
A Expert Demonstrations

To collect demonstrations, we first train an expert with reinforcement learning. We use DQN [35] for
MountainCar, TRPO [45] for Hopper, and PPO [46] for the Atari environments (Pong, UpNDown,
Enduro). This expert policy is executed in the environment to collect demonstrations.

B Necessity of Correct Causal Model

Faithfulness: A causal model is said to be faithful when all conditional independence relationships
in the distribution are represented in the graph.

We pick up the notation used in Sec 3.1, but for notational simplicity, we drop the time superscript
for X , A, and Z when we are not reasoning about multiple time-steps.
Proposition 1. Let the expert’s functional causal model be (G∗, θ∗G∗), with causal graph G∗ ∈ G
as in Figure 2 and function parameters θ∗G∗ . We assume some faithful learner (Ĝ, θĜ), Ĝ ∈ G that
agrees on the interventional query:

∀X,A : pG∗,θ∗
G∗

(A|do(X)) = pĜ,θĜ
(A|do(X))

Then it must be that G∗ = Ĝ.2

Proof. For graph G, define the index set of state variables that are independent of the action in the
mutilated graph GX̄ :

IG = {i|Xi ⊥⊥
GX̄

A}

From the assumption of matching interventional queries and the assumption of faithfulness, it follows
that: IG∗ = IĜ. From the graph, we observe that IG = {i|(Xi → A) 6∈ G} and thus G∗ = Ĝ.

C Passive Causal Discovery, Faithfulness and Determinism

I(Xt
i ;A

t) I(Xt
i ;A

t|Zt)

Xt
0 (cause) 0.377 0.013

Xt
1 (cause) 0.707 0.019

Xt
2 (nuisance) 0.654 0.027

Table 3: Mutual information in bits of the CON-
FOUNDED MountainCar setup.

In many learning scenarios, much information
about the causal model can already be inferred
passively from the data. This is the problem
of causal discovery. Ideally, it would allow us
to perform statistical analysis on the random
variables in Fig 2 in the demonstration data to
determine whether variable Xt

i is a cause of the
next expert action At or a nuisance variable.

Causal discovery algorithms, such as the PC
algorithm [52] test a series of conditional independence relationships in the observed data and
construct the set of possible causal graphs whose conditional independence relationships match the
data. It does so by assuming faithfulness, meaning the joint probability of random variables contains
no more conditional independence relationships than the causal graph. In the particular case of the
causal model in Fig 2, it is easy to see that Xt

i is a cause of At, and thus that the arrow Xt
i → At

exists, if and only if Xt
i 6⊥⊥ At|Zt, meaning that Xt

i provides extra information about At if Zt is
already known.

We test this procedure empirically by evaluating the mutual information I(Xt
i ;A

t|Zt) for the CON-
FOUNDED MountainCar benchmark, using the estimator from Gao et al. [12]. The results in Table 3
show that all state variables are correlated with the expert’s action, but that all become mostly
independent given the confounder Zt, implying none are causes.

Passive causal discovery failed because the critical faithfulness assumption is violated in the Moun-
tainCar case. Whenever a state variable Xt

i is a deterministic function of the past Zt, so that
Xt
i ⊥⊥ At|Zt always holds and a passive discovery algorithm concludes no arrow Xt

i → At exists.
Such a deterministic transition function for at least a part of the state is very common in realistic
imitation learning scenarios, making passive causal discovery inapplicable. Active interventions must
thus be used to determine the causal model.

2We drop time t from the superscript when discussing states and actions from the same time.
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D Variational Causal Discovery

Figure 10: Training architecture for variational inference-based causal discovery as described in Appendix D.
The policy network fφ represents a mixture of policies, one corresponding to each value of the binary causal
graph structure variable G. This variable in turn is sampled from the distribution qψ(G|u) produced by an
inference network from an input latent U . Further, a network bη regresses back to the latent U to enforce that G
should not be independent of U .

