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Abstract

We construct a Wasserstein gradient flow of the maximum mean discrepancy
(MMD) and study its convergence properties. The MMD is an integral probability
metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a
metric on probability measures for a sufficiently rich RKHS. We obtain conditions
for convergence of the gradient flow towards a global optimum, that can be related
to particle transport when optimizing neural networks. We also propose a way to
regularize this MMD flow, based on an injection of noise in the gradient. This
algorithmic fix comes with theoretical and empirical evidence. The practical
implementation of the flow is straightforward, since both the MMD and its gradient
have simple closed-form expressions, which can be easily estimated with samples.

1 Introduction

We address the problem of defining a gradient flow on the space of probability distributions endowed
with the Wasserstein metric, which transports probability mass from a starting distribtion ν to a target
distribution µ. Our flow is defined on the maximum mean discrepancy (MMD) [23], an integral
probability metric [42] which uses the unit ball in a characteristic RKHS [55] as its witness function
class. Specifically, we choose the function in the witness class that has the largest difference in
expectation under ν and µ: this difference constitutes the MMD. The idea of descending a gradient
flow over the space of distributions can be traced back to the seminal work of [29], who revealed
that the Fokker-Planck equation is a gradient flow of the Kullback-Leibler divergence. Its time-
discretization leads to the celebrated Langevin Monte Carlo algorithm, which comes with strong
convergence guarantees (see [18, 19]), but requires the knowledge of an analytical form of the target
µ. A more recent gradient flow approach, Stein Variational Gradient Descent (SVGD) [38], also
leverages this analytical µ.

The study of particle flows defined on the MMD relates to two important topics in modern machine
learning. The first is in training Implicit Generative Models, notably generative adversarial networks
[22]. Integral probability metrics have been used extensively as critic functions in this setting: these
include the Wasserstein distance [3, 21, 26] and maximum mean discrepancy [2, 5, 7, 20, 34, 36]. In
[41, Section 3.3], a connection between IGMs and particle transport is proposed, where it is shown
that gradient flow on the witness function of an integral probability metric takes a similar form to the
generator update in a GAN. The critic IPM in this case is the Kernel Sobolev Discrepancy (KSD),
which has an additional gradient norm constraint on the witness function compared with the MMD. It
is intended as an approximation to the negative Sobolev distance from the optimal transport literature
[44, 45, 58]. There remain certain differences between gradient flow and GAN training, however.
First, and most obviously, gradient flow can be approximated by representing ν as a set of particles,
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whereas in a GAN ν is the output of a generator network. The requirement that this generator network
be a smooth function of its parameters causes a departure from pure particle flow. Second, in modern
implementations [2, 7, 34], the kernel used in computing the critic witness function for an MMD
GAN critic is parametrized by a deep network, and an alternating optimization between the critic
parameters and the generator parameters is performed. Despite these differences, we anticipate that
the theoretical study of MMD flow convergence will provide helpful insights into conditions for GAN
convergence, and ultimately, improvements to GAN training algorithms.

Regarding the second topic, we note that the properties of gradient descent for large neural networks
have been modeled using the convergence towards a global optimum of particle transport in the
population limit, when the number of particles goes to infinity [15, 40, 48, 53]. In particular, [47]
show that gradient descent on the parameters of a neural network can also be seen as a particle
transport problem, which has as its population limit a gradient flow of a functional defined for
probability distributions over the parameters of the network. This functional is in general non-convex,
which makes the convergence analysis challenging. The particular structure of the MMD allows us to
relate its gradient flow to neural network optimization in a well-specified regression setting similar to
[15, 47] (we make this connection explicit in Appendix F).

Our main contribution in this work is to establish conditions for convergence of MMD gradient flow
to its global optimum. We give detailed descriptions of MMD flow for both its continuous-time and
discrete instantiations in Section 2. In particular, the MMD flow may employ a sample approximation
for the target µ: unlike e.g. Langevin Monte Carlo or SVGD, it does not require µ in analytical form.
Global convergence is especially challenging to prove: while for functionals that are displacement
convex, the gradient flow can be shown to converge towards a global optimum [1], the case of
non-convex functionals, like the MMD, requires different tools. A modified gradient flow is proposed
in [47] that uses particle birth and death to reach global optimality. Global optimality may also be
achieved simply by teleporting particles from ν to µ, as occurs for the Sobolev Discrepancy flow
absent a kernel regulariser [41, Theorem 4, Appendix D]. Note, however, that the regularised Kernel
Sobolev Discrepancy flow does not rely on teleportation.

