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Abstract

This paper studies the problem of adaptively sampling from K distributions (arms)
in order to identify the largest gap between any two adjacent means. We call
this the MaxGap-bandit problem. This problem arises naturally in approximate
ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The
key novelty of the MaxGap bandit problem is that it aims to adaptively determine
the natural partitioning of the distributions into a subset with larger means and a
subset with smaller means, where the split is determined by the largest gap rather
than a pre-specified rank or threshold. Estimating an arm’s gap requires sampling
its neighboring arms in addition to itself, and this dependence results in a novel
hardness parameter that characterizes the sample complexity of the problem. We
propose elimination and UCB-style algorithms and show that they are minimax
optimal. Our experiments show that the UCB-style algorithms require 6-8x fewer
samples than non-adaptive sampling to achieve the same error.

1 Introduction

Consider an algorithm that can draw i.i.d. samples from K unknown distributions. The goal is
to partially rank the distributions according to their (unknown) means. This model encompasses
many problems including best-arms identification (BAI) in multi-armed bandits, noisy sorting and
ranking, and outlier detection. Partial ranking is often preferred to complete ranking because correctly
ordering distributions with nearly equal means is an expensive task (in terms of number of required
samples). Moreover, in many applications it is arguably unnecessary to resolve the order of such
close distributions. This observation motivates algorithms that aim to recover a partial ordering
into groups/clusters of distributions with similar means. This entails identifying large “gaps” in the
ordered sequence of means. The focus of this paper is the fundamental problem of finding the largest
gap by sampling adaptively. Identification of the largest gap separates the distributions into two
groups, and thus recursive application would allow one to identify any number of groupings in a
partial order.

As illustration, consider a subset of images from the Chicago streetview dataset [17] shown in
Fig. 1. In this study, people were asked to judge how safe each scene looks [18], and a larger mean
indicates a safer looking scene. While each person has a different sense of how safe an image looks,
when aggregated there are clear trends in the safety scores (denoted by µ(i)) of the images. Fig. 1
schematically shows the distribution of scores given by people as a bell curve below each image.
Assuming the sample means are close to their true means, one can nominally classify them as ‘safe’,
‘maybe unsafe’ and ‘unsafe’ as indicated in Fig. 1. Here we have implicitly used the large gaps
µ(2)−µ(3) and µ(4)−µ(5) to mark the boundaries. Note that finding the safest image (BAI) is hard as
we need a lot of human responses to decide the larger mean between the two rightmost distributions;
it is also arguably unnecessary. A common way to address this problem is to specify a tolerance ε [7],
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Figure 1: Six representative images from Chicago streetview dataset and their safety (Borda) scores.

and stop sampling if the means are less than ε apart; however determining this can require Ω(1/ε2)
samples. Distinguishing the top 2 distributions from the rest is easy and can be efficiently done
using top-m arm identification [15], however this requires the experimenter to prescribe the location
m = 2 where a large gap exists which is unknown. Automatically identifying natural splits in the
set of distributions is the aim of the new theory and algorithms we propose. We call this problem of
adaptive sampling to find the largest gap the MaxGap-bandit problem.

1.1 Notation and Problem Statement

We will use multi-armed bandit terminology and notation throughout the paper. The K distributions
will be called arms and drawing a sample from a distribution will be refered to as sampling the arm.
Let µi ∈ R denote the mean of the i-th arm, i ∈ {1, 2, . . . ,K} =: [K]. We add a parenthesis around
the subscript j to indicate the j-th largest mean, i.e., µ(K) ≤ µ(K−1) ≤ · · · ≤ µ(1). For the i-th arm,
we define its gap ∆i to be the maximum of its left and right gaps, i.e.,

∆i = max{µ(`) − µ(`+1) , µ(`−1) − µ(`)} where µi = µ(`). (1)

We define µ(0) = −∞ and µ(K+1) =∞ to account for the fact that extreme arms have only one gap.
The goal of the MaxGap-bandit problem is to (adaptively) sample the arms and return two clusters

C1 = {(1), (2), . . . , (m)} and C2 = {(m+ 1), . . . , (K)},
where m is the rank of the arm with the largest gap between adjacent means, i.e.,

m = arg max
j∈[K−1]

µ(j) − µ(j+1). (2)

The mean values are unknown as is the ordering of the arms according to their means. A solution to
the MaxGap-bandit problem is an algorithm which given a probability of error δ > 0, samples the
arms and upon stopping partitions [K] into two clusters Ĉ1 and Ĉ2 such that

P(Ĉ1 6= C1) ≤ δ. (3)

This setting is known as the fixed-confidence setting [10], and the goal is to achieve the probably
correct clustering using as few samples as possible. In the sequel, we assume that m is uniquely
defined and let ∆max = ∆i∗ where µi∗ = µ(m).

1.2 Comparison to a Naive Algorithm: Sort then search for MaxGap

The MaxGap-bandit problem is not equivalent to BAI on
(
K
2

)
gaps since the MaxGap-bandit problem

requires identifying the largest gap between adjacent arm means (BAI on
(
K
2

)
gaps would always

identify µ(1) − µ(K) as the largest gap). This suggests a naive two-step algorithm: we first sample
the arms enough number of times so as to identify all pairs of adjacent arms (i.e., we sort the arms
according to their means), and then run a BAI bandit algorithm [13] on the (K − 1) gaps between
adjacent arms to identify the largest gap (an unbiased sample of the gap can be obtained by taking the
difference of the samples of the two arms forming the gap).

∆min ∆max

Figure 2: Configuration with one large gap

We analyze the sample complexity of this naive al-
gorithm in Appendix A , and discuss the results here
for an example configuration. Consider the arrange-
ment of means shown in Fig. 2 where there is one
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large gap ∆max and all the other gaps are equal to
∆min � ∆max. The naive algorithm has a sample complexity Ω(K/∆2

min) (the first sorting step
requires these many samples) which can be very large. Is this sorting of the arm means necessary?
For instance, we do not need to sort K real numbers in order to cluster them according to the largest
gap 1. The algorithms we propose in this paper solve the MaxGap-bandit problem without necessarily
sorting the arm means. For the configuration in Fig. 2 they require Õ(K/∆2

max) samples, giving a
saving of approximately (∆max/∆min)2 samples.

The analysis of our algorithms suggests a novel hardness parameter for the MaxGap-bandit problem
that we discuss next. We let ∆i,j := µj −µi for all i, j ∈ [K]. We show in Section 5 that the number
of samples taken from distribution i due to its right gap is inversely proportional to the square of

γri := max
j:∆i,j>0

min
{

∆i,j , ∆max −∆i,j

}
. (4)

For the left gap of i we define γli analogously. The total number of samples drawn from distribution
i is inversely proportional to the square of γi := min{γri , γli}. The intuition for Eq. (4) is that
distribution i can be eliminated quickly if there is another distribution j that has a moderately large
gap from i (so that this gap can be quickly detected), but not too large (so that the gap is easy to
distinguish from ∆max), and (4) chooses the best j. We discuss (4) in detail in Section 5, where we
show that our algorithms use Õ

(∑
i∈[K]/{(m),(m+1)} γ

−2
i log(K/δγi)

)
samples to find the largest

gap with probability at least 1− δ. This sample complexity is minimax optimal.

1.3 Summary of Main Results and Paper Organization

In addition to motivating and formulating the MaxGap-bandit problem, we make the following
contributions. First, we design elimination and UCB-style algorithms as solutions to the MaxGap-
bandit problem that do not require sorting the arm means (Section 3). These algorithms require
computing upper bounds on the gaps ∆i, which can be formulated as a mixed integer optimization
problem. We design a computationally efficient dynamic programming subroutine to solve this
optimization problem and this is our second contribution (Section 4). Third, we analyze the sample
complexity of our proposed algorithms, and discover a novel problem-hardness parameter (Section 5).
This parameter arises because of the arm interactions in the MaxGap-bandit problem where, in order
to reduce uncertainty in the value of an arm’s gap, we not only need to sample the said arm but also
its neighboring arms. Fourth, we show that this sample complexity is minimax optimal (Section 6).
Finally, we evaluate the empirical performance of our algorithms on simulated and real datasets and
observe that they require 6-8x fewer samples than non-adaptive sampling to achieve the same error
(Section 7).

2 Related Work

One line of related research is best-arm identification (BAI) in multi-armed bandits. A typical goal
in this setting is to identify the top-m arms with largest means, where m is a prespecified number
[15, 16, 1, 3, 9, 4, 14, 7, 20]. As explained in Section 1, our motivation behind formulating the
MaxGap-bandit problem is to have an adaptive algorithm which finds the “natural” set of top arms as
delineated by the largest gap in consecutive mean values. Our work can also be used to automatically
detect “outlier” arms [23].

The MaxGap-bandit problem is different from the standard multi-armed bandit because of the local
dependence of an arm’s gap on other arms. Other best-arm settings where an arm’s reward can
inform the quality of other arms include linear bandits [22] and combinatorial bandits [5, 11]. In
these problems, the decision space is known to the learner, i.e., the vectors corresponding to the
arms in linear bandits and the subsets of arms over which the objective function is to be optimized in
combinatorial bandits is known to the learner. However in our problem, we do not know the sorted
order of the arm means, i.e., the set of all valid gaps is unknown a priori. Our problem does not
reduce to these settings.

1First find the smallest and largest numbers, say a and b respectively. Divide the interval [a, b] into K + 1
equal-width bins and map each number to its corresponding bin, while maintaining the smallest and largest
number in each bin. Since at least one bin is empty by the pigeonhole principle, the largest gap is between two
numbers belonging to different bins. Calculate all gaps between bins and cluster based on the largest of those.
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Another related problem is noisy sorting and ranking. Here the typical goal is to sort a list using noisy
pairwise comparisons. Our framework encompasses noisy ranking based on Borda scores [1]. The
Borda score of an item is the probability that it is ranked higher in a pairwise comparison with another
item chosen uniformly at random. In our setting, the Borda score is the mean of each distribution.
Much of the theoretical computer science literature on this topic assumes a bounded noise model
for comparisons (i.e., comparisons are probably correct with a positive margin) [8, 6, 2, 21]. This is
unrealistic in many real-world applications since near equals or outright ties are not uncommon. The
largest gap problem we study can be used to (partially) order items into two natural groups, one with
large means and one with small means. Previous related work considered a similar problem with
prescribed (non-adaptive) quantile groupings [18].

