
Limits of Private Learning with Access to Public Data

Abstract

We consider learning problems where the training set consists of two types of examples:
private and public. The goal is to design a learning algorithm that satisfies differential privacy
only with respect to the private examples. This setting interpolates between private learning
(where all examples are private) and classical learning (where all examples are public).

We study the limits of learning in this setting in terms of private and public sample com-
plexities. We show that any hypothesis class of VC-dimension d can be agnostically learned up
to an excess error of α using only (roughly) d/α public examples and d/α2 private labeled ex-
amples. This result holds even when the public examples are unlabeled. This gives a quadratic
improvement over the standard d/α2 upper bound on the public sample complexity (where pri-
vate examples can be ignored altogether if the public examples are labeled). Furthermore, we
give a nearly matching lower bound, which we prove via a generic reduction from this setting to
the one of private learning without public data.

1 Introduction
In this work, we study a relaxed notion of differentially private (DP) supervised learning which was
introduced by Beimel et al. in [BNS13], where it was coined semi-private learning. In this setting,
the learning algorithm takes as input a training set that is comprised of two parts: (i) a private sample
that contains personal and sensitive information, and (ii) a “public” sample that poses no privacy
concerns. We assume that the private sample is always labeled, while the public sample can be either
labeled or unlabeled. The algorithm is required to satisfy DP only with respect to the private sample.
The goal is to design algorithms that can exploit as little public data as possible to achieve non-
trivial gains in accuracy (or, equivalently savings in sample complexity) over standard DP learning
algorithms, while still providing strong privacy guarantees for the private dataset. Similar settings
have been studied before in literature (see “Related Work” section below).

There are several motivations for studying this problem. First, in practical scenarios, it is often
not hard to collect reasonable amount of public data from users or organizations. For example, in
the language of consumer privacy, there is considerable amount of data collected from the so-called
“opt-in” users, who voluntarily offer or sell their data to companies or organizations. Such data is
deemed by its original owner to have no threat to personal privacy. There are also a variety of other
sources of public data that can be harnessed. Moreover, in many scenarios, it is often much easier to
collect unlabeled than labeled data.

Another motivation emerges from several pessimistic results in DP learning that either limit
or eliminate the possibility of differentially private learning, even for elementary problems such
as one-dimensional thresholds which are trivially learnable without privacy constraints [BNSV15,
ALMM18]. It is therefore natural to explore whether a small amount of public data circumvents
these impossibility results.

A third motivation arises from the following observation: consider a learning problem in which
the marginal distributionDX over the domain X is completely known to the algorithm, but the target
concept c : X → {0, 1} is unknown. One can show that in this setting every VC class can be learned
privately with (roughly) the same sample complexity as in the standard, non-private, case. The other
extreme is the standard PAC-setting in which both DX and c are unknown to the algorithm. As
mentioned earlier, in this case even very simple classes such as one-dimensional thresholds can not
be learned privately. In the setting considered in this work, the distribution DX is unknown but the
learner has access to some public examples from it. This naturally interpolates between these two

1



extremes: the case when DX is unknown that corresponds to having no public examples, and the
case when DX is known that corresponds to having an unbounded amount of public examples. It is
therefore natural to study the intermediate behaviour as the number of public examples grows from
0 to ∞. The same question can be also asked in the “easier” case where the public examples are
labeled.

We will generally refer to the setting described above as semi-private learning, and to algorithms
in that setting as semi-private learners. (See Section 2, for precise definitions.) Following previous
works in private learning, we consider two types of semi-private learners: those that satisfy the
notion of pure DP (the stronger notion of DP), as well as those that satisfy approximate DP. We will
call the former type pure semi-private learners, and call the latter approximate semi-private learners.

Main Results
In this work we concentrate on the sample complexity of semi-private learners in the agnostic setting.
We especially focus on the minimal number of public examples with which it is possible to learn
every VC class.

1. Upper bound: Every hypothesis class H can be learned up to excess error α by a pure semi-
private algorithm whose private sample complexity is (roughly) VC(H)/α2 and public sample
complexity is (roughly) VC(H)/α. Moreover, the input public sample can be unlabeled.

Recall that VC(H)/α2 examples are necessary to learn in the agnostic setting (even without
privacy constraints); therefore, this result establishes a quadratic saving.

2. Lower bound: Assume H has an infinite Littlestone dimension1. Then, any approximate semi-
private learner for H must have public sample complexity Ω(1/α), where α is the excess error.
This holds even when the public sample is labeled.

