . . , rK). For ease of notation, we drop the subscript
(r1, . . . , rK) and simply write W .

Based on the convexity of quadratic loss, there exists c∗ ∈ R such that the weighted quadratic loss
can be expressed as

[N ×1 D
(1)T ×2 · · · ×K D(K)T ]r1,...,rK

= D(1)
a1r1D

(2)
a2r2 · · ·D

(K)
aKrK c

2
a1,a2,....,aK +D

(1)
a′1r1

D(2)
a2r2 · · ·D

(K)
aKrK c

2
a′1,a2,...,aK

+

(W −D(1)
a1r1D

(1)
a2r2 · · ·D

(K)
aKrK −D

(1)
a′1r1

D(1)
a2r2 · · ·D

(K)
aKrK )c2∗.
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Recall that µr1,...,rK = 1
W [C ×1 D

(1)T ×2 · · · ×K D(K)T ]r1,...,rK is the (r1, . . . , rk)-th weighted
entry of the block means. By the Taylor expansion of quadratic loss function at µr1,...,rK , we have

1

W
[N ×1 D

(1)T ×2 · · · ×K D(K)T ]r1,...,rK − µ2
r1,...,rK

≥ 1

2W
D(1)
a1r1D

(2)
a2r2 · · ·D

(K)
aKrK (ca1,a2,...,aK − µr1,...,rK )2+

1

2W
D

(1)
a′1,r1

D(2)
a2r2 · · ·D

(K)
aKrK (ca′1,a2,...,aK − µr1,...,rK )2+

1

2W

(
W −D(1)

a1r1D
(2)
a2,r2 · · ·D

(K)
aKrK −D

(1)
a′1,r1

D(2)
a2,r2 · · ·D

(K)
aKrK

)
(c∗ − µr1,...,rK )2. (12)

Combining (12) and basic inequality (a2 + b2) ≥ 1
2 (a+ b)2 gives

1

W
[N ×1 D

(1)T ×2 · · · ×K D(K)T ]r1,...,rK − µ2
r1,...,rK

≥ 1

4W
min

{
D(1)
a1r1 , D

(1)
a′1r1

}
D(2)
a2r2 · · ·D

(K)
aKrK (ca1,...,aK − ca′1,...,aK )2

≥ εD
(2)
a2r2 · · ·D

(K)
aKrK

4W
(ca1,a2,...,aK − ca′1,a2,...,aK )2. (13)

The inequality (13) only holds for a certain r1 ∈ [R1]. For any other r′1 ∈ [R1]/{r1}, by Jensen’s
inequality we have

1

W
[N ×1 D

(1)T ×2 · · · ×K D(K)T ]r′1,...,rK − µ
2
r′1,...,rK

≥ 0. (14)

Combining the sum of (13) and (14) over (r2, . . . , rK) gives

G(D(1), . . . ,D(K))−
∑

r1,...,rK

p(1)
r1 · · · p

(K)
rK c2r1,...,rK

≤ −ε
∑

r2,...,rK

D
(2)
a2r2 · · ·D

(K)
aKrK

4
(ca1,a2,...,aK − ca′1,a2,...,aK )2

≤ −1

4
ετK−1δmin,

where the last line uses the fact that
∑
rk

D(k)
akrk

= p(k)
ak
≥ τ .

A.4.3 Proof

Proof of Theorem 2. The notations we use here are inherited from Lemma 2. With a little abuse
of notation, we use δmin = mink δ

(k) in the proof. This differs from the definition δmin =
1

‖C‖max
mink δ

(k) in Theorem 2 by a factor of ‖C‖max. By Lemma 2, we obtain that

P
(

MCR(M̂k,Mk,true) ≥ ε
)

≤P
(
G(D(1), . . . ,D(K))−G(M1,true, . . . ,MK,true) ≤ −

1

4
ετK−1δmin

)
. (15)

Define r = sup
Jτ
|F (M1, . . . ,MK)−G(D(1), . . . ,D(K))| as the stochastic deviation caused by the

label assignment. When the eventG(D(1), . . . ,D(K))−G(M1,true, . . . ,MK,true) ≤ − 1
4ετ

K−1δmin

holds, by triangle inequality, we have

F (M̂1, . . . ,M̂K)− F (M1,true, . . . ,MK,true) ≤ 2r − 1

4
ετK−1δmin. (16)
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Plugging the event (16) back into inequality (15), we obtain

P
(

MCR(M̂k,Mk,true) ≥ ε
)

≤P
(
F (M̂1, . . . ,M̂K)− F (M1,true, . . . ,MK,true) ≤ 2r − 1

4
ετK−1δmin

)
≤P
(
r ≥ ετK−1δmin

8

)
, (17)

where the last line uses the fact that the M̂k is the global optimizer of F (·); i.e. F (M̂1, . . . ,M̂K) =
arg maxF (M1, . . . ,MK) ≥ F (M1,true, . . . ,MK,true).