3 MaxGap Bandit Algorithms

We propose elimination [7] and UCB [13] style algorithms for the MaxGap-bandit problem. These
algorithms operate on the arm gaps instead of the arm means. The subroutine to construct confidence
intervals on the gaps (denoted by U∆a(t)) using confidence intervals on the arm means (denoted
by [la(t), ra(t)]) is described in Algorithm 4 in Section 4, and this subroutine is used by all three
algorithms described in this section.

3.1 Elimination Algorithm: MaxGapElim

At each time step, MaxGapElim (Algorithm 1) samples all arms in an active set consisting of arms a
whose gap upper bound U∆a is larger than the global lower bound L∆ on the maximum gap, and stops
when there are only two arms in the active set.

Algorithm 1 MaxGapElim

1: Initialize active set A = [K]
2: for t = 1, 2, . . . do // rounds
3: ∀ a ∈ A, sample arm a, compute [la(t), ra(t)] using (5). //arm confidence intervals
4: ∀ a ∈ A, compute U∆a(t) using Algorithm 4. // upper bound on arm max gap
5: Compute L∆(t) using (9). // lower bound on max gap
6: ∀ a ∈ A, if U∆a(t) ≤ L∆(t), A = A \ a. // Elimination
7: If |A| = 2, stop. Return clusters using max gap in the empirical means. // Stopping condition

3.2 UCB algorithms: MaxGapUCB and MaxGapTop2UCB

MaxGapUCB (Algorithm 2) is motivated from the principle of “optimism in the face of uncertainty”.
It samples all arms with the highest gap upper bound. Note that there are at least two arms with the
highest gap upper bound because any gap is shared by at least two arms (one on the right and one on
the left). The stopping condition is akin to the stopping condition in Jamieson et al. [13].

Algorithm 2 MaxGapUCB

1: Initialize U = [K].
2: for t = 1, 2, . . . do
3: ∀a ∈ U , sample a and update [la(t), ra(t)] using (5).
4: ∀a ∈ [K], compute U∆a(t) using Algorithm 4.
5: Let M1(t) = maxj∈[K] U∆j(t). Set U = {a : U∆a(t) = M1(t)}. // highest gap-UCB arms
6: If ∃ i, j such that Ti(t) + Tj(t) ≥ c

∑
a/∈{i,j} Ta(t), stop. // stopping condition

Alternatively, we can use an LUCB [16]-type algorithm that samples arms which have the two highest
gap upper bounds, and stops when the second-largest gap upper bound is smaller than the global
lower bound L∆(t) . We refer to this algorithm as MaxGapTop2UCB (Algorithm 3).
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Algorithm 3 MaxGapTop2UCB

1: Initialize U1 ∪ U2 = [K].
2: for t = 1, 2, . . . do
3: ∀a ∈ U1 ∪ U2, sample a and update [la(t), ra(t)] using (5).
4: ∀a ∈ [K], compute U∆a(t) using Algorithm 4.
5: Let M1(t) = maxj∈[K] U∆j(t). Set U1 = {a : U∆a(t) = M1(t)}. // highest gap-UCB arms
6: Let M2(t) = maxj∈[K]\U1 U∆j(t). Set U2 = {a : U∆a(t) = M2(t)}. // 2nd highest gap-UCB
7: Compute L∆(t) using (9). If M2(t) < L∆(t), stop.

Algorithm 4 Procedure to find U∆a(t)

1: Set P ra = {i : li(t) ∈ [la(t), ra(t)]}.
2: U∆ra(t) = max

i∈P ra
{Gra(li(t), t)}, where Gra(x, t) is given by (7). // eqn. (8)

3: Set P la = {i : ri(t) ∈ [la(t), ra(t)]}.
4: U∆la(t) = max

i∈P la

{
Gla(rj(t), t)

}
, where Gla(x, t) is given by (19). // eqn. (20)

5: return U∆a(t)← max{U∆ra(t), U∆la(t)}

4 Confidence Bounds for Gaps

In this section we explain how to construct confidence bounds for the arm gaps (denoted by U∆a
and L∆) using confidence bounds for the arm means (denoted by [la, ra]). These bounds are key
ingredients for the algorithms described in Section 3.

Given i.i.d. samples from arm a, an empirical mean µ̂a and confidence interval on the arm mean
can be constructed using standard methods. Let Ta(t) denote the number of samples from arm a
after t time steps of the algorithm. Throughout our analysis and experimentation we use confidence
intervals on the mean of the form

la(t) = µ̂a(t)− cTa(t) and ra(t) = µ̂a(t) + cTa(t), where cs =

√
log(4Ks2/δ)

s . (5)

The confidence intervals are chosen so that [12]

P(∀ t ∈ N,∀ a ∈ [K], µa ∈ [la(t), ra(t)]) ≥ 1− δ. (6)

Conceptually, the confidence intervals on the arm means can be used to construct upper confidence
bounds on the mean gaps {∆i}i∈[K] in the following manner. Consider all possible configurations
of the arm means that satisfy the confidence interval constraints in (5). Each configuration fixes
the gaps associated with any arm a ∈ [K]. Then the maximum gap value over all configurations
is the upper confidence bound on arm a’s gap; we denote it as U∆a. The above procedure can be
formulated as a mixed integer linear program (see Appendix B.1). In the algorithms in Section 3,
this optimization problem needs to be solved at every time t and for every arm a ∈ [K] before
querying a new sample, which can be practically infeasible. In Algorithm 4, we give an efficient
O(K2) time dynamic programming algorithm to compute U∆a. We next explain the main ideas used
in this algorithm, and refer the reader to Appendix B.2 for the proofs.

Each arm a has a right and left gap, ∆r
a := µ(`−1) − µ(`) and ∆l

a := µ(`) − µ(`+1), where ` is the
rank of a, i.e., µa = µ(`). We construct separate upper bounds U∆ra(t) and U∆la(t) for these gaps and
then define U∆a(t) = max{U∆ra(t), U∆la(t)}. Here we provide an intuitive description for how the
bounds are computed, focusing on U∆ra(t) as an example. To start, suppose the true mean of arm a is
known exactly, while the means of other arms are only known to lie within their confidence intervals.
If there exist arms that cannot go to the left of arm a, one can see that the largest right gap for a is
obtained by placing all arms that can go to the left of a at their leftmost positions, and all remaining
arms at their rightmost positions, as shown in Fig. 3(a). If however all arms can go to the left of
arm a, the configuration that gives the largest right gap for a is obtained by placing the arm with the
largest upper bound at its right boundary, and all other arms at their left boundaries, as illustrated in
Fig. 3(b). We define a function Gra(x, t) that takes as input a known position x for the mean of arm a
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a a

(a) (b)

Figure 3: Computing maximum right gap of blue arm when its true mean is known (at position
indicated by blue x), while the other means are known only to lie within their confidence intervals.
(a) If there exist arms that cannot go to the left of blue (red, green, purple), the largest right gap for
blue is obtained by placing all arms that can go to the left of blue at their left boundaries and the
remaining arms at their rightmost positions. (b) If all arms can go to the left of blue, the largest right
gap for blue is obtained by placing the arm with the largest right confidence bound (purple) at its
right boundary and all other arms at their left boundaries.

and the confidence intervals of all other arms at time t, and returns the maximum right gap for arm a
using the above idea as follows.

Gra(x, t) =

{
minj:lj(t)>x rj(t)− x if {j : lj(t) > x} 6= ∅,
maxj 6=a rj(t)− x otherwise.

(7)

However, the true mean of arm a is not known exactly but only that it lies within its confidence
interval. The insight that helps here is that Gra(x, t) must achieve its maximum when x is at one of
the finite locations in {lj(t) : la(t) ≤ lj(t) ≤ ra(t)}. We define P ra := {j : la(t) ≤ lj(t) ≤ ra(t)}
as the set of arms relevant for the right gap of a, and then the maximum possible right gap of a is

U∆ra(t) = max{Gra(lj(t), t) : j ∈ P ra}. (8)

An upper bound for the left gap U∆la can be similarly obtained. We explain this and give a proof of
correctness in Appendix B.2.

The algorithms also use a single global lower bound on the maximum gap. To do so, we sort the items
according to their empirical means, and find partitions of items that are clearly separated in terms
of their confidence intervals. At time t, let (i)t denote the arm with the ith-largest empirical mean,
i.e., µ̂(K)t(t) ≤ . . . µ̂(2)t(t) ≤ µ̂(1)t(t) (this can be different from the true ranking which is denoted
by (·) without the subscript t). We detect a nonzero gap at arm k if maxa∈{(k+1)t,...,(K)t} ra(t) <
mina∈{(1)t,...,(k)t} la(t). Thus, a lower bound on the largest gap is

L∆(t) = max
k∈[K−1]

(
min

a∈{(1)t,...,(k)t}
la(t)− max

a∈{(k+1)t,...,(K)t}
ra(t)

)
. (9)

5 Analysis

In this section, we first state the accuracy and sample complexity guarantees for MaxGapElim and
MaxGapUCB, and then discuss our results. The proofs can be found in the Supplementary material.

Theorem 1. With probability 1 − δ, MaxGapElim, MaxGapUCB and MaxGapTop2UCB cluster the
arms according to the maximum gap, i.e., they satisfy (3).

The number of times arm a is sampled by both the algorithms depends on γa = min{γla, γra} where

γra = max
j:0<∆a,j<∆max

min{∆a,j , (∆max −∆a,j)} (10)

γla = max
j:0<∆j,a<∆max

min{∆j,a, (∆max −∆j,a)}, . (11)

The maxima is assumed to be∞ in (10) and (11) if there is no j that satisfies the constraint to account
for edge arms. The quantity γa acts as a measure of hardness for arm a; Theorem 2 states that
MaxGapElim and MaxGapUCB sample arm a at most Õ(1/γ2

a) number of times (up to log factors).
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Theorem 2. With probability 1 − δ, the sample complexity of MaxGapElim and MaxGapUCB is
bounded by

O

 ∑
a∈[K]\{(m),(m+1)}

log(K/δγa)

γ2
a


Next, we provide intuition for why the sample complexity depends on the parameters in (10) and (11).
In particular, we show that O((γra)−2) (resp. O((γla)−2)) is the number of samples of a required to
rule out arm a’s right (resp. left) gap from being the largest gap.