One example of a class with an infinite Littlestone dimension is the class of thresholds over R.
This class has VC dimension 1, and therefore demonstrates that the upper and lower bounds
above nearly match.

3. Dichotomy for pure semi-private learning: Every hypothesis class H satisfies exactly one of
the following:

(i) H is learnable by a pure DP algorithm, and therefore can be semi-privately learned without
any public examples.

(ii) Any pure semi-private learner for H must have public sample complexity Ω (1/α), where
α is the excess error.

Techniques

Upper bound: The idea of the construction for the upper bound is to use the (unlabeled) public
data to construct a finite class H′ that forms a “good approximation” of the original class H, then
reduce the problem to DP learning of a finite class. Such approximation is captured via the notion of
α-covering (Definition 2.7). By standard uniform-convergence arguments, it is not hard to see that
(roughly) VC(H)/α2 public examples suffice to construct such an approximation. We show that the
number of public examples can be reduced to only about VC(H)/α, even in the agnostic setting.
Our construction is very similar to a construction due to Beimel et al. [BNS13] (see the “Related
Work” section for a more detailed comparison).
Lower bounds: The lower bounds boil down to a public-data-reduction lemma which shows that
given a semi-private learner whose public sample complexity is << 1/α, transforms it to a com-
pletely private learner (which uses no public examples) whose excess error is a small constant (say
1/100). Stated contra-positively, this implies that if a class can not be privately learned up to an
excess loss of 1/100 then it can not be semi-privately learned with << 1/α public examples. This
allows us to exploit known lower bounds for private learning to derive lower on the public sample
complexity.

1The Littlestone dimension is a combinatorial parameter that arises in online learning [Lit87, BPS09].
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Related Work

The most related work to ours is the work of Beimel et al. [BNS13], which focuses on the realizable
case of semi-private learning and give an upper bound on the sample complexity. The algorithm
we use in our upper bound is essentially the same as theirs. However, our analysis for the sample
complexity differs from theirs: our argument relies on the notion of α-coverings, which provides a
direct argument that extends to the agnostic case.
There are also several other works that considered similar problems. A similar notion known as
“label-private learning” was considered in [CH11] (see also references therein) and in [BNS13]. In
this notion, only the labels in the training set are considered private. This notion is weaker than
semi-private learning. In particular, any semi-private learner can be easily transformed into a label-
private learner. Another line of work consider the problem of private knowledge transfer [HCB16],
[PAE+17], [PSM+18], and [BTT18]. In this problem, first a DP classification algorithm with input
private sample is used to provide labels for an unlabeled public dataset. Then, the resulting dataset
is used to train a non-private learner. The work of [BTT18] gives upper bounds on private and public
sample complexities in the setting when the DP algorithm is required to label the public data in an
online fashion. Their bounds are thus not comparable to ours.

2 Preliminaries

Notation
For n ∈ N, we use [n] to denote the set {1, . . . , n}. We use standard asymptotic notation O,Ω, o, ω.
A function f : N→ [0, 1] is said to be negligible if f(n) = o(n−d) for every d ∈ N. The statement
“f is negligible” is denoted by f = negl(n).
We use standard notation from the supervised learning literature (see, e.g. [SSBD14]). Let X denote
an arbitrary domain, let Z = X × {0, 1} denote the examples domain, and let Z∗ = ∪∞n=1Zn. A
function h : X → {0, 1} is called a concept/hypothesis, a set of hypotheses H ⊆ {0, 1}X is called
a concept/hypothesis class. The VC dimension of H is denoted by VC(H). We use D to denote a
distribution over Z , and DX to denote the marginal distribution over X . We use S ∼ Dn to denote
a sample/dataset S = {(x1, y1), . . . , (xn, yn)} of n i.i.d. draws from D.
Expected error: The expected/population error of a hypothesis h : X → {0, 1} with respect to a
distribution D over Z is defined by err(h;D) , E

(x,y)∼D
[1 (h(x) 6= y)].

A distribution D is called realizable by H if there exists h∗ ∈ H such that err(h∗;D) = 0. In this
case, the data distribution D is described by a distribution DX over X and a hypothesis h∗ ∈ H. For
realizable distributions, the expected error of a hypothesis h will be denoted by err (h; (DX , h∗)) ,
E

x∼DX
[1 (h(x) 6= h∗(x))] .

Empirical error: The empirical error of an hypothesis h : X → {0, 1} with respect to a labeled
dataset S = {(x1, y1), . . . , (xn, yn)} will be denoted by êrr (h;S) , 1

n

∑n
i=1 1 (h(xi) 6= yi) .