The problem of discovering causal graphs from passively observed data is called causal discovery.
The PC algorithm [52] is arguably the most widely used and easily implementable causal discovery
algorithm. In the case of Fig 2, the PC algorithm would imply the absence of the arrow Xt

i → At,
if the conditional independence relation At ⊥⊥ Xt

i |Zt holds, which can be tested by measuring the
mutual information. However, the PC algorithm relies on faithfulness of the causal graph. That
is, conditional independence must imply d-separation in the graph. However, faithfulness is easily
violated in a Markov decision process. If for some i, Xt

i is a cause of the expert’s action At (the
arrow Xt

i → At should exist), but Xt
i is the result of a deterministic function of Zt, then always

At ⊥⊥ Xt
i |Zt and the PC algorithm would wrongly conclude that the arrow Xt

i → At is absent.3

We take a Bayesian approach to causal discovery [17] from demonstrations. Recall from Sec 3 that
the expert’s actions A are based on an unknown subset of the state variables {Xi}ni=1. Each Xi

may either be a cause or not, so there are 2n possible graphs. We now define a variational inference
approach to infer a distribution over functional causal models (graphs and associated parameters)
such that its modes are consistent with the demonstration data D.

While Bayesian inference is intractable, variational inference can be used to find a distribution that is
close to the true posterior distribution over models. We parameterize the structure G of the causal
graph as a vector of n correlated Bernoulli random variables Gk, each indicating the presence of
a causal arrow from Xk to A. We assume a variational family with a point estimate θG of the
parameters corresponding to graph G and use a latent variable model to describe the correlated
Bernoulli variables, with a standard normal distribution q(U) over latent random variable U :

qψ(G, θ) = qψ(G)[θ = θG]

=

∫
q(U)

n∏
k=1

qψ(Gk|U)[θ = θG]dU

We now optimise the evidence lower bound (ELBO):
argmin

q
DKL(qψ(G, θ)|p(G, θ|D)) =

argmax
ψ,θ

∑
i

EU∼q(U),Gk∼qψ(Gk|U) (2)

[log π(Ai|Xi, G, θG) + log p(G)] +Hq(G) (3)

Likelihood π(Ai|Xi, G, θG) is the likelihood of the observations X under the FCM (G, θG). It is
modelled by a single neural network fφ([X �G,G]), where � is the element-wise multiplication,
[·, ·] denotes concatenation and φ are neural network parameters.

3More generally, faithfulness places strong constraints on the expert graph. For example, a visual state may
contain unchanging elements such as the car frame in Fig 1, which are by definition deterministic functions of
the past. As another example, goal-conditioned tasks must include a constant goal in the state variable at each
time, which once again has deterministic transitions, violating faithfulness.
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Entropy The entropy term of the KL divergence, Hq, acts as a regularizer to prevent the graph
distribution from collapsing to the maximum a-posteriori estimate. It is intractable to directly
maximize entropy, but a tractable variational lower bound can be formulated. Using the product rule
of entropies, we may write:

Hq(G) = Hq(G|U)−Hq(U |G) +Hq(U)

= Hq(G|U) + Iq(U ;G)

In this expression, Hq(G|U) promotes diversity of graphs, while Iq(U ;G) encourages correlation
among {Gk}. Iq(U ;G) can be bounded below using the same variational bound used in InfoGAN [7],
with a variational distribution bη: Iq(U ;G) ≥ EU,G∼qψ log bη(U |G). Thus, during optimization, in
lieu of entropy, we maximize the following lower bound:

Hq(G) ≥ EU,G∼q

[
−
∑
k

log qψ(Gk|U) + log bη(U |G)

]

Prior The prior p(G) over graph structures is set to prefer graphs with fewer causes for action
A—it is thus a sparsity prior:

p(G) ∝ exp
∑
k

[Gk = 1]

Optimization Note that G is a discrete variable, so we cannot use the reparameterization trick [22].
Instead, we use the Gumbel Softmax trick [21, 32] to compute gradients for training qψ(Gk|U). Note
that this does not affect fφ, which can be trained with standard backpropagation.