L ∆(t) U∆7(t)
r

µ 11 µ10 µ
7

µ
4

Figure 4: Arm a = 7 is eliminated when a helper
arm j = 4 is found.

Let us focus on the right gap for simplicity. To
understand how (10) naturally arises, consider
Fig. 4, which denotes the confidence intervals
on the means at some time t. A lower bound
on the gap L∆(t) can be computed between the
left and right confidence bounds of arms 10 and
11 respectively as shown. Consider the com-
putation of the upper bound U∆r7(t) on the right gap of arm a = 7. Arm 4 lies to the right of
arm 7 with high probability (unlike the arms with dashed confidence intervals), so the upper bound
U∆r7(t) ≤ r4(t)−l7(t). Considering only the right gap for simplicity, as soon as U∆r7(t) < L∆(t), arm 7
can be eliminated as a candidate for the maximum gap. Thus, an arm a is removed from consideration
as soon as we find a helper arm j (arm 4 in Fig. 4) that satisfies two properties: (1) the confidence in-
terval of arm j is disjoint from that of arm a, and (2) the upper bound U∆ra(t) = rj(t)− la(t) < L∆(t).
The first of these conditions gives rise to the term ∆a,j in (10), and the second condition gives rise to
the term (∆max −∆a,j). Since any arm j that satisfies these conditions can act as a helper for arm a,
we take the maximum over all arms j to yield the smallest sample complexity for arm a.

This also shows that if all arms are either very close to a or at a distance approximately ∆max from a,
then the upper bound U∆r7(t) = r4(t)− l7(t) > L∆(t) and arm 7 cannot be eliminated. Thus arm a
could have a small gap with respect to its adjacent arms, but if there is a large gap in the vicinity of
arm a, it cannot be eliminated quickly. This illustrates that the maximum gap identification problem
is not equivalent to best-arm identification (BAI) on gaps. Section 6 formalizes this intuition.

Key Differences compared to BAI Analysis: The analysis of MaxGapUCB is very different from
the standard UCB analysis. On a high-level, in BAI, the number of samples of a sub-optimal arm i is
bounded by observing that

Arm i is pulled =⇒ µi + 2cTi(t) ≥ µ̂i + cTi(t) ≥ µ̂(1) + cT(1)(t) ≥ µ(1)

=⇒ 2cTi(t) ≥ µ(1) − µi = ∆i. (12)

The last inequality directly bounds the number of samples Ti(t) of a sub-optimal arm i. In MaxGapUCB,
the gap upper bound is obtained using the confidence intervals of two arms, and the fact that a sub-
optimal gap (i, j) has the highest gap-UCB implies that

(µj + 2cTj(t))− (µi − 2cTi(t)) ≥ (µ̂j + cTj(t))− (µ̂i − 2cTi(t)) ≥ ∆max

=⇒ 2(cTj(t) + cTi(t)) ≥ ∆max −∆ij .

Thus unlike the reasoning in (12), the number of samples from arm i is coupled to the number of
samples from arm j, and Ti(t)→∞ if j is not sampled enough. We show in our analysis that this
cannot happen in MaxGapUCB. Furthermore, any arm i is coupled with multiple other arms since
the ordering of the arms is unknown, and may have to be sampled even if its own gap is small - a
phenomenon absent in standard BAI analysis because of the independence of the arm means. In our
proof, we account for all samples of an arm by defining states the arm can belong to (called levels),
and arguing about the confidence intervals of the arms in unison.

6 Minimax Lower Bound

In this section, we demonstrate that the MaxGap problem is fundamentally different from best-arm
identification (BAI) on gaps. We construct a problem instance and prove a lower bound on the number
of samples needed by any probably correct algorithm. The lower bound matches the upper bounds in
the previous section for this instance.
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Lemma 1. Consider a model B with K = 4 normal distributions Pi = N (µi, 1), where
µ4 = 0, µ3 = ε, µ2 = ν + 2ε, µ1 = 2ν + 2ε,

for some ν � ε > 0. Then any algorithm that is correct with probability at least 1− δ must collect
Ω(1/ε2) samples of arm 4 in expectation.

B

B '

Figure 5: Changing the original bandit model
B to B′. µ4 is shifted to the right by 2.1ε. As
a result, the maximum gap in B′ is between
green and purple.

Proof Outline: The proof uses a standard change of
measure argument [10]. We construct another prob-
lem instance B′ which has a different maximum gap
clustering compared to B (see Fig. 5; the maxgap
clustering in B is {4, 3} ∪ {2, 1}, while the maxgap
clustering in B′ is {4, 3, 2} ∪ {1}), and show that in
order to distinguish between B and B′, any proba-
bly correct algorithm must collect at least Ω(1/ε2)
samples of arm 4 in expectation (see Appendix E for
details). From the definition of γa using (10),(11), it
is easy to check that γ4 = ε. Therefore, for problem instance B our algorithms find the maxgap
clustering using at most O(log(ε/δ)/ε2) samples of arm 4 (c.f. Theorem 2). This essentially matches
the lower bound above.

This example illustrates why the maximum gap identification problem is different from a simple BAI
on gaps. Suppose an oracle told a BAI algorithm the ordering of the arm means. Using the ordering
it can convert the 4-arm maximum gap problem B to a BAI problem on 3 gaps, with distributions
P4,3 = N (ε, 2),P3,2 = N (ν + ε, 2), and P2,1 = N (ν, 2). The BAI algorithm can sample arms i
and i + 1 to get a sample of the gap (i + 1, i). We know from standard BAI analysis [13] that the
gap (4, 3) can be eliminated from being the largest by sampling it (and hence arm 4) O(1/ν2) times,
which can be arbitrarily lower than the 1/ε2 lower bound in Lemma 1. Thus the ordering information
given to the BAI algorithm is crucial for it to quickly identify the larger gaps. The problem we solve
in this paper is identifying the maximum gap when the ordering information is not available.

7 Experiments

We conduct three experiments. First, we verify the validity of our sample complexity bounds
in Section 7.1. We then study the performance of our adaptive algorithms on simulated data in
Section 7.2, and on the Streetview dataset in Section 7.3. The code for all experiments is publicly
available [19].

7.1 Sample Complexity
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Figure 6: Stopping time experiments

In Fig. 6(b) and Fig. 6(c), we plot the empiri-
cal stopping time against the theoretical sample
complexity (Theorem 2) for different arm con-
figurations. We choose the arm configuration
in Fig. 6(a) containing K = 15 arms and three
unique gaps - a small gap ∆3 and two large gaps
∆2 < ∆1 = ∆max = 0.4. The hardness param-
eter is changed by increasing ∆2 (from 0.35 to
0.39) and bringing it closer to ∆1. The rewards
are normally distributed with σ = 0.05. We see
a linear relationship in Fig. 6(b) which suggests that the sample complexity expression in Theorem 2 is
correct up to constants. In Fig. 6(c) we include random sampling and see that our adaptive algorithms
require up to 5x fewer samples when run until completion. Fig. 6(c) also shows that our adaptive
algorithms always outperform random sampling, and the gains increase with hardness. We used a
lower bound based stopping condition for Random, Elimination, Top2UCB, and set c = 5 in the
UCB stopping condition (value of c chosen empirically as in [13]).

7.2 Simulated Data

In the second experiment, we study the performance on a simulated set of means containing two large
gaps. The mean distribution plotted in Fig. 7(a) has K = 24 arms (N (·, 1)), with two large mean
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Figure 7: (a) Two large gaps. (b) Clustering error probability for means shown in Fig. 7(a). (c) The
profile of samples allocated by MaxGapUCB to each arm in (a) at different time steps.

gaps ∆10,9 = 0.98,∆19,18 = 1.0, and remaining small gaps (∆i+1,i = 0.2 for i /∈ {9, 18}). We
expect to see a big advantage for adaptive sampling in this example because almost every sub-optimal
arm has a helper arm (see Section 5) which can help eliminate it quickly, and adaptive algorithms can
then focus on distinguishing the two large gaps. A non-adaptive algorithm on the other hand would
continue sampling all arms. We plot the fraction of times C1 6= {1, . . . , 18} in 120 runs in Fig. 7(b),
and see that the active algorithms identify the largest gap in 8x fewer samples. To visualize the
adaptive allocation of samples to the arms, we plot in Fig. 7(c) the number of samples queried for each
arm at different time steps by MaxGapUCB. Initially, MaxGapUCB allocates samples uniformly
over all the arms. After a few time steps, we see a bi-modal profile in the number of samples. Since
all arms that achieve the largest U∆ are sampled, we see that several arms that are near the pairs (10, 9)
and (19, 18) are also sampled frequently. As time progresses, only the pairs (10, 9) and (19, 18) get
sampled, and eventually more samples are allocated to the larger gap (19, 18) among the two.

7.3 Streetview Dataset

μ(1)μ(90)

∆max

(a)

(b)

Figure 8: (a) Borda safety scores
for Streetview images. (b) Proba-
bility of returning a wrong cluster.

For our third experiment we study performance on the
Streetview dataset [17, 18] whose means are plotted in Fig. 8(a).
We have K = 90 arms, where each arm is a normal distribution
with mean equal to the Borda safety score of the image and stan-
dard deviation σ = 0.05. The largest gap of 0.029 is between
arms 2 and 3, and the second largest gap is 0.024. In Fig. 8(b),
we plot the fraction of times Ĉ1 6= {1, 2} in 120 runs as a
function of the number of samples, for four algorithms, viz.,
random (non-adaptive) sampling, MaxGapElim, MaxGapUCB,
and MaxGapTop2UCB. The error bars denote standard deviation
over the runs. MaxGapUCB and MaxGapTop2UCB require 6-7x
fewer samples than random sampling.