Expected disagreement: The expected disagreement between a pair of hypotheses h1 and h2 with
respect to a distribution DX over X is defined as dis (h1, h2; DX ) , E

x∼DX
[1 (h1(x) 6= h2(x))] .

Empirical disagreement: The empirical disagreement between a pair of hypotheses h1 and h2 w.r.t.
an unlabeled dataset T = {x1, . . . , xn} is defined as d̂is (h1, h2; T ) = 1

n

∑n
i=1 1 (h1(xi) 6= h2(xi)) .

Definitions
Definition 2.1 (Differential Privacy [DMNS06, DKM+06]). Let ε, δ > 0. A (randomized) algorithm
A with input domain Z∗ and output range R is called (ε, δ)-differentially private if for all pairs of
datasets S, S′ ∈ Z∗ that differs in exactly one data point, and every measurable O ⊆ R, we have

Pr (A(S) ∈ O) ≤ eε · Pr (A(S′) ∈ O) + δ,

where the probability is over the random coins of A. When δ = 0, we say that A is pure ε-
differentially private.
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We study learning algorithms that take as input two datasets: a private dataset Spriv and a public
dataset Spub, and output a hypothesis h : X → {0, 1}. The public set entails no privacy constraint,
whereas the algorithm is required to satisfy differential privacy with respect to Spriv. The private
set Spriv ∈ (X × {0, 1})∗ is labeled. We distinguish between two settings of the learning problem
depending on whether the public dataset is labeled or not. To avoid confusion, we will usually
denote an unlabeled public set as Tpub ∈ X ∗, and use Spub to denote a labeled public set. We
formally define learners in these two settings.

Definition 2.2 ((α, β, ε, δ)- Semi-Private Learner). Let H ⊂ {0, 1}X be a hypothesis class. A
randomized algorithm A is (α, β, ε, δ)-SP (semi-private) learner for H with private sample size
npriv and public sample size npub if the following conditions hold:

1. For every distributionD over Z = X ×{0, 1}, given datasets Spriv ∼ Dnpriv and Spub ∼ Dnpub

as inputs to A, with probability at least 1− β (over the choice of Spriv, Spub, and the random
coins of A), A outputs a hypothesis A (Spriv, Spub) = ĥ ∈ {0, 1}X satisfying

err
(
ĥ; D

)
≤ inf
h∈H

err (h; D) + α.

2. For all S ∈ Znpub , A (·, S) is (ε, δ)-differentially private.

When the second condition is satisfied with δ = 0 (i.e., pure differential privacy), we refer to A as
(α, β, ε)-SP learner (i.e., pure semi-private learner).

As a special case of the above definition, we say that an algorithm A is an (α, β, ε, δ)-semi-
privately learner for a class H under the realizability assumption if it satisfies the first condition in
the definition only with respect to all distributions that are realizable byH.

Definition 2.3 (Semi-Privately Learnable Class). We say that a classH is semi-privately learnable if
there are functions npriv : (0, 1)2 → N, npub : (0, 1)2 → N, where npub(α, ·) = o(1/α2), and there
is an algorithm A such that for every α, β ∈ (0, 1), when A is given private and public samples of
sizes npriv = npriv(α, β), and npub = npub(α, β), it (α, β, 0.1, negl (npriv))-semi-privately learnsH.

Note that in the definition above, the privacy parameters are set as follows: ε = 0.1 and δ is
negligible function in the private sample size (and δ = 0 for a pure semi-private learner).

The choice of npub = o(1/α2) in the above definition is because taking Ω(VC(H)/α2) public
examples suffices to learn the class without any private examples (see [SSBD14]). Thus, the above
definition focuses on classes for which there is a non-trivial saving in the number of public examples
required for learning. Beimel et al. [BNS13] were the first to propose the notion of semi-private
learners. Their notion is analogous to a special case of Definition 2.2, which we define next.

Definition 2.4 ((α, β, ε, δ)-Semi-Supervised Semi-Private Learner). The definition is analogous to
Definition 2.2 except that the public sample is unlabeled. That is, A is (α, β, ε, δ)-SS-SP (semi-
supervised semi-private) learner for a class H with private sample size npriv and public sample
size npub if the same conditions in Definition 2.2 hold except that in condition 1, Spub ∼ Dnpub

is replaced with Tpub ∼ D
npub

X , and condition 2 is replaced with “For all T ∈ Xnpub , A (·, T ) is
(ε, δ)-differentially private.”

