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A Proofs

Lemma A.1. KerBS has the ability to learn the multi-sense property. If the real distribution of
context vectors is composed of several disconnected parts, KerBS components will learn to represent
as many as these parts.

Proof. We only prove the simplest situation under traditional inner product kernel. We assume
that the real context vectors of the ¢-th word are composed of two disconnected parts and it is also
allocated with two KerBS senses. We also assume that part 1 has already been represented by sense
(i,1),1.e., P(s = (i, 1)|y = i) — 1 for hy in part 1. Then for the second newly allocated sense (i, 2),
we find
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where h and hq are context vectors in part 1 and 2, respectively. R; = > exp(h; - wf) for all senses

except (i,1) and (i, 2). As part 1 has already be well represented by sense (i, 1), exp(hy - w}) should
be much larger than exp(hy - w?).
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As aresult part 1’s attraction (line to w? is much smaller than part 2 (line , and w? will move
towards part 2.
O

Lemma A.2. KerBS has the ability to learn model variances. For distributions with larger variances,
KerBS learns larger 6.

Proof. We will only give a heuristic proof for the situation where 6 is a small positive number. The
proof is also done under single-sense condition. If § is in other intervals, the proof will be more
complex, but the ideas are the same.

From the definition of L,
L= log(P(y: = f:;0)), 5)
t
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where ), is the the expected output for 3;, and we temporarily hide other parameters.
We can derive the partial derivative of £ with respect to 6;:
oL . 3]C9(ht,wi) . 8’C9(ht,wi)
90, > (1—P(yt=Z))T— > P(yt:z)T. (6)

t,ge=1i t,ge Al

When 6 is small, we can approximate a by the following equation:
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where cos(hy, w;) is abbreviated as cos;.

Because cos(h, w;) is usually small for §; # ¢ we can ignore the second part of Eq. @ So the
optimal value for 6 is approximately a solution to Eq. (I0).
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Then,
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Hence, when cos; gets smaller, 6; tends to increase, since a‘zf: ;t % > 0 when cos; > 0 and cos;
A k2

is usually positive when ¢, = ¢. So when distribution variance increases, cos; tends to decrease,
because context vectors are farther from the mean vector. As a result, 8; will increase. ]

B Experiment Details

Scoring Standard for Human Evaluation The volunteers are asked to score responses generated
by all models according to the following standard:

e Score 0 : response which is neither fluent nor relative to the input question.

e Score 1 : response which is either fluent or relative to the input question, but not both.

e Score 2 : response which is both fluent and relative to the input question.
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