Now we aim to find the probability (17) with respect to r = sup
Jτ
|F (M1, . . . ,MK) −

G(D(1), . . . ,D(K))|. Note that r involves the quadratic objective f(x) = x2. The quadratic
function f(x) is locally lipschitz continuous with lipschitz constant b = supx |f ′(x)|, where x is
in the closure of the convex hull of the entries of C. Note that b ≤ 2‖C‖max. Therefore, for any
partitions {Mk} (which are not necessarily equal to {M̂k} or {Mk,true}):∣∣∣F (M1, . . . ,MK)−G(D(1), . . . ,D(K))

∣∣∣
≤

∑
r1,...,rK

p(1)
r1 p

(2)
r2 · · · p

(K)
rK |f(ĉr1,...,rK )− f(µr1,...,rK )|

≤ 2‖C‖max‖R(M1, . . . ,MK)‖max, (18)
where

ĉr1,...,rK =
1∏
k p

(k)
rk

(Y ×1 M
T
1 ×2 · · · ×KMT

K)r1,...,rK ,

and
µr1,...,rK =

1∏
k p

(k)
rk

[
C ×1 D

(1)T ×2 · · · ×K D(K)T
]
r1,...,rK

.

are, respectively, sample average and expected sample average, conditional on the partitionsMk, and
R(M1, . . . ,MK) is the residual tensor defined in (11).

Combining (17), (18) and Hoeffding’s inequality, we have

P
(

MCR(M̂k,Mk,true) ≥ ε
)
≤ P

(
sup
Jτ
‖R(M1, . . . ,MK)‖max ≥

ετK−1δmin

16‖C‖max

)

≤ P

sup
I∈I

∣∣∣∑(i1,...,iK)∈I (Yi1,...,iK − E(Yi1,...,iK ))
∣∣∣

|I|
≥ ετK−1δmin

16‖C‖max


≤ 21+

∑
k dkexp

(
−ε

2τ2(K−1)δ2
minL

512σ2‖C‖2max

)
, (19)

where the last line uses the sub-Gaussianness of the entries in the residual tensor (conditional on
{Mk}), and L = inf{|I| : I ⊂ I} ≥ τK

∏K
k=1 dk is introduced in Section A.4.1. Defining C = 1

512
in (19) yields the desired conclusion.

A.5 Sparse estimator

Lemma 3. Consider the regularized least-square estimation,

Θ̂sparse = arg min
Θ∈P

{
‖Y −Θ‖2F + λ‖C‖ρ

}
, (20)

where C = Jcr1,...,rK K ∈ RR1×···×RK is the block-mean tensor, ‖C‖ρ is the penalty function with ρ
being an index for the tensor norm, and λ is the penalty tuning parameter. We have

ĉsparse
r1,...,rK =

ĉ
ols
r1,...,rK1

{
|ĉols
r1,...,rK | ≥

√
λ

nr1,...,rK

}
if ρ = 0,

sign(ĉols
r1,...,rK )

(
|ĉols
r1,...,rK | −

λ
2nr1,...,rK

)
+

if ρ = 1,
(21)
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where a+ = max(a, 0) and ĉols
r1,...,rK denotes the ordinary least-square estimate as in Algorithm 1.

Proof. We formulate the estimation of C as a regularized least-square regression. Note that Θ ∈ P
implies that

Θ = C ×1 M1 × · · · ×KMK .

DefineX = M1⊗ . . .⊗MK ∈ Rd×R, where d =
∏
k dk and R =

∏
k Rk, and β = vec(C) ∈ RR.

HereX is a membership matrix that indicates the block allocation among tensor entries. Specifically,
X consists of orthogonal columns with XTX = diag(n1, . . . , nR), where nr is the number of
entries in the tensor block that corresponds to the r-th column ofX .

For a given set ofM ′
ks, the optimization (22) with respect to C is equivalent to a regularized linear

regression with Y = vec(Y) as the response andX as the design matrix:

L(β) = ‖Y −Xβ‖22 + λ‖β‖ρ. (22)

When λ = 0 (no penalty), the minimizer is β̂ols = (β̂ols
1 , . . . , β̂ols

R ) = (XTX)−1XTY , where
β̂ols
r = 1

nr
yr1

T
nr for all r ∈ [R].