We define the notion of semi-supervised semi-privately learnable classH in analogous manner as in
Definition 2.3.
Private learning without public data: In the standard setting of (ε, δ)-differentially private learn-
ing, the learner has no access to public data. We note that this setting can be viewed as a special
case of Definitions 2.2 and 2.4 by taking npub = 0 (i.e., empty public dataset). In such case, we
refer to the learner as (α, β, ε, δ)-private learner. As before, when δ = 0, we call the learner pure
private learner. The notion of privately learnable class H is defined analogously to Definition 2.3
with npub(α, β) = 0 for all α, β.

We will use the following lemma due to Beimel et al. [BNS15]:
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Lemma 2.5 (Special case of Theorem 4.16 in [BNS15]). Any class H that is privately learnable
with respect to all realizable distributions is also privately learnable (i.e., privately learnable in the
general agnostic setting).

The following fact follows from the private boosting technique due to [DRV10]:

Lemma 2.6 (follows from Theorem 6.1 [DRV10] (the full version)). For any class H, under the
realizability assumption, if there is a (0.1, 0.1, 0.1)-pure private learner for H, then H is privately
learnable by a pure private algorithm.

We note that no analogous statement to the one in Lemma 2.6 is known for approximate private
learners. This is because it is not clear how one can scale down the δ parameter of the boosted
learner to negl(n), as required by the definition of approximate DP learnability; specifically, the
boosting result in [DRV10] does not achieve this. On the other hand, the ε parameter of the boosted
learner (according to [DRV10, Theorem 6.1]) can be scaled down by taking the input sample of the
boosted learner to be large enough, and then apply the algorithm on a random subsample. The same
technique would not be sufficient to scale down δ to negl(n).
We will also use the following notion of coverings:

Definition 2.7 (α-cover for a hypothesis class). A family of hypotheses H̃ is said to form an α-cover
for an hypothesis class H ⊆ {0, 1}X with respect to a distribution DX over X if for every h ∈ H,

there is h̃ ∈ H̃ such that dis
(
h, h̃; DX

)
≤ α.

3 Upper Bound
In this section we show that every VC class H can be semi-privately learned in the agnostic case
with only Õ(VC(H)/α) public examples:

Theorem 3.1 (Upper bound). Let H be a hypothesis class and let VC (H) = d. For any α, β ∈
(0, 1), ε > 0,ASSPP is an (α, β, ε)-semi-supervised semi-private agnostic learner forH with private
and public sample complexities:

npriv = O

((
d log(1/α) + log(1/β)

)
max

(
1

α2
,

1

ε α

))
,

npub = O

(
d log(1/α) + log(1/β)

α

)
.

Proof overview. The upper bound is based on a reduction to the fact that any finite hypothesis
class H′ can be learned privately with sample complexity (roughly) O(log|H′|) via the exponential
mechanism2 [KLN+08]. In more detail, we use the (unlabeled) public data to construct a finite class
H′ that forms a “good enough approximation” of the (possibly infinite) original classH (See descrip-
tion in Algorithm 1). The relevant notion of approximation is captured by the definition of α-cover
(Definition 2.7): for every h ∈ H there exists h′ ∈ H′ that α-approximates h: dis (h, h′; DX ) ≤ α.
Indeed, it suffices to output an hypothesis h′ ∈ H′ that α-approximates an optimal hypothesis
h∗ ∈ H. One interesting feature about this approach is that the constructed finite class (the α-cover)
depends on the distribution DX over X . Hence, the same constructed cover can be used to learn
different target concepts as long as the distribution DX remains the same.

Thus, the crux of the proof boils down to the question: How many samples from DX are needed
in order to construct an α-cover forH? It is not hard to see that (roughly) O(VC(H)/α2) examples
suffice: indeed, these many examples suffice to approximate the distances dis (h′, h′′; DX ) for every
h′, h′′ ∈ H, and therefore also suffice for constructing the desired α-cover H′. We show how to
reduce the number of examples to only (roughly) O(VC(H)/α) examples (Lemma 3.3), which, by
our lower bound, is nearly optimal

The proof of Theorem 3.1 relies on the following lemmas.