8 Conclusion

In this paper, we proposed the MaxGap-bandit problem: a novel maximum-gap identification problem
that can be used as a basic primitive for clustering and approximate ranking. Our analysis shows
a novel hardness parameter for the problem, and our experiments show 6-8x gains compared to
non-adaptive algorithms. We use simple Hoeffding based confidence intervals in our analysis
for simplicity, but better bounds can be obtained using tighter confidence intervals [13]. Several
extensions of this basic problem are possible. An ε-relaxation of the MaxGap Bandit is useful when
the largest and second-largest gaps are close to each other. Other possibilities include identifying
the largest gap within a top quantile of the arms, or clustering with a constraint that the returned
clusters are of similar cardinality. All of these extensions will likely require new ideas, as it is unclear
how to obtain a lower bound for the gap associated with every arm. Finding an instance-dependent
lower bound for MaxGap-bandit is an intriguing problem. Finally, one way to cluster the distributions
into more than two clusters is to apply the max-gap identification algorithms recursively; however it
would be interesting to come up with algorithms that can perform this clustering directly.
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A Details for Section 1.2: Comparison to a Naive Algorithm

The naive algorithm first sorts the arms to determine the adjacent arms for every arm, and then runs a
best-arm identification bandit algorithm on the gaps to identify the largest gap. An unbiased sample
of the gap between two arms can be obtained by taking the difference of the samples from the two
arms. Here we analyze the sample complexity of the naive algorithm for a general arrangement of the
means.

Consider an arm i /∈ {(m), (m+ 1)}, and let us analyze the number of times arm i is sampled by
the naive algorithm. Let ∆i,j = µj − µi. Then ∆r

i = minj:∆i,j>0 ∆i,j is the right gap of arm i

(∆l
i is defined analogously). In the first step of the naive algorithm, arm i needs to be sampled at

least (∆r
i )
−2 times to determine its right neighbor. Once the right neighbor has been determined, the

best-arm identification requires at least (∆max−∆r
i )
−2 samples to distinguish arm i’s right gap from

∆max. Since samples from the first step can be reused, the minimum number of samples required by
the naive algorithm to rule out arm i’s right gap is (γ̃ri )−2 where

γ̃ri = min
j:∆i,j>0

{∆i,j ,∆max −∆i,j} (13)

We can define (γ̃li)
−2 analogously, and the naive algorithm collects Ω(γ̃−2

i ) from arm i, where
γ̃i = min{γ̃ri , γ̃li}.
The hardness parameter of our active algorithms that is analogous to (13) is given by (4), repeated
here for convenience

γri := max
j:∆i,j>0

min
{

∆i,j , ∆max −∆i,j

}
. (14)

Comparing (14) to (13), we see that γri > γ̃ri .

For the toy problem discussed in Section 1.2, if we assume that ∆min < ∆max/2, we have that
γ̃i = ∆min, while γi = ∆max/2 ∀ i /∈ {(m), (m + 1)}, which results in (∆max/∆min)2 order
savings in the number of samples.

B Details for Section 4: Confidence Bounds for Gaps

We first explain the mixed integer program formulation for obtaining the upper confidence bounds on
the mean gaps in Appendix B.1, and then prove the validity of Algorithm 4 in Appendix B.2.

B.1 MIP Formulation of Confidence Bounds for Gaps

Conceptually, the confidence intervals on the arm means can be used to construct upper confidence
bounds on the mean gaps {∆i}i∈[K] in the following manner. Consider all possible configurations
of the arm means that satisfy the confidence interval constraints in (5). Each configuration fixes the
gaps associated with any arm a ∈ [K]. Then the maximum gap value over all configurations is the
upper confidence bound on arm a’s gap; we denote it as U∆a.

If we focus on the right gap of arm a, the above procedure is equivalent to solving the following
optimization problem.

U∆ra(t) , max
b∈[K]\{a}

max
µ′1,...,µ

′
K

µ′b − µ′a (15)

subject to: li(t) ≤ µ′i ≤ ri(t) ∀i ∈ [K], and (16)

µ′i /∈ (µ′a, µ
′
b)∀ i ∈ [K] \ {a, b}. (17)

Constraint (16) ensures that µ′i is in the confidence interval for the mean of arm i at time t, and
constraint (17) ensures that arm b is the right neighbor of arm a.

The constraint (17) is a sorting constraint that can only be formulated using a binary variable. For an
arm i ∈ [K] \ {a, b} (17) can be formulated using a constant M as

µ′i ≤ µ′a +M(1− zi), (18a)

µ′i ≥ µ′b −Mzi, (18b)
zi ∈ {0, 1}. (18c)
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The value of M is chosen to be large number. Replacing constraint (17) by constraints (18a), (18b),
(18c) for all i ∈ [K]\{a, b} gives an equivalent optimization problem whose optimum value is U∆ra(t).
This can be seen to be true by considering the cases based on the value of zi. If zi = 0, µ′i ≥ µ′b
and if zi = 1, µ′i ≤ µ′a. Because M is chosen to be a large number, in either case µ′i /∈ (µ′a, µ

′
b) and

constraint (17) is satisfied. If constraint (17) is satisfied, then a similar argument allows us to choose
the value of zi that satisfies constraints (18a) and (18b).

B.2 Validity of Algorithm 4

In this section we find the value of U∆ra(t) as defined in (15) by first obtaining an upper bound to
it. The proof of the upper bound is constructive in nature, showing that the upper bound is actually
achievable. That is, (a) there is a set of real numbers {µ′i : i ∈ [K]} which satisfy (16), (b) an index
a∗ which satisfies (17) with x = µ′a∗ , such that U∆ra(t) = µ′a∗ − µ

′
a.

We first find an upper bound to the right gap of an arm a assuming we know its true mean µa, but
only have confidence intervals for the means of the other arms µi ∈ [li(t), ri(t)]∀i 6= a.

Lemma 2. If all the arm means are known, the right gap associated with an arm a ∈ [K] is
mini:µi>µa µi − µa; if the domain is empty we say that arm a’s right gap is 0. For any x ∈ R, define
a function Gra(·) of the confidence intervals as follows.

Gra(x, t) ,

{
minj:lj(t)>x rj(t)− x if {j : lj(t) > x} 6= ∅,
maxj 6=a rj(t)− x otherwise.

Suppose we know the value of arm a’s mean, i.e. µa and the confidence intervals [li(t), ri(t)]∀i 6= a.
Then the largest possible right gap of arm a is Gra(µa, t).

Proof. We suppose that the right gap of arm a is greater than the upper bound and show a contradiction
to the good event (6).

Case I: {j : lj(t) > µa} 6= ∅. Identify the arm j∗ = arg minj:lj(t)>µa rj(t) such that Gra(µa, t) =
rj∗(t) − µa. Let the true right gap for arm a be µk − µa. If k = j∗, then µk − µa > rj∗(t) − µa
would mean that µj∗ > rj∗(t), which is a contradiction. If k 6= j∗ and the right gap is µk − µa, then
all arms j ∈ [K] are such that µj /∈ (µa, µk). But if µk − µa > Gra(µa, t) then µk > rj∗(t), and
from the domain in the definition of j∗, its left bound lj∗(t) > µa. Hence the confidence interval
of j∗ satisfies µa < lj∗(t) < rj∗(t) < µk. If µj∗ /∈ (µa, µk) then µj∗ /∈ [lj∗(t), rj∗(t)] and that is a
contradiction.

Case II: {j : lj(t) > µa} = ∅. Identify the arm j∗ = arg maxj 6=a rj(t) such that Gra(µa, t) =
rj∗(t) − µa. Let the true right gap for arm a be µk − µa. If µk − µa > Gra(µa, t) then µk >
maxj 6=a rj(t) and that is a contradiction.

Thus the right gap of arm a is at most Gra(µa, t). We can achieve this upper bound by choosing the
set of means {µ′i : i ∈ [K] \ a} in the following manner. If the value of Gra(µa, t) is given by the
first branch, set µ′i = ri(t)∀i : ri(t) > µa and µ′i = li(t)∀i : li(t) < µa. Otherwise if the value is
given by the second branch set µ′a∗ = ra∗(t) for the arm a∗ 6= a which has the largest right bound,
and set all other µ′i = li(t) (c.f. Fig. 3 in Section 4).

The left gap analog of the above proposition can also be proved in a similar manner as above.

Lemma 3. For any x ∈ R and arm a ∈ [K], define a function Gla(·) of the confidence intervals as
follows.

Gla(x, t) ,

{
x−maxj:rj(t)<x lj(t) if {j : rj(t) < x} 6= ∅,
x−minj 6=a lj(t) otherwise.

(19)

Suppose we know µa. Using the confidence intervals [li(t), ri(t)]∀i 6= a, an upper bound to the left
gap of arm a is Gla(µa, t).

We now replace our knowledge of the true mean value µa by the good event fact that µa ∈
[la(t), ra(t)] at all times t. The following lemma is instrumental in arriving at an upper bound
for the right gap of arm a that is consistent with the all the arms’ confidence intervals.
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Lemma 4. At time t, for any arm a its true mean µa ∈ [la(t), ra(t)] in the good event. Define
a subset of arms IRa (t) , {i : li(t) ∈ [la(t), ra(t)]} whose left bounds lie within the confidence
interval of arm a. Consider a set of K real numbers P ′ , {µ′i ∈ [li(t), ri(t)] : i ∈ [K]}, each
associated with a corresponding arm. The largest value for the right gap of arm a if the means are
P ′, i.e.,

max{µ′i − µ′a : µ′i > µ′a,@µ′j ∈ (µ′a, µ
′
i), i, j ∈ [K] \ a}

occurs when µ′a = li(t) for some i ∈ IRa (t).