Our approach takes inspiration in particular from [9], where it is shown that although the 1-Wasserstein
distance is non-convex, it can be optimized up to some barrier that depends on the diameter of the
domain of the target distribution. Similarly to [9], we provide in Section 3 a barrier on the gradient
flow of the MMD, although the tightness of this barrier in terms of the target diameter remains to be
established. We obtain a further condition on the evolution of the flow to ensure global optimality,
and give rates of convergence in that case, however the condition is a strong one: it implies that the
negative Sobolev distance between the target and the current particles remains bounded at all times.

We thus propose a way to regularize the MMD flow, based on a noise injection (Section 4) in
the gradient, with more tractable theoretical conditions for convergence. Encouragingly, the noise
injection is shown in practice to ensure convergence in a simple illustrative case where the original
MMD flow fails. Finally, while our emphasis has been on establishing conditions for convergence,
we note that MMD gradient flow has a simple O(MN +N2) implementation for N ν-samples and
M µ-samples, and requires only evaluating the gradient of the kernel k on the given samples.

2 Gradient flow of the MMD in W2

2.1 Construction of the gradient flow

In this section we introduce the gradient flow of the Maximum Mean Discrepancy (MMD) and
highlight some of its properties. We start by briefly reviewing the MMD introduced in [23]. We define
X ⊂ Rd as the closure of a convex open set, and P2(X ) as the set of probability distributions on X
with finite second moment, equipped with the 2-Wassertein metric denoted W2. For any ν ∈ P2(X ),
L2(ν) is the set of square integrable functions w.r.t. ν. The reader may find a relevant mathematical
background in Appendix A.

Maximum Mean Discrepancy. Given a characteristic kernel k : X × X → R, we denote by H
its corresponding RKHS (see [54]). The space H is a Hilbert space with inner product 〈., .〉H and
norm ‖.‖H. We will rely on specific assumptions on the kernel which are given in Appendix B. In
particular, Assumption (A) states that the gradient of the kernel, ∇k, is Lipschitz with constant L.
For such kernels, it is possible to define the Maximum Mean Discrepancy as a distance on P2(X ).
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The MMD can be written as the RKHS norm of the unnormalised witness function fµ,ν between µ
and ν, which is the difference between the mean embeddings of ν and µ,

MMD(µ, ν) = ‖fµ,ν‖H, fν,µ(z) =

∫
k(x, z) dν(x)−

∫
k(x, z) dµ(x) ∀z ∈ X (1)

Throughout the paper, µ will be fixed and ν can vary, hence we will only consider the dependence in
ν and denote by F(ν) = 1

2MMD2(µ, ν). A direct computation [41, Appendix B] shows that for
any finite measure χ such that ν + εχ ∈ P2(X ), we have

lim
ε→0

ε−1(F(ν + εχ)−F(ν)) =

∫
fµ,ν(x)dχ(x). (2)

This means that fµ,ν is the differential of F(ν) . Interestingly, F(ν) admits a free-energy expression:

F(ν) =

∫
V (x) dν(x) +

1

2

∫
W (x, y) dν(x) dν(y) + C. (3)

where V is a confinement potential, W an interaction potential and C a constant defined by:

V (x) = −
∫
k(x, x′) dµ(x′), W (x, x′) = k(x, x′), C =

1

2

∫
k(x, x′) dµ(x) dµ(x′) (4)

Formulation (3) and the simple expression of the differential in (2) will be key to construct a gradient
flow of F(ν), to transport particles. In (4), V reflects the potential generated by µ and acting on each
particle, while W reflects the potential arising from the interactions between those particles.

Gradient flow of the MMD. We consider now the problem of transporting mass from an initial
distribution ν0 to a target distribution µ, by finding a continuous path νt starting from ν0 that converges
to µ while decreasing F(νt). Such a path should be physically plausible, in that teleportation
phenomena are not allowed. For instance, the path νt = (1 − e−t)µ + e−tν0 would constantly
teleport mass between µ and ν0 although it decreases F since F(νt) = e−2tF(ν0) [41, Section 3.1,
Case 1]. The physicality of the path is understood in terms of classical statistical physics: given
an initial configuration ν0 of N particles, these can move towards a new configuration µ through
successive small transformations, without jumping from one location to another.