Case 1: ρ = 0.

Note thatX induces a partition of indices [d] into R blocks. With a little abuse of notation, we use
R = {i ∈ [d] : X(i) = r} to denote the collection of tensor indices that belong to the rth block, and
use YR ∈ Rnr to denote the corresponding tensor entries. By the orthogonality ofX , we have

L(β) =

R∑
r=1

‖YR − βr1nr‖22 + λ

R∑
r=1

1{βr 6= 0}

=

R∑
r=1

(
‖YR − βr1nr‖22 + λ1{βr 6= 0}

)︸ ︷︷ ︸
:=Lr(βr)

The optimization can be separated into each of βr’s. For any r ∈ [R], the sub-optimization
minβr Lr(βr) has a closed-form solution

min
βr

Lr(βr) =

Y T
RYR − nr

(
β̂ols
r

)2

+ λ if β̂ols
r 6= 0,

Y T
RYR if β̂ols

r = 0,

with

arg min
βr

Lr(βr) =

0 if nr
(
β̂ols
r

)2

≤ λ,
β̂ols
r otherwise.

(23)

Solution (23) can be simplified as β̂sparse
r = β̂ols

r 1{|β̂ols
r | ≤

√
λ
nr
}. The proof is complete by noting

that ĉsparse
r1,...,rR = β̂sparse

r and nr1,...,rK = nr for all (r1, . . . , rK) ∈ [R1]× · · · × [RK ].

Case 2: ρ = 1.

Similar as in Case 1, we write the optimization (22) as

L(β) =

R∑
r=1

(
‖YR − βr1nr‖22 + λ|βr|

)︸ ︷︷ ︸
:=Lr(βr)

,

where, with a little abuse of notation, we still use Lr(βr) to denote the sub-optimization. To solve
arg minβr Lr(βr), we use the properties of subderivative. Taking the subderivative with respect to
βr, we obtain

∂Lr(βr)

∂βr
=


2nrβr − 2nrβ̂

ols
r + λ if βr > 0,

[2nrβr − 2β̂ols
r − λ, 2nrβr − β̂ols + λ] if βr = 0,

2nrβr − 2nrβ̂
ols
r + λ if βr < 0.
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Because β̂sparse
r minimizes Lr(βr) if and only if 0 ∈ ∂Lr(βr)

∂βj
, we have:

β̂sparse
r =


β̂ols
r + λ

2nr
if β̂ols

r < − λ
2nr

,
0 if β̂ols

r ∈ [− λ
2nr

, λ
2nr

],
β̂ols
r − λ

2nr
if β̂ols

r > λ
2nr

.
(24)

The solution (24) can be simplified as

β̂sparse
r = sign(β̂ols

r )

(
|β̂ols
r | −

λ

2nr

)
+

, for all r ∈ [R].

B Supplementary Figures and Tables

(a)

Figure S1: (a) estimation error and (b) sparse error rate against noise for sparse tensors of dimension
(40, 40, 40) when p = 0.8.

Dimensions True clustering sizes Noise Estimated clustering sizes
(d1, d2, d3) (R1, R2, R3) (σ) (R̂1, R̂2, R̂3)
(40, 40, 40) (4, 4, 4) 4 (4, 4, 4)± (0, 0, 0)
(40, 40, 40) (4, 4, 4) 8 (3.94, 3.96, 3.96)± (0.03, 0.03, 0.03)
(40, 40, 40) (4, 4, 4) 12 (3.08, 3.12, 3.12)± (0.10, 0.10, 0.10)
(40, 40, 80) (4, 4, 4) 4 (4, 4, 4)± (0, 0, 0)
(40, 40, 80) (4, 4, 4) 8 (4, 4, 4)± (0, 0, 0)
(40, 40, 80) (4, 4, 4) 12 (3.96, 3.96, 3.92)± (0.04, 0.04, 0.04)
(40, 40, 40) (2, 3, 4) 4 (2, 3, 4)± (0, 0, 0)
(40, 40, 40) (2, 3, 4) 8 (2, 3, 3.96)± (0, 0, 0.03)
(40, 40, 40) (2, 3, 4) 12 (2, 2.96, 3.60)± (0, 0.05, 0.09)

Table S1: The simulation results for estimating R = (R1, R2, R3). Bold number indicates no
significant difference between the estimate and the ground truth, based on a z-test with a level 0.05.