Proof. Suppose the largest right gap occurs when µ′a 6= li(t) for any i ∈ IRa (t). Note that a ∈ IRa (t)
and hence the set is not empty. We show that the right gap can be larger while still satisfying event
(6). Let lia(t) = maxi∈IRa (t){li(t) < µ′a}. Collect all arms in the set Ja = {j : µ′j ∈ [lia(t), µ′a]}.
Consider an alternate bandit model whose arm means are denoted by Q , {qi : i ∈ [K]}. We assign

qi = lia(t) ∀i ∈ Ja and qi = µ′i ∀i /∈ Ja.

This mean assignment satisfies qi ∈ [li(t), ri(t)] ∀i ∈ [K]. This is because by definition of arm ia in
the original bandit model P ′, for all arms j ∈ Ja their left bounds satisfy lj(t) ≤ lia(t). Thus both
the original P ′ and the alternate Q are possible bandit models in the good event (6) up till current
time t. However, the right gap for a is larger in the alternate model Q as shown next. Let arm i result
in the right gap for a in the original model P ′, i.e., the right gap is

µ′i − µ′a, and @µ′j ∈ (µ′a, µ
′
i).

Then in the alternate model, qi = µ′i, qa = lia(t) and there is no mean qj ∈ (lia(t), µ′i). Then the
right gap of arm a is µ′i − lia(t) > µ′i − µ′a. This contradicts the supposition that the right gap is the
largest possible in the original bandit model P ′.

An analogous lemma for the left gap states that for any set of possible arm meansP ′ that are consistent
with the current confidence intervals, the largest possible left gap of arm a occurs when µ′a = ri(t)

for some arm i ∈ ILa (t) , {i : ri(t) ∈ [la(t), ra(t)]}. Using the above, we can state the upper bound
for the gap of an arm a in terms of all the confidence intervals as follows.
Theorem 3. At any time t, denote the upper bound to the right (resp. left) gap of arm a by U∆ra(t)
(resp. U∆la(t)). The expressions for these upper bounds in terms of the confidence intervals and the
functions Gra(·), Gla(·) in Lemma 2, Lemma 3 are as follows.

U∆ra(t) , max{Gra(lj(t), t) : lj(t) ∈ [la(t), ra(t)]},
U∆la(t) , max{Gla(rj(t), t) : rj(t) ∈ [la(t), ra(t)]}. (20)

Then an upper bound to the gap associated with arm a at time t is max{U∆ra(t), U∆la(t)}. Algorithm 4
gives pseudocode that evaluates U∆ra(t).

Proof. We argue for the right gap, an analogous proof gives the statement for the left gap. At any
time t in the good event µi ∈ [li(t), ri(t)]∀i∈[K], in particular any number in the range [la(t), ra(t)]
can be potentially the mean of arm a. From Lemma 4, we know that for a set of numbers P ′ that
satisfy all current confidence intervals and also maximize the right gap for arm a, the value µ′a = li(t)
for some left bound li(t) ∈ [la(t), ra(t)]. If µ′a = li(t) then by Lemma 2 Gra(li(t), t) is the largest
possible value for arm a in the bandit model P ′. Taking the maximum over all arms in the set
IRa (t) = {i ∈ [K] : li(t) ∈ [la(t), ra(t)]}, we get the right gap upper bound U∆ra(t).

We note that the value U∆ra(t) is achievable by an assignment of means that satisfy the confidence
bounds at time t. Without loss of generality, assume U∆a(t) = U∆ra(t) = Gra(la∗(t), t) for some arm
a∗. One can assign µa = la∗(t) and other means in a way similar to that in the proof of Lemma 2 to
obtain a right gap for arm a equal to the value Gra(la∗(t), t).

C Details for Section 5: Accuracy

Theorem 1. With probability 1 − δ, MaxGapElim, MaxGapUCB and MaxGapTop2UCB cluster the
arms according to the maximum gap, i.e., they satisfy (3).
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Proof. Recall that the true maximum gap exists between arms (m) and (m + 1). The algorithms
return a wrong clustering U∆(m)(t) < L∆(t) for any time t. We show that this leads to a contradiction
if the good event (6) holds.

Assume (6) holds and U∆(m)(t) < L∆(t) at some time t. Recall that L∆(t) is computed using
(9), and let (s)t be the maximizer in (9). Let a be such that a ∈ {(1)t, . . . , (s)t} and a + 1 ∈
{(s+ 1)t, . . . , (K)t}. If (3) holds, we have that

∆max ≤ U∆(m)(t) < L∆(t)
(a)

≤ la(t)− ra+1(t) ≤ µa − µa+1,

where (a) holds because L∆(t) is the minimum gap between a left confidence interval in
{(1)t, . . . , (s)t} and a right confidence interval in {(s + 1)t, . . . , (K)t}. This contradicts the fact
that ∆max is the largest gap.

D Sample Complexity: Proof of Theorem 2

To state our sample complexity bounds we use a constant α defined as follows [7].

Remark 1. There exists constant α such that for all x > 0, if the number of samples s ≥ α log(K/δx)
x2 ,

then cs ≤ x, where cs is the confidence interval given by (5).

D.1 Sample Complexity of MaxGapElim

Early Stopping Rule for Clustering: In the pseudocode in Algorithm 1, MaxGapElim stops when
the size of the active set |A| ≤ 2 (line 7). However, if we are only interested in clustering the
arms according to the maximum gap and not interested in the identities of the arms which share
the maximum gap (arms (m), (m+ 1)), we can stop earlier as follows. Assume that (9) is greater
than 0 and let (k∗)t be the maximizer. This partitions the arms into the sets {(1)t, . . . , (k∗)t} and
{(k∗ + 1)t, . . . , (K)t}. MaxGapElim can terminate when the maximum left gap of all arms in
{(1)t, . . . , (k∗)t} and the maximum right gap of all arms in {(k∗ + 1)t, . . . ,K} are both less than
the lower bound L∆(t). The termination condition can be expressed as S = 1, where

S = 1{U∆ra(t) < L∆(t), ∀ a : la(t) ≥ l(k∗)t(t} · 1{U∆
l
a(t) < L∆(t), ∀ a : ra(t) ≤ l(k∗+1)t(t)}.

(21)

To account for the lower sample complexity as a result of the stopping rule for clustering, we modify
(10) and (11) and define new parameters that yield an improved sample complexity than that stated in
Theorem 2. Define

ρra = max
{

max
j:∆a,j>0

(min{∆a,j/4, ((∆max −∆a,j)/8)}) , ((∆max −∆a,1)/8)
}
, (22)

ρla = max
{

max
j:∆a,j<0

(min{∆a,j/4, ((∆max −∆j,a)/8)}) , ((∆max −∆a,K)/8)
}
, (23)

where just like in (10), the maxima assumed to be infinity if there is no j that satisfies the constraint
under the inner maximization. We define ρa = min{ρra, ρla} as before and state our improved sample
complexity bound for MaxGapElim next.

Theorem 4. With probability at least 1− δ, the sample complexity of MaxGapElim is bounded by

H = α
∑
a∈[K]:

a/∈{(m),(m+1)}

log(K/δρa)

ρ2
a

.

Proof. Arm a is eliminated in MaxGapElim when U∆a(t) < L∆(t), whee U∆a(t) is defined as the
maximum of the left and right gap upper bounds (see Section 4). Lemma 6 and Lemma 7 prove that
the sufficient condition for each of these upper bounds to be les than L∆(t) is cTa(t) ≤ ρa. The result
then follows by Remark 1.
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Lemma 5. If the good event (6) holds, then for all a ∈ [K], for all t ∈ N,
la(t) ≥ µa − 2cTa(t) and ra(t) ≤ µa + 2cTa(t)

where cs =
√

βδ(s)
s .

Proof. We have

µ̂a(t) + cTa(t)

(a)

≥ µa ⇒ la(t) = µ̂a(t)− cTa(t) ≥ µa − 2cTa(t).

Similarly,

µ̂a(t)− cTa(t)

(a)

≤ µa ⇒ ra(t) = µ̂a(t) + cTa(t) ≤ µa + 2cTa(t).

In both the equations above, (a) holds by (6).

Lemma 6. Assume (6) holds, and consider a 6= m+1. In MaxGapElim if t is such that cTa(t) ≤ ρra,
then

U∆ra(t) < L∆(t).

Proof. Note that at time t in Algorithm 1, Ta(t) = t and cTa(t) = ct for all arms a ∈ A. Assume (6)
holds. We have ct < ρra < ∆max/4. This implies that

lm(t)
(a)

≥ µm − 2ct = µm+1 + ∆max − 2ct
(a)

≥ rm+1(t) + ∆max − 4ct ≥ rm+1(t). (24)

where (a) holds by Lemma 5.

From (24) we have that
L∆(t) ≥ lm(t)− rm+1(t) ≥ ∆max − 4ct (25)

Recall from (22) that for a 6= 1,
ρra = max

{
max

j:∆a,j>0
(min{∆a,j/4, ((∆max −∆a,j)/8)}) , ((∆max −∆a,1)/8)

}
. (26)

There are two terms in ρra and ct could be less than either of these terms. First, suppose that
ct < max

j:∆a,j>0
(min{∆a,j/4, ((∆max −∆a,j)/8)}) ,

and let
e = arg max

j:∆a,j>0
(min{∆a,j/4, ((∆max −∆a,j)/8)}) . (27)

For any arm j such that ∆max < ∆a,j , the inner minimum in (27) will be negative. On the other
hand, since a 6= m + 1, there must exist an arm j such that ∆max > ∆a,j , and for such an arm j
the inner minimum will be positive. Since e is the arm that maximizes the inner minimum, the inner
minimum must be positive for e. Thus we have that ∆max > ∆a,e.

From (26), (27), we have that
ct < ∆a,e/4 and ct < (∆max −∆a,e)/8. (28)

Since ct < ∆a,e/4, by following an argument similar to (24) we have that le(t) ≥ ra(t), and hence
the first branch of (7) will be used to compute U∆ra(t). Hence we have

U∆ra(t)
(a)

≤ re(t)− la(t)
(b)

≤ ∆a,e + 4ct
(c)

≤ ∆max − 4ct
(d)

≤ L∆(t)

where (a) follows from (7) and (8), (b) holds from Lemma 5, (c) follows by (28), and (d) holds by
(25).