Optimal transport theory provides a way to construct such a continuous path by means of the
continuity equation. Given a vector field Vt on X and an initial condition ν0, the continuity equation
is a partial differential equation which defines a path νt evolving under the action of the vector field
Vt, and reads ∂tνt = −div(νtVt) for all t ≥ 0. The reader can find more detailed discussions in
Appendix A.2 or [49]. Following [1], a natural choice is to choose Vt as the negative gradient of the
differential of F(νt) at νt, since it corresponds to a gradient flow of F associated with the W2 metric
(see Appendix A.3). By (2), we know that the differential of F(νt) at νt is given by fµ,νt , hence
Vt(x) = −∇fµ,νt(x).1 The gradient flow of F is then defined by the solution (νt)t≥0 of

∂tνt = div(νt∇fµ,νt). (5)

Equation (5) is non-linear in that the vector field depends itself on νt. This type of equation is
associated in the probability theory literature to the so-called McKean-Vlasov process [31, 39],

dXt = −∇fµ,νt(Xt)dt X0 ∼ ν0. (6)

In fact, (6) defines a process (Xt)t≥0 whose distribution (νt)t≥0 satisfies (5), as shown in Proposi-
tion 1. (Xt)t≥0 can be interpreted as the trajectory of a single particle, starting from an initial random
position X0 drawn from ν0. The trajectory is driven by the velocity field −∇fµ,νt , and is affected
by other particles. These interactions are captured by the velocity field through the dependence on
the current distribution νt of all particles. Existence and uniqueness of a solution to (5) and (6) are
guaranteed in the next proposition, whose proof is given Appendix C.1.
Proposition 1. Let ν0 ∈ P2(X ). Then, under Assumption (A), there exists a unique process (Xt)t≥0

satisfying the McKean-Vlasov equation in (6) such that X0 ∼ ν0. Moreover, the distribution νt of Xt

is the unique solution of (5) starting from ν0, and defines a gradient flow of F .

1Also, Vt = ∇V +∇W ? νt (see Appendix A.3) where ? denotes the classical convolution.

3



Besides existence and uniqueness of the gradient flow of F , one expects F to decrease along the path
νt and ideally to converge towards 0. The first property, stated in the next proposition, is rather easy
to get and is the object of Proposition 2, similar to the result for KSD flow in [41, Section 3.1].
Proposition 2. Under Assumption (A), F(νt) is decreasing in time and satisfies:

dF(νt)

dt
= −

∫
‖∇fµ,νt(x)‖2 dνt(x). (7)

This property results from (5) and the energy identity in [1, Theorem 11.3.2] and is proved in
Appendix C.1. From (7), F can be seen as a Lyapunov functional for the dynamics defined by
(5), since it is decreasing in time. Hence, the continuous-time gradient flow introduced in (5)
allows to formally consider the notion of gradient descent on P2(X ) with F as a cost function. A
time-discretized version of the flow naturally follows, and is provided in the next section.

2.2 Euler scheme

We consider here a forward-Euler scheme of (5). For any T : X → X a measurable map, and
ν ∈ P2(X ), we denote the pushforward measure by T#ν (see Appendix A.2). Starting from
ν0 ∈ P2(X ) and using a step-size γ > 0, a sequence νn ∈ P2(X ) is given by iteratively applying

νn+1 = (I − γ∇fµ,νn)#νn. (8)

For all n ≥ 0, equation (8) is the distribution of the process defined by

Xn+1 = Xn − γ∇fµ,νn(Xn) X0 ∼ ν0. (9)

The asymptotic behavior of (8) as n → ∞ will be the object of Section 3. For now, we provide a
guarantee that the sequence (νn)n∈N approaches (νt)t≥0 as the step-size γ → 0.
Proposition 3. Let n ≥ 0. Consider νn defined in (8), and the interpolation path ργt defined as:
ργt = (I − (t− nγ)∇fµ,νn)#νn, ∀t ∈ [nγ, (n+ 1)γ). Then, under Assumption (A), ∀ T > 0,

W2(ργt , νt) ≤ γC(T ) ∀t ∈ [0, T ] (10)

where C(T ) is a constant that depends only on T .

A proof of Proposition 3 is provided in Appendix C.2 and relies on standard techniques to control
the discretization error of a forward-Euler scheme. Proposition 3 means that νn can be linearly
interpolated giving rise to a path ργt which gets arbitrarily close to νt on bounded intervals. Note that
as T →∞ the bound C(T ) it is expected to blow up. However, this result is enough to show that (8)
is indeed a discrete-time flow of F . In fact, provided that γ is small enough, F(νn) is a decreasing
sequence, as shown in Proposition 4.
Proposition 4. Under Assumption (A), and for γ ≤ 2/3L, the sequence F(νn) is decreasing, and

F(νn+1)−F(νn) ≤ −γ(1− 3γ

2
L)

∫
‖∇fµ,νn(x)‖2 dνn(x), ∀n ≥ 0.

Proposition 4, whose proof is given in Appendix C.2, is a discrete analog of Proposition 2. In fact,
(8) is intractable in general as it requires the knowledge of ∇fµ,νn (and thus of νn) exactly at each
iteration n. Nevertheless, we present in Section 4.2 a practical algorithm