Tissues Over-expressed genes Block-means Under-expressed genes Block-means
Cluster 1 GFAP, MBP 10.88 GPR6 , DLX5 , DLX6 , NKX2-1 -8.40
Cluster 2 GFAP, MBP 5.98 CDH9, RXFP1, CRH, ARX, CARTPT, DLX1,FEZF2 -9.49

Cluster 3 GFAP, MBP 8.34 AVPR1A, CCKAR, CHRNB4, CYP19A1, HOXA4 , LBX1, SLC6A3 -8.45
TBR1, SLC17A6, SLC30A3 -8.17

Cluster 4 GFAP, MBP 8.83 AVPR1A, CCKAR, CHRNB4, CYP19A1, HOXA4 , LBX1, SLC6A3 -8.40
DAO EN2 EOMES -6.57

Table S2: Top expression blocks from the multi-tissue gene expression analysis. The tissue clusters are
described in Supplementary Section D.
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Countries Countries Relation types
Cluster 1 Clusters 4 and 5 reltreaties, booktranslations, relbooktranslations, relexports, exports3

Clusters 1 and 4 Cluster 5 relintergovorgs, relngo, intergovorgs3, ngoorgs3
Cluster 3 Clusters 1, 4, and 5 commonbloc0, blockpositionindex

Clusters 1 and 3 Clusters 4 and 5
timesinceally, independenceCluster 1 Cluster 3

Cluster 4 Cluster 5

Cluster 4 Cluster 5
treaties, conferences, weightedunvote, unweightedunvote, intergovorgs, ngo,

officialvisits, exportbooks, relexportbooks, tourism,
reltourism, tourism3, exports, militaryalliance, commonbloc2

Table S3: Top blocks from the Nations data analysis. The countries clusters are described in Supplementary
Section D.

C Time complexity

The total cost of our Algorithm 1 is O(d) per iteration, where d =
∏
k dk denotes the total number

of tensor entries. The per-iteration computational cost scales linearly with the sample size, and this
complexity is comparable to the classical tensor methods such as CP and Tucker decomposition. More
specifically, each iteration of Algorithm 1 consists of updating the core tensor C and K membership
matricesMk’s. The update of C requires O(d) operations and the update ofMk requires O(Rk

d
dk

)

operations. Therefore the total cost is O(d+ d
∑
k
Rk
dk

).

D Additional information for real data analysis

Multi-tissue gene expression. The gene expression data we analyzed is part of the GTEx v6
datasets (https://www.gtexportal.org/home/datasets). We cleaned and preprocessed the
data following the steps in [2]. We focused on the 13 brain tissues, 193 individuals, and 362 annotated
genes provided by Atlax of the Developing Human Brain (http://www.brainspan.org/ish).
After applying the `-0 penalized TBM to the mean-centered data tensor, we identified the following
four clusters of tissues:

- Cluster 1: Substantia nigra, Spinal cord (cervical c-1)
- Cluster 2: Cerebellum, Cerebellar Hemisphere
- Cluster 3: Caudate (basal ganglia), Nucleus accumbens (basal ganglia), Putamen (basal ganglia)
- Cluster 4: Cortex, Hippocampus, Anterior cingulate cortex (BA24), Frontal Cortex (BA9), Hy-

pothalamus, Amygdala

We found that most tissue clusters are spatially restricted to specific brain regions, such as the two
cerebellum tissues (cluster 2), three basal ganglia tissues (cluster 3), and the cortex tissues (cluster
4). Supplementary Table S2 reports the associated gene cluster for each tissue cluster. Because
our method attaches importance to blocks by the absolute mean estimates, our method is able to
detect both over- and under-expression patterns. Blocks with highly positive means correspond to
over-expressed genes, whereas blocks with highly negative means correspond to under-expressed
genes.

Nations dataset. This is a 14 × 14 × 56 binary tensor consisting of 56 political relations of 14
countries between 1950 and 1965 [3]. The tensor entry indicates the presence or absence of a political
action, such as “treaties”, “sends tourists to”, between the nations. We applied the `-0 penalized TBM
to the binary-valued data tensor, and we identified the following five clusters of countries:

- Cluster 1: Brazil, Egypt, India, Israel, Netherlands
- Cluster 2: Burma, Indonesia, Jordan
- Cluster 3: China, Cuba, Poland, USSA
- Cluster 4: USA
- Cluster 5: UK

Supplementary Table S3 reports the cluster constitutions for top blocks. Because the tensor entries
take value on either 0 or 1, the top blocks mostly have mean one.
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