The loss of Eq 3 is easily interpretable independent of the formalism of variational Bayesian causal
discovery. A mixture of predictors fφ is jointly trained, each paying attention to diverse sparse subsets
(identified by G) of the inputs. This is related to variational dropout [23]. Once this model is trained,
qψ(G) represents the hypothesis distribution over graphs, and πG(x) = fφ([x�G,G]) represents
the imitation policy corresponding to a graph G. Fig 10 shows the architecture.

Usage for Targeted Interventions In our experiments, we also evaluate the usefulness of causal
discovery process to set a prior for the targeted interventions described in Sec 4.2. In Algorithm 1
and 2, we implement this by initializing p(G) to the discovered distribution (rather than uniform).

E Additional Results: Diagnosing Causal Misidentification

In Fig 11 we show the causal misidentification in several environments. We observe that while
training and validation losses for behavior cloning are frequently near-zero for both the original
and confounded policy, the confounded policy consistently yields significantly lower reward when
deployed in the environment. This confirms the causal misidentification problem.

F DAgger with many more interventions

In the main paper, we showed that DAgger performed poorly with equl number of expert interventions
as our method. How many more samples does it need to do well?

The results in Fig 12 show that DAgger requires hundreds of samples before reaching rewards
comparable to the rewards achieved by a non-DAgger imitator trained on the original state.

G GAIL Training Curves

In Figure 13 we show the average training curves of GAIL on the original and confounded state.
Error bars are 2 standard errors of the mean. The confounded and original training curve do not differ
significantly, indicating that causal confusion is not an issue with GAIL. However, training requires
many interactions with the environment.
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Figure 11: An expanded version of Fig 4 in the main paper, demonstrating diagnosis of the causal
misidentification problem in three settings. Here, the final reward, shown in Fig 4 is shown in the third
column. Additionally, we also show the behavior cloning training loss (first column) and validation
loss (second column) on trajectories generated by the expert. The x-axis for all plots is the number of
training examples used to train the behavior cloning policy.

H Intervention Posterior Inference as Reinforcement Learning

Given a method of evaluating the likelihood p(O|G) of a certain graph G to be optimal and a prior
p0(G), we wish to infer the posterior p(G|O). The number of graphs is finite, so we can compute this
posterior exactly. However, there may be very many graphs, so that impractically many likelihood
evaluations are necessary. Only noisy samples from the likelihood can be obtained, as in the case of
intervention through policy execution, where the reward is noisy, this problem is exacerbated.

If on the other hand, a certain structure on the policy is assumed, the sample efficiently can be
drastically improved, even though policy can no longer be exactly inferred. This can be done in
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Figure 12: DAgger results trained on the confounded state.
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Figure 13: Rewards during GAIL training.

the framework of Variational Inference. For a certain variational family, we wish to find, for some
temperature τ :

π(G) = argmin
π(G)

DKL(π(G)||p(O|G)) (4)

= argmin
π(G)

Eπ [log p(O|G) + log p0(G)] + τHπ(G) (5)

The variational family we assume is the family of independent distributions:

π(G) =
∏
i

πi(Gi) =
∏
i

Bernoulli(Gi|σ(wi/τ)) (6)

Eq 5 can be interpreted as a 1 step entropy-regularized MDP with reward r̃ = log p(O|G)+log p0(G)
[27]. It can be optimized through a policy gradient, but this would require many likelihood evaluations.
More efficient is to use a value based method. The independence assumption translates in a linear
Q function: Q(G) = 〈w,G〉 + b, which can be simply learned by linear regression on off-policy
pairs (G, r̃). In Soft Q-Learning [16] it is shown that the policy that maximizes Eq 5 is π(G) ∝
expQ(G)/τ , which can be shown to coincide in our case with Eq 6:

π(G) =
exp(〈w,G〉+ b)/τ∑
G′ exp(〈w,G′〉+ b)/τ

∝
∏
i

exp(wiGi/τ)

=⇒ π(G) =
∏
i

exp(wiGi/τ)

1 + expwi/τ
=

∏
i

Bernoulli(Gi|σ(wi/τ))
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