2The exponential mechanism is a basic algorithmic technique in DP [MT07].
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Algorithm 1 ASSPP: Semi-Supervised Semi-Private Agnostic Learner
Input: Private labeled dataset: Spriv = {(x1, y1), . . . , (xnpriv , ynpriv)} ∈ Znpriv , a public unlabeled

dataset: Tpub = (x̃1, · · · , x̃npub
) ∈ Xnpub , a hypothesis class H ⊂ {0, 1}X , and a privacy

parameter ε > 0.
1: Let T̃ = {x̂1, . . . , x̂m̂} be the set of points x ∈ X appearing at least once in Tpub.
2: Let ΠH(T̃ ) = {(h(x̂1), . . . , h(x̂m̂)) : h ∈ H} .
3: Initialize H̃Tpub

= ∅.
4: for each c = (c1, . . . , cm̂) ∈ ΠH(T̃ ): do
5: Add to H̃Tpub

arbitrary h ∈ H that satisfies h(x̂j) = cj for every j = 1, . . . , m̂.
6: Use the exponential mechanism with inputs Spriv, H̃Tpub

, ε and score function q(Spriv, h) ,

−êrr(h;Spriv) to select hpriv ∈ H̃Tpub
.

7: return hpriv.

Lemma 3.2. For all Tpub ∈ Xnpub , ASSPP(·, Tpub) is ε-differentially private (with respect to its first
input Spriv).

Proof. For any fixed Tpub ∈ Xnpub , note that the hypothesis class H̃Tpub
constructed in Step 5 depends

only on the public dataset. Note also that the private dataset is used only in Step 6, which is an
instantiation of the generic learner of [KLN+08]. The proof thus follows directly from [KLN+08,
Lemma 3.3].

Lemma 3.3 (α-cover for H). Let Tpub ∼ D
npub

X , where npub = O
(
d log(1/α)+log(1/β)

α

)
. Then, with

probability at least 1− β, the family H̃Tpub
constructed in Step 5 of Algorithm 1 is an α-cover forH

w.r.t. DX .

Proof. We need to show that with high probability, for every h ∈ H there exists h̃ ∈ H̃Tpub
such that

dis(h, h̃;DX ) ≤ α. Let T̃ = {x̂1, . . . , x̂m̂} be the set of points in X that appears at least once in
Tpub, and let h(T̃ ) = (h(x̂1), . . . , h(x̂m̂)). By construction, there must exist h̃ ∈ H̃Tpub

such that

h̃(x̂j) = h(x̂j) ∀j ∈ [m̂]

that is, d̂is
(
h̃, h; Tpub

)
= 0; we will show that dis(h, h̃;DX ) ≤ α. For Tpub ∼ D

npub

X , define the
event

Bad =
{
∃h1, h2 ∈ H : dis (h1, h2;DX ) > α and d̂is (h1, h2; Tpub) = 0

}
We will show that

P
Tpub∼D

npub
X

[Bad] ≤ 2

(
2e npub
d

)2d

e−αnpub/4. (1)

Before we do so, we first show that (1) suffices to prove the lemma. Indeed, if dis
(
h̃, h; DX

)
>

α for some h ∈ H then the event Bad occurs; in other words if Bad does not occur then H̃Tpub
is an

α-cover. Hence,

P
Tpub∼D

npub
X

[
H̃Tpub

is not an α-cover
]
≤ 2

(
2e npub
d

)2d

e−αnpub/4.

Now, via standard manipulation, this bound is at most β when npub = O
(
d log(1/α)+log(1/β)

α

)
,

which yields the desired bound and finishes the proof.
Now, it is left to prove (1). To do so, we use a standard VC-based uniform convergence bound

(a.k.a α-net bound) on the class H∆ , {h1∆h2 : h1, h2 ∈ H} where h1∆h2 : X → {0, 1} is
defined as

h1∆h2(x) , 1 (h1(x) 6= h2(x)) ∀x ∈ X

6



Let GH∆
denote the growth function ofH∆; that is, for any number m,

GH∆(m) , max
V :|V |=m

|ΠH∆(V )|,

where ΠH∆(V ) is the set of all possible dichotomies that can be generated by H∆ on a set V of
size m. Note that GH∆(m) ≤

(
em
d

)2d
. This follows from the fact that for any set V of size m, we

have |ΠH∆
(V )| ≤ |ΠH(V )|2 since every dichotomy in ΠH∆

is determined by a pair of dichotomies
in ΠH(V ). Hence, GH∆

(m) ≤ (GH(m))
2 ≤

(
em
d

)2d
, where the last inequality follows from

Sauer’s Lemma [Sau72]. Now, by invoking a uniform convergence argument, we have

P
Tpub∼D

npub
X

[
∃h1, h2 ∈ H : dis (h1, h2; DX ) > α and d̂is (h1, h2; Tpub) = 0

]
= P
Tpub∼D

npub
X

[
∃h ∈ H∆ : dis (h, h0; DX ) > α and d̂is (h, h0; Tpub) = 0

]
≤ 2GH∆

(2npub) e
−αnpub/4

≤ 2

(
2e npub
d

)2d

e−αnpub/4.