For the second case, assume
ct < (∆max −∆a,1)/8.

Let e = arg max i6=a ri(t). From (8), we have that

U∆ra(t) ≤ re(t)− la(t)
(a)

≤ ∆a,e + 4ct ≤ ∆a,1 + 4ct
(b)

≤ ∆max − 4ct
(c)

≤ L(t),

where (a) holds by Lemma 5, (b) holds by the case assumption, and (c) holds by (25).
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Lemma 7. Assume (6) holds, and consider a 6= m. In MaxGapElim if t is such that ct ≤ ρla, then

U∆la(t) < L∆(t)

Proof. The proof is analogous to the proof of Lemma 6.

D.2 Sample Complexity of MaxGapUCB

For the sample complexity analysis of MaxGapUCB , we use a modified version of the left and right
confidence bounds introduced in (5). We redefine

l′i(t) , max
s≤t

li(s), r′i(t) , min
s≤t

ri(s). (29)

The nice property that these bounds have is that [l′i(t), r
′
i(t)] ⊆ [li(s), ri(s)] for all t ≥ s. Lemma 9

shows that these modified bounds retain the same confidence guarantee for the arm mean values as
the original confidence bounds. In what follows, we will exclusively use the modified confidence
bounds (except in Lemma 9 where we show they are correct). We drop the prime symbol in their
notation for brevity and henceforth li(t), ri(t) denote the modified confidence bounds given in (29).

We state and prove our main sample complexity result in Theorem 5.
Theorem 5. With probability at least 1− δ, the number of times MaxGapUCB samples a sub-optimal
arm, i.e. an arm i 6∈ {(m), (m+1)}, is upper bounded by 6αγ−2

i log(K/δγi). The constant α is
defined in Remark 1. Thus, the number of times MaxGapUCB samples suboptimal arms is

H = 6α
∑
i∈[K]:

i/∈{(m),(m+1)}

log(K/δγi)

γ2
i

.

Proof. We show that the result holds true as long as the confidence intervals for the means are correct
(6). Let

τr = α
log(K/δγri )

(γri )2
, and τl = α

log(K/δγli)

(γli)
2

, (30)

where α is defined in Remark 1. Note that U∆(m)(t) = U∆(m+1)(t) ≥ ∆max ∀ t. Arm i is sampled
either because U∆ri is the largest or U∆li is the largest. We prove in Lemma 8 below that when i is
sampled 3τr times due to its right gap, U∆ri < ∆max. Hence MaxGapUCB will not sample i due to its
right gap more than 3τr times because beyond this point U∆(m) will be higher. It can similarly be
proved that when i is sampled 3τl times due to its left gap, U∆li < ∆max. Thus, arm i will be sampled
at most 3(τr + τl) ≤ 6 max{τr, τl} times.

To ease the explanation, we only focus on the right gap of i from here onwards and set

τ = α
log(K/δγri )

(γri )2
. (31)

Furthermore, in the lemmas below, we only focus on samples of i drawn when U∆ri was the largest
upper bound. With a slight overload of notation, let t(i, s) denote the (random) smallest time when
arm i has been sampled s times by MaxGapUCB (owing to its right gap).
Lemma 8. With probability 1− δ, U∆ri (t(i, 3τ)) < ∆max.

Proof. Since the proof is long and technical, we first give an outline of the entire proof.

Outline: Define itr and itl to be the arms that form the left and right boundaries of U∆ri (t) (the two
arms that result in the maximum value of (8) at t). By this definition, U∆ri (t) = Gri (litl (t), t) =

ritr (t)− litl (t). Consider the arms used in computing U∆ri (t(i, 3τ)), i.e. it(i,3τ)
l , i

t(i,3τ)
r , and denote

them as il, ir for brevity. Fig. 9 shows the confidence intervals of il in blue and those of ir in green.
Initially the confidence intervals are large, i.e., the width between the right and left bounds of arm i is
greater than ∆max before time t(i, τ). After t(i, 2τ) rounds of MaxGapUCB, the confidence interval
of i will have shrunk. However, note that the right gap of arm i involves either il and/or ir. Since
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Figure 9: Illustration of left and right confidence bounds during a run of MaxGapUCB at three
different times, the argument t for the bounds are omitted. Arms il, ir are such that U∆ri (t(i, 3τ)) =
rir (t(i, 3τ))− lil(t(i, 3τ)).

MaxGapUCB samples all arms that can attain the highest gap upper bound, it turns out that it will also
sample il enough times to make ril(t(i, 2τ))− li(t(i, 2τ)) < ∆max. If i is still sampled after t(i, 2τ)
rounds due to its right gap, then its gap upper bound must involve an arm which is disjoint from i’s
confidence interval, such as the arm ir. Then from t(i, 2τ) to t(i, 3τ), MaxGapUCB samples il and ir
enough times to make U∆ri (t(i, 3τ)) = rir (t(i, 3τ))− lil(t(i, 3τ)) < ∆max.

We divide the proof into four parts. In the first part, we divide all the arms into subsets (which we
refer to as levels). These subsets are defined such that arms within a subset obey collective properties,
that we study in some of the subsequent lemmas. In the second and third part, we prove that arms
i
t(i,3τ)
r and it(i,3τ)

l are always sampled whenever i is sampled from [t(i, 2τ), t(i, 3τ)]. Finally in part
four, we use these arms to argue that U∆ri (t(i, 3τ)) < ∆max.

Level Sets:
At any time t, we can identify three subsets of arms with respect to arm i that we refer to as level 0,
level 1, and level 2 arms respectively, and argue that the arms that define U∆ri (t) must lie in one of
these subsets. These levels sets are defined as follows. Let

A0
i (t) = {a ∈ [K] : li(t) ≤ ra(t) < ri(t)}, (32)

A1
i (t) = {a ∈ [K] : la(t) ≤ ri(t) ≤ ra(t)}, (33)

A2
i (t) =

{
a ∈ [K] : ri(t) < la(t) ≤ min

j:lj(t)>ri(t)
rj(t)

}
. (34)

From their definitions the three subsets are pairwise disjoint at every t ∈ N. Let

Ai(t) = A0
i (t) ∪ A1

i (t) ∪ A2
i (t) (35)

denote the union of the three levels. From the definition of U∆ri (t) in (8) and (32), (33), the arm

itl ∈ A0
i (t) ∪ A1

i (t)∀ t. (36)

Lemma 10 proves that the arm itr ∈ Ai(t)∀ t. Thus at any time t, only arms in Ai(t) are relevant for
the right gap of arm i.

Suppose t(i, 3τ) <∞, i.e., arm i is sampled at least 3τ times. To avoid clutter,we let

ir = it(i,3τ)
r and il = i

t(i,3τ)
l ,

and use the full notation itr for t 6= t(i, 3τ). We next argue that ir and il must be sampled τ times
before t(i, 3τ).

ir must have been sampled at least τ times before t(i, 3τ ):
By Lemma 10, ir ∈ Ai(t(i, 3τ)). From Corollary 2, ir ∈ Ai(s)∀ s ∈ [t(i, 2τ), t(i, 3τ)].
If ir ∈ A0

i (s) ∪ A1
i (s) for any s ∈ [t(i, 2τ), t(i, 3τ)], then rir (t(i, 3τ)) − li(t(i, 3τ)) ≤

rir (s) − li(s) < ∆max by Lemma 9 and Lemma 11, and we are done. Let us hence
look at the case when ir ∈ A2

i (s)∀ s ∈ [t(i, 2τ), t(i, 3τ)]. We have by Lemma 11 that
isr ∈ A2

i (s)∀ s ∈ [t(i, 2τ), t(i, 3τ)], and Lemma 13 then implies that ir must be sampled whenever i
was sampled for s ∈ [t(i, 2τ), t(i, 3τ)]. Hence ir is sampled at least τ times before t(i, 3τ).
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il must have been sampled at least τ times before t(i, 3τ ):
From Corollary 2, since the level of an arm cannot decrease from 2 to 1, il ∈ A0

i (s) ∪ A1
i (s) for all

s ∈ [t(i, 2τ), t(i, 3τ)]. If il ∈ A1
i (s)∀ s ∈ [t(i, 2τ), t(i, 3τ)], then il is sampled τ times whenever i

is sampled by Lemma 13.
On the other hand, if il ∈ A0

i (s) for some s ∈ [t(i, 2τ), t(i, 3τ)], let U∆ri (s) = risr (s)− lisl (s). We
consider two cases, ril(s) < lisl (s) and ril(s) ≥ lisl (s). First, if ril(s) < lisl (s), then lil(s

′) <

ril(s
′) < lisl (s

′) for all s′ ≥ s by Lemma 9. Since isl ∈ A0
i (s) ∪ A1

i (s), we have by Lemma 9 and
Lemma 11 that

risl (t(i, 3τ))− lil(t(i, 3τ)) ≤ risl (t(i, 3τ))− li(t(i, 3τ)) ≤ ∆max. (37)

By the definition of U∆ri in (8) we have that

U∆ri (t(i, 3τ)) = Gri (lil(t(i, 3τ)), t(i, 3τ)) ≤ risl (t(i, 3τ))− lil(t(i, 3τ)). (38)

(38) and (37) imply that U∆ri (t(i, 3τ)) ≤ ∆max, and we are done. For the second case, suppose
ril(s) ≥ lisl (s). Lemma 12 then gives that arm il is also sampled at time s. Thus, we have shown
that either U∆ri (t(i, 3τ)) < ∆max, or il is sampled whenever i is sampled in [t(i, 2τ), t(i, 3τ)].

We now show that U∆ri (t(i, 3τ)) < ∆max.