The bound in the third line is non-trivial; it follows from the so-called double-sample argument
which was used by Vapnik and Chervonenkis in their seminal paper [VC15]. The same argument is
used in virtually all VC-based uniform convergence bounds (see, e.g., [SSBD14, Sec. 28.3]).

This proves inequality (1) and completes the proof of the lemma.

Proof of the Upper Bound (Theorem 3.1)
First, we note that ε-differential privacy of ASSPP follows from Lemma 3.2. Thus, it is left to
establish the accuracy guarantee of ASSPP and the sample complexity bounds on npub and npriv. Let

h∗ ∈ arg min
h∈H

err (h; D)

denote the optimal hypothesis inH. We will show that with probability ≥ 1− β, the output hypoth-
esis hpriv satisfies err (hpriv; D) ≤ err (h∗; D) + α.

First, fix the randomness in the choice of Tpub. Let H̃Tpub
denote the corresponding realization

of the finite class generated in Steps 3-5 of Algorithm 1. Let

h∗Tpub
, arg min

h∈H̃Tpub

err(h; D)

denote the optimal hypothesis in H̃Tpub
. Using the result in [KLN+08, Theorem 3.4] for the generic

learner based on the exponential mechanism, it follows that a private sample size

npriv = O

((
log
(
|H̃Tpub

|
)

+ log(1/β)
)

max

(
1

α2
,

1

ε α

))
suffices to ensure that, w.p. ≥ 1−β/2 (over randomness in Spriv and in the exponential mechanism),

we have err (hpriv; D) ≤ err
(
ĥTpub

; D
)

+ α/2. From the setting of npub in the theorem statement
together with Sauer’s Lemma, it follow that

log
(
|H̃Tpub

|
)
≤ d log(

e npub
d

) ≤ O
(
d log(

d log(1/α) + log(1/β)

dα
)
)

= O

(
d

(
log(1/α) + log

(
log(1/α) +

log(1/β)

d

)))
= O

(
d log(1/α) + d

(
log

(
log(1/β)

d

))+
)
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where (x)+ , max(0, x).
Hence,

npriv = O

((
d log(1/α) + d

(
log

(
log(1/β)

d

))+

+ log(1/β)

)
max

(
1

α2
,

1

ε α

))

= O

(
(d log (1/α) + log (1/β)) max

(
1

α2
,

1

ε α

))
This yields the bound on npriv as in the theorem statement. Now, by invoking Lemma 3.3, it

follows that for the setting of npub as in the theorem statement, w.p. ≥ 1−β/2 over the randomness

in Tpub, we have dis
(
ĥTpub

, h∗; DX
)
≤ α/2. Hence, by the triangle inequality, err

(
ĥTpub

; D
)
−

err (h∗; D) ≤ dis
(
ĥTpub

, h∗; DX
)
≤ α/2. This completes the proof of the theorem.

4 Lower Bound
In this section we establish that the upper bound on the public sample complexity which was derived
in the previous section is nearly tight.

Theorem 4.1 (Lower bound for classes of infinite Littlestone dimension). LetH be any class with an
infinite Littlestone dimension (e.g., the class of thresholds over R). Then, any semi-private learner
forH must have public sample of size npub = Ω(1/α), where α is the excess error.

In the case of pure differentially privacy we get a stronger statement which manifests a dichotomy
that applies for every class:

Theorem 4.2 (Pure private vs. pure semi-private learners). Every class H must satisfy exactly one
of the following:

1. H is learnable by a pure private learner.

2. Any pure semi-private learner for H must have public sample of size npub = Ω(1/α), where
α is the excess error

Proof overview. The crux of the argument is a public-data-reduction lemma (Lemma 4.4), which
shows how one can reduce the number of public examples at the price of a proportional increase in
the excess error. This lemma implies, for example, that if H can be learned up to an excess error
of α with less than 1

1000α public examples then it can also be privately learned without any public
examples and excess error of at most < 1

10 . Stating contra-positively, if H can not be privately
learned with excess error < 1

10 then it can not be semi-privately learned up to an excess error of α
with less than 1

1000α public examples. This yields a lower bound of Ω(1/α) on the public sample
complexity for every classH which is not privately learnable with constant excess error

One example for such a class is any class with infinite Littlestone dimension (e.g., the class of
1-dimensional thresholds over an infinite domain). This follows from the result in [ALMM18]:

Theorem 4.3 (Restatement of Corollary 2 in [ALMM18]). LetH be any class of infinite Littlestone
dimension (e.g., the class of thresholds over an infinite domain X ⊆ R). For any n ∈ N, given a
private sample of size n, there is no

(
1
16 ,

1
16 , 0.1, 1

100n2 log(n)

)
-private learner for H (even in the

realizable case).

A special case of the above result was first proven in [BNSV15], where it was shown that no
proper private learner can learn thresholds over an infinite domain. A proper learner is bound to
output a hypothesis from the given class. Our definitions in this paper for private and semi-private
learners do not make this restriction on the learner; that is, the learners in those definitions can be
non-proper, i.e., they are allowed to output a binary hypothesis that is not necessarily in the given
classH.
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Remark 1. The aforementioned reduction we use for the lower bound holds even when the public
sample is labeled. This makes the lower bound stronger since it holds even in the fully supervised
setting of semi-private learning described in Definition 2.2. We also note that this reduction holds
for both pure and approximate private/semi-private learners.

We now formally state and prove the reduction outlined above.

Lemma 4.4 (Public data reduction lemma). Let 0 < α ≤ 1/100, ε > 0, δ ≥ 0. Suppose there is
an (α, 1

18 , ε, δ)-agnostic semi-private learner for a hypothesis classH with private sample size npriv
and public sample size npub. Then, there is a

(
100npub α,

1
16 , ε, δ

)
-private learner that learns any

distribution realizable byH with input sample size d npriv

10npub
e.

Proof. LetA denote the assumed agnostic-case semi-private learner forH with input private sample
of size npriv and input public sample of size npub. Using A, we construct a realizable-case private
learner forH, which we denote by B. The description of B appears in Algorithm 2.

Algorithm 2 Description of the private learner B:

Input: Private sample S̃ = (z̃1, . . . , z̃ñ) of size ñ = dnpriv/(10 · npub)e.
1: Pick a fixed (dummy) distribution D0 over Z = X ×{0, 1} where the label y ∈ {0, 1} is drawn

uniformly at random from {0, 1} independently from x ∈ X .
2: Set p = 1/(100 · npub).
3: Using S̃ and D0, construct samples Spriv, Spub using procedures PrivSamp(S̃,D0, p, npriv) and

PubSamp(S̃,D0, npub) given by Algorithms 3 and 4 below.
4: Return h̃ = A(Spriv, Spub).

Algorithm 3 Private Sample Generator PrivSamp:

Input: Sample S̃ = (z̃1, . . . , z̃ñ), Distribution D0, parameter p, sample size npriv.
1: i := 1
2: while S̃ 6= ∅ and i ≤ npriv: do
3: Sample bi ∼ Ber(p) (independently for each i), where Ber(p) is Bernoulli distribution with

mean p.
4: if bi = 1: then
5: Set zprvi to be the next element in S̃, i.e., zprvi = z̃ji , where ji =

∑i
k=1 bk.

6: Remove this element from S̃: S̃ ← S̃ \ z̃ji .
7: else
8: Set zprvi = z0

i ,where z0
i is a fresh independent example from the “dummy” distributionD0.

9: i← i+ 1
10: return Spriv = (zprv1 , . . . , zprvnpriv

).

Algorithm 4 Public Sample Generator PubSamp:

Input: Sample S̃ = (z̃1, . . . , z̃ñ), Distribution D0, sample size npub.
1: for i = 1, . . . , npub : do
2: Set zpubi = z0

i where z0
i is a fresh independent example from D0.

3: return Spub = (zpub1 , . . . , zpubnpub
)

The following two claims about B establish its privacy and accuracy guarantees.

Claim 4.5 (Privacy guarantee of B). B is (ε, δ)-differentially private

This follows directly from the fact that for any realization of Spub,A(·, Spub) is (ε, δ)-differentially
private, the fact that Spub does not contain any points from S̃, and the fact that each point in S̃ appears
at most once in Spriv.

Thus, it remains to show that

9



Claim 4.6 (Accuracy guarantee of B). Let D be any distribution over Z that is realizable by H.
Suppose S̃ ∼ Dñ. Then, except with probability at most 1/16 (over the choice of S̃ and internal
randomness in B), the output hypothesis h̃ satisfies: err(h̃; D) ≤ 100npub α.