U∆ri (t(i, 3τ )) < ∆max:
Recall that Ti(t(i, 3τ)), Til(t(i, 3τ)), Tir (t(i, 3τ)) are all larger than τ . Let

j∗ = arg max
j:0<∆i,j<∆max

min{∆i,j/4, (∆max −∆i,j)/4}

be the maximizer in (10), and note that µi < µj∗ by definition. Also note that τ and γri are defined in
(31) and (10) respectively so that

4cτ ≤ ∆max −∆i,j∗ and 4cτ ≤ ∆i,j∗ (39)

We split the proof into various cases depending on the ordering of the means µi, µil , µir , µj∗ . First,
note that if µir ≤ µil , then

U∆ri (t(i, 3τ)) = rir (t(i, 3τ))− lil(t(i, 3τ)) ≤ µir − µil + 4cτ ≤ ∆max

by (39). Second, if max{µi, µil} < µir < µj∗ , then

U∆ri (t(i, 3τ)) ≤ rir (t(i, 3τ))− lil(t(i, 3τ)) ≤ rir (t(i, 3τ))− li(t(i, 3τ))

≤ µir − µi + 4cτ ≤ ∆i,j∗ + 4cτ ≤ ∆max

by (39). Third, we show that it cannot be the case that µi < µj∗ < µil < µir . Assume to the contrary.
This implies that

lil(t(i, 3τ))− ri(t(i, 3τ)) ≥ µil − µi − 4cτ ≥ µj∗ − µi − 4cτ > 0,

which contradicts Eq. (36). Fourth, it cannot be the case that µil < µir < µi < µj∗ , because
ir ∈ A2

i (t(i, 3τ)) by Lemma 11. The only case that remains is max{µi, µil} < µj∗ < µir , which
we prove next by showing that Tj∗(t(i, 3τ)) ≥ τ .

max{µi, µil} < µjr∗ < µir :

For any time s ∈ [t(i, 2τ), t(i, 3τ)] such that j∗ ∈ A1
i (s) ∪ A2

i (s), we have by Lemma 11 and
Lemma 13 that j∗ is sampled whenever i is sampled. Thus we only need to focus on times s when
j∗ ∈ A0

i (s).

Suppose now that j∗ ∈ A0
i (s) for some s ∈ [t(i, 2τ), t(i, 3τ)] when i was sampled and U∆ri (s) =

risr (s) − lisl (s). Recall that isl ∈ A0
i (s) ∪ A1

i (s). We consider two cases depending on whether
lisl (t(i, 3τ)) > lil(t(i, 3τ)) or lisl (t(i, 3τ)) ≤ lil(t(i, 3τ)).

• lisl (t(i, 3τ)) > lil(t(i, 3τ)): We have

U∆ri (t(i, 3τ)) = G(lil(t(i, 3τ)), t(i, 3τ))
(a)

≤ risl (t(i, 3τ))− lil(t(i, 3τ))

≤ risl (t(i, 3τ))− li(t(i, 3τ))
(b)

≤ risl (s)− li(s)
(c)

≤ ∆max,

where (a) holds by (7), (b) holds by Lemma 9, and (c) holds by Lemma 11.
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• lisl (t(i, 3τ)) ≤ lil(t(i, 3τ)): Since max{µi, µil} < µj∗ , we have lil(t) ≤ rj∗(t)∀ t. Hence,
lisl (t(i, 3τ)) < rj∗(t(i, 3τ)), and Lemma 9 implies that lisl (s) ≤ rj∗(s). Recall that s is a
time such that j∗ ∈ A0

i (s), and hence

rj∗(s)− lisl (s) ≤ rj∗(s)− li(s) ≤ ∆max.

Now, since i is sampled at time s, we have U∆ri (s) > ∆max, and (7) then implies that
lj∗(s) < lisl (s). Hence by Lemma 12 MaxGapUCB must also sample arm j∗ at time s.

This proves that Tjr∗ (t(i, 3τ)) ≥ τ . We use this to prove that U∆ri (t(i, 3τ)) < ∆max as follows. First
note that

ljr∗ (t(i, 3τ))− ri(t(i, 3τ)) ≥ pjr∗ − pi − 4cτ ≥ 0.

Second, since arm il ∈ A0
i (t(i, 3τ)) ∪ A1

i (t(i, 3τ)), and hence

lil(t(i, 3τ)) < ri(t(i, 3τ)) ≤ lj∗(t(i, 3τ)).

Hence

U∆ri (t(i, 3τ)) = Gri (lil(t(i, 3τ)), t(i, 3τ)) ≤ rjr∗ (t(i, 3τ))− lil(t(i, 3τ))

≤ rjr∗ (t(i, 3τ))− li(t(i, 3τ)) ≤ µjr∗ − µi + 4cτ ≤ ∆max.

Lemma 9. Over the sigma-algebra generated by all the arm rewards up till any time t ∈ N, we have
that

P
(
∀t ∈ N,∀i ∈ [K], µi ∈

[
max
t′≤t

li(t
′),min

t′≤t
ri(t
′)

])
= P(∀t ∈ N,∀i ∈ [K], µi ∈ [li(t), ri(t)]).

(40)

Proof. Let E′ be the event in the LHS of (40) and let E be the good event. First we show that
E′ ⊆ E. The event E′ implies that at any time t and for any arm i, we have that

µi ∈
[
max
t′≤t

li(t
′),min

t′≤t
ri(t
′)

]
=⇒ µi ∈ [li(t

′), ri(t
′)] ∀t′ ≤ t.

Hence the good event is true in this case.

Now we show that E ⊆ E′. Suppose that E′ is not true, so there is a time t and arm i such
that µi /∈ [maxt′≤t li(t

′),mint′≤t ri(t
′)]. Choose two time instants sl, sr ∈ N such that sl ∈

arg maxt′<t li(t
′), sr ∈ arg mint′<t ri(t

′). Then the supposition implies that either

µi /∈ [li(sl), ri(sl)] or/and µi /∈ [li(sr), ri(sr)].

Either of the above statements imply that the good event is not true. Hence E =⇒ E′.

Corollary 1. For any two time instants s, t ∈ N if s < t then U∆ri (s) ≥ U∆ri (t).

Proof. The quantity U∆ri (t) is defined in (15) as an optimization problem over a set of K real
numbers P ′ = {µ′i ∈ [li(t), ri(t)] : i ∈ [K]}. For a time s < t, the U∆ri (s) is an optimization over
P ′′ = {µ′′i ∈ [li(s), ri(s)] : i ∈ [K]}. Lemma 9 states that [li(t), ri(t)] ⊆ [li(s), ri(s)], hence we
have that U∆ri (s) ≥ U∆ri (t).

Corollary 2. For all k ∈ [K] if k ∈ A2
i (t) then k ∈ Ai(s) at all time instants s ≤ t. If k ∈ A2

i (t)
then k /∈ A0

i (s
′) ∪ A1

i (s
′) at all s′ ≥ t.

Proof. Define J (t) , {j ∈ [K] : lj(t) > ri(t)}. For any s ≤ t, if j ∈ J (s) then using Lemma 9,

lj(t) ≥ lj(s) > ri(s) ≥ ri(t) =⇒ j ∈ J (t). (41)

Hence if k ∈ A2
i (t), from (34) we have that lk(t) ≤ minj∈J (t) rj(t) and we get

lk(s) ≤ lk(t) ≤ min
j∈J (t)

rj(t)
(a)
≤ min
j∈J (t)

rj(s)
(b)
≤ min

j∈J (s)
rj(s),
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where the inequality (a) is true because of Lemma 9 and inequality (b) is true as J (s) ⊆ J (t) by
(41). This implies that k ∈ A0

i (s) ∪ A1
i (s) ∪ A2

i (s) = Ai(s).

If k ∈ A2
i (t) we have that ri(t) < lk(t). At any s′ ≥ t, from Lemma 9 we have that ri(s′) ≤ ri(t) <

lk(t) ≤ lk(s′), i.e., the arm k /∈ A0
i (s
′) ∪ A1

i (s
′).

Lemma 10. The arms itr, i
t
l are such that U∆ri (t) = ritr (t) − litl (t). For the sets as defined in (32),

(33), (34) the arm itr ∈ Ai(t) , A0
i (t) ∪ A1

i (t) ∪ A2
i (t).

Proof. Suppose arm itr /∈ Ai(t), then either ritr (t) < li(t) which would give a negative value for
U∆ri (t), or we have that lir (t) > mina:la(t)>ri(t) ra(t) , ra∗(t). From the definition of arm itl , its
litl (t) ≤ ri(t). Using this and (7), we have that

Gri (litl (t), t) = min
j:lj(t)>lit

l
(t)
rj(t)− litl (t) ≤ min

j:lj(t)>ri(t)
rj(t)− litl (t) = ra∗(t)− litl (t). (42)

From the definition of arm itr, we have that U∆ri (t) = ritr (t) − litl (t) ≤ ra∗(t) − litl (t) as argued
above. That implies ra∗(t) ≥ ritr (t) > litr (t), which contradicts the supposition.

Lemma 11. At any time t ≥ t(i, 2τ), all arms j ∈ A0
i (t)∪A1

i (t) are such that rj(t)− li(t) ≤ ∆max.

Proof. Consider an arm j ∈ A0
i (t) ∪ A1

i (t), then j /∈ A2
i (s) for all s ≤ t for otherwise that would

contradict corollary 2. Thus j ∈ A0
i (s) ∪ A1

i (s) for all s ≤ t.
By choice of τ we have that ri(t(i, τ))−li(t(i, τ)) = 2cτ ≤ ∆max from (39). Hence if arm j ∈ A0

i (s)

for any s ∈ [t(i, τ), t(i, 2τ)], we have that rj(s)− li(s) ≤ ri(s)− li(s)
(a)
≤ ri(t(i, τ))− li(t(i, τ)) ≤

∆max, where inequality (a) is by Lemma 9.

Hence j ∈ A1
i (s) for all s ∈ [t(i, τ), t(i, 2τ)]. If U∆ri (s) is the largest gap upper bound then

isR /∈ A0
i (s) by the above reasoning. Then Lemma 13 states that arm j was sampled anytime arm

i was sampled between t(i, τ) to t(i, 2τ). This implies that Tj(t(i, 2τ)) ≥ τ , and we argue that
rj(t(i, 2τ))− li(t(i, 2τ)) ≤ ∆max in the following manner. The arm j∗ is the maximizer in (10).

Case I: µi < µj∗ < µj . Here we argue that j /∈ A1
i (t(i, 2τ)) because lj(t(i, 2τ)) ≥ ri(t(i, 2τ)) as

shown below.

lj(t(i, 2τ))− ri(t(i, 2τ)) ≥ µj − 2cTj(t(i,2τ)) − (µi + 2cTi(t(i,2τ))) (Lemma 5)

≥ µj∗ − µi − 4cτ (Assumption on means and monotonicity of c(s))
≥ µj∗ − µi −∆i,j∗ = 0. (Using (39))

Case II: max{µi, µj} < µj∗ . Here we argue that rj(t(i, 2τ)) − li(t(i, 2τ)) ≤ ∆max as shown
below.

rj(t(i, 2τ))− li(t(i, 2τ)) ≤ µj + 2cTj(t(i,2τ)) − (µi − 2cTi(t(i,2τ))) (Lemma 5)

≤ µj∗ − µi + 4cτ (Assumption on means and monotonicity of c(s))
≤ µj∗ − µi + ∆max −∆i,j∗ ≤ ∆max. (Using (39))

Lemma 12. Suppose arm i is sampled at time t because U∆ri (t) = ritr (t)− litl (t) is the largest gap
upper bound. Consider an arm j whose confidence bounds satisfy any one of the following conditions.

1. lj(t) < litl (t) < rj(t), or

2. lj(t) < ritr (t) < rj(t).

Then MaxGapUCB samples arm j as well at time t.
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Proof. Suppose arm j satisfies condition (1). Consider the right gap of arm j, we have that U∆rj(t) ≥
Grj(litl (t), t). If the value of Gri (litl (t), t) is obtained by the first branch of (7), then the value of
Grj(litl (t), t) is also given by its first branch. That implies U∆ri (t) = U∆rj(t), and hence j is sampled if
i is sampled. If j = itr, by condition (1) we have that litr (t) < litl (t), which implies that Gri (litl (t), t)
is obtained by the second branch in (7). Hence for all arms a 6= itl we have la(t) < litl (t) and
ritr (t) = rj(t) = maxa 6=i ra(t). Considering the left gap of arm j, since {a : ra(t) < rj(t)} 6= ∅,

Glj(rj(t), t) = rj(t)− max
a:ra(t)<rj(t)

la(t) = ritr (t)− litl (t) = U∆ri (t),

and arm j is sampled if i is sampled. Finally suppose the value of Gri (litl (t), t) is obtained by the
second branch in (7), and j 6= itr. Then

Gri (litl (t), t) = max
a6=i

ra(t)− litl (t) = ritr (t)− litl (t),

Grj(litl (t), t) = max
a 6=j

ra(t)− litl (t) = max{ri(t), ritr (t)} − litl (t) = ritr (s)− litl (t),

where the last equality is true because if not, then U∆rj(t) ≥ Grj(litl (t), t) > Gri (litl (t), t) = U∆ri (t),
which contradicts the condition that U∆ri (t) is the largest. Hence arm j is sampled if i is sampled.

Suppose now that arm j satisfies condition (2). We divide the proof of this part into two cases.

Case I: Suppose ritl (t) > ritr (t).

If the arm itl 6= i, then we show that Gri (litl (t), t) cannot be the largest gap upper bound. Consider
the arm a∗ , arg maxa:la(t)<lil (t)

la(t), it satisfies li(t) ≤ la∗(t) < litl (t). Then Gri (la∗(t), t) =

mina:la(t)>la∗ (t) ra(t)− la∗(t), where the first branch of (7) is active because of arm itl . But

min
a:la(t)>la∗ (t)

ra(t) = min{ritl (t), min
a:la(t)>lit

l
(t)
ra(t)} = min{ritl (t), ritr (t)} = ritr (t).

That would imply

Gri (la∗(t), t) = ritr (t)− la∗(t) > ritr (t)− litr (t) = Gri (litr (t), t),

which contradicts the identification of arm itl as the one giving the value of U∆ri (t). The case that
remains is if the arm i = itl . For this part consider the following two sub-cases:

Sub-case Ia: The set of arms {a : ra(t) < ritr (t)} = ∅. Since the number of arms K > 2, the
value maxa6=i ra(t) > ritr (t), and hence if Gri (litl (t), t) = ritr (t)− litl (t), then it must be due to the
first branch in (7). That implies litr (t) > litl (t) = li(t). Then consider the left gap for arm j that
satisfies condition (2). Since the set {a : ra(t) < ritr (t)} = ∅, we have

Glj(ritr (t), t) = ritr (t)−min
a 6=j

la(t) = ritr (t)− litl (t) = U∆ri (t),

which implies that arm j will be sampled if U∆ri (t) is the largest.

Sub-case Ib: The set of arms {a : ra(t) < ritr (t)} 6= ∅. Consider the arm a∗ ,
arg maxa:la(t)<li(t) la(t), the domain in the maximization is not empty because of the following.
By the case assumption, there is an arm a whose ra(t) < ritr (t). If the left bound of this arm
la(t) > li(t), then li(t) < la(t) < ra(t) < ritr (t), which contradicts the identification of arm itr for
Gri (li(t), t). Hence its left bound must satisfy la(t) < li(t). Now consider the right gap of arm a∗
defined above. Since li(t) > la∗(t), we have that Gra∗(la∗(t), t) = mina:la(t)>la∗ (t) ra(t)− la∗(t).
But

min
a:la(t)>la∗ (t)

ra(t) = min{ri(t), min
a:la(t)>li(t)

ra(t)} = min{ri(t), ritr (t)} = ritr (t),

which implies thatGra∗(la∗(t), t) = ritr (t)−la∗(t) > ritr (t)−li(t) = U∆ri (t), which is a contradiction.
We are left with the following Case II.

Case II: Suppose ritl (t) < ritr (t).
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Let a∗ be such that la∗(t) , maxa:ra(t)<ritr
(t) la(t). Then la∗(t) ≥ litl (t). If the previous inequality

is strict, then we have that
litl (t) < la∗(t) < ra∗(t) < ritr (t),

which contradicts the identification of arm itr as the one giving the value of Gri (litl (t), t). Hence we
have that

Glj(ritr (t), t) = ritr (t)− max
a:ra(t)<ritr

(t)
la(t) = ritr (t)− litl (t) = U∆ri (t),

and arm j is sampled if arm i is sampled because of U∆ri (t).

Lemma 13. Suppose arm i is sampled at time t when U∆ri (t) = ritr (t)− litl (t). If itr ∈ A2
i (t) then

all arms in the set A1
i (t) ∪ A2

i (t) are sampled by MaxGapUCB. If itr ∈ A1
i (t) then all arms in the

set A1
i (t) are sampled by MaxGapUCB.

Proof. The qualifying condition states that the arm itr ∈ A1
i (t) ∪ A2

i (t), hence from definitions
(33), (34) we have that ritr (t) ≥ ri(t). By definition (8) the arm itl is such that litl (t) ∈ [li(t), ri(t)].
We first argue that all arms in the set A1

i (t) are sampled. For arm j ∈ A1
i (t), ri(t) ≤ rj(t). If

lj(t) ≤ litl (t), arm j satisfies condition (1) of Lemma 12 and hence is sampled if U∆ri (t) is the largest.
If on the other hand rj(t) ≥ ritr (t), then arm j satisfies condition (2) of Lemma 12 and hence it is
sampled if i is sampled. The remaining case is if litl (t) < lj(t) < rj(t) < ritr (t), but that would
contradict the identification of the arm itr for U∆ri (t).

Now suppose arm itr ∈ A2
i (t), what is left to prove is that all arms in the set A2

i (t) are sampled.
Since itr ∈ {a : la(t) > ri(t) > litl (t)}, we have that

Gri (litl (t), t) = min
j:lj(t)>lit

l
(t)
rj(t)− litl (t) = ritr (t)− litl (t) = min

j∈A2
i (t)

rj(t)− litl (t),

where the last equality is true because arm itr ∈ A2
i (t) satisfies litr (t) > ri(t) ≥ litl (t). From

definition (34), any j ∈ A2
i (t) is such that lj(t) ≤ ritr (t) and satisfies condition (2) of Lemma 12.

Hence arm j is sampled if i is sampled because of its right gap.

E Details for Section 6: Proof of Lemma 1

Lemma 1. Consider a model B with K = 4 normal distributions Pi = N (µi, 1), where

µ4 = 0, µ3 = ε, µ2 = ν + 2ε, µ1 = 2ν + 2ε,

for some ν � ε > 0. Then any algorithm that is correct with probability at least 1− δ must collect
Ω(1/ε2) samples of arm 4 in expectation.

Proof. The maximum gap in B is ∆max = ∆3,2 = ν + ε. Define an alternate bandit model B′ with 4
normal distributions P ′i = N (µ′i, 1) where

µ′i = µi ∀i 6= 4, µ′4 = 2.1ε.

Note that the ordering of the means in B′ does not follow the subscript indices, indeed µ′3 < µ′4.

B

B '

Figure 10: Changing the original bandit model B to B′. µ4 is shifted to the right by 2.1ε. As a result,
the maximum gap in B′ is between green and purple.

The two measures are illustrated in Fig. 10. The maximum gap in B′ is ∆′max = ∆′2,1 = ν and
∆′3,2 is no longer a valid gap between consecutive arms. Consider algorithm for identifying the
maximum gap and let Ĉ1 denote the top-cluster returned by the algorithm when it stops at time τ . Let
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E = {Ĉ1 = {1, 2}}. Assume that PB(E) ≥ 1− δ and PB′(E) ≤ δ. Letting d(·) denote the binary
relative entropy, Lemma 1 in Garivier and Kaufmann [10] implies that

4∑
a=1

EB[Ta(τ)]KL(Pa,P ′a) ≥ d(PB(E),PB′(E)) ≥ d(1− δ, δ)

=⇒ EB[T4(τ)](µ4 − µ′4)2 ≥ log
1

2.4δ
=⇒ EB[T4(τ)] ≥ 1

(2.1ε)2
log

1

2.4δ
.

Similarly, one can show that EB[T1(τ)] ≥ 1/ε2 by creating an alternative bandit instance B′′ identical
to B except µ

′′

1 = 2ν + 3.1ε.
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