Let D(p) denote the mixture distribution p · D + (1 − p) · D0 (recall the definition of p from
Algorithm 2). To prove Claim 4.6, we first show that both Spriv and Spub can be viewed as being
sampled from D(p) with almost no impact on the analysis. Then, using the fact thatA learnsH with
respect to D(p), the claim will follow.

First, note that since ñ = 10 ·p ·npriv, then by Chernoff’s bound, except with probability < 0.01,
Algorithm 3 exits the WHILE loop with i = npriv. Thus, except with probability < 0.01, we have

|Spriv| = npriv, hence, Spriv ∼ D
npriv

(p) . (2)

As for Spub, note that Spub = (z0
1 , . . . , z

0
npub

) ∼ Dnpub

0 , and therefore we can not use the same
argument we used with Spriv. Instead, we will show thatDnpub

0 is close in total variation toDnpub

(p) . Let

Ŝpub = (ẑ1, . . . , ẑnpub
) be i.i.d. sequence generated as follows: for each i ∈ [npub], ẑi = bi vi + (1−

bi) z
0
i , where (b1, . . . , bnpub

) ∼ (Ber(p))npub , and (v1, . . . , vn) ∼ Dnpub . It is clear that Ŝpub ∼ D
npub

(p) .
Moreover, observe that

P
[
Ŝpub = Spub

]
≥ P [bi = 0 ∀ i ∈ [npub]] =

(
1− 1

100npub

)npub

≥ 0.99

This implies that the total variation between Ŝpub and Spub is at most 0.01. In particular, the proba-
bility of any event w.r.t. the distribution of Ŝpub is at most 0.01 far from the probability of the same
event w.r.t. the distribution of Spub. Hence,

P
Spriv,Spub,A

[
err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) > α

]
− P
Spriv,Ŝpub,A

[
err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) > α

]
≤ 0.01 (3)

Now, from (2) and the premise that A is agnostic semi-private learner, we have

P
Spriv,Ŝpub,A

[
err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) > α

]
≤ 1

17

Hence, using (3), we conclude that except with probability < 1/16,

err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) ≤ α. (4)

Note that for any hypothesis h,

err(h; D(p)) = p · err(h; D) + (1− p) · err(h;D0) = p · err(h; D) +
1

2
(1− p),

where the last equality follows from the fact that the labels generated by D0 are completely noisy
(uniformly random labels). Hence, we have arg min

h∈H
err(h;D(p)) = arg min

h∈H
err(h;D). That is,

the optimal hypothesis with respect to the realizable distribution D is also optimal with respect to
the mixture distribution D(p). Let h∗ ∈ H denote such hypothesis. Note that err(h∗;D) = 0 and
err(h∗;D(p)) = 1

2 (1 − p). These observations together with (4) imply that except with probability
< 1/16, we have

α ≥ p · err (A(Spriv, Spub); D)

Hence, err
(
B(S̃);D

)
= err (A(Spriv, Spub); D) ≤ 100 · npub · α. This completes the proof.

With Lemma 4.4, we are now ready to prove the main results for this section:
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Proof of Theorem 4.1

Proof. SupposeA is a semi-private learner forH with sample complexities npriv, npub. In particular,
given npriv(α, 1

18 ), npub(α,
1
18 ) private and public examples, A is (α, 1

18 , 0.1, 1
100n2

priv log(npriv)
)-

semi-private learner for H. Hence, by Lemma 4.4, there is (100npubα,
1
16 , 0.1, 1

100n2
priv log(npriv)

)-

private learner forH. Thus, Theorem 4.3 implies that 100npubα >
1
16 and hence that npub > 1

1600α
as required.

Proof of Theorem 4.2

Proof. First, if H is learnable by a pure private learner, then trivially the second condition cannot
hold since H can be learned without any public examples. Now, suppose that the first item does not
hold. Note that by Lemma 2.5, this implies that there is no pure private learner for H with respect
to realizable distributions. By Lemma 2.6, this in turn implies that there is no

(
1
16 ,

1
16 , 0.1

)
-pure

private learner forH with respect to realizable distributions. Now, suppose A is a pure semi-private
learner A for H. Then, this implies that for any α > 0, A is an

(
α, 1

18 , 0.1
)
-pure semi-private

learner for H with sample complexities npriv(α, 1
18 ), npub(α,

1
18 ). Hence, by Lemma 4.4, there is a(

100npub α,
1
16 , 0.1

)
-pure private learner for H w.r.t. realizable distributions. This together with

the earlier conclusion implies that 100npub α >
1
16 , and therefore that npub > 1

1600α , which shows
that the condition in the second item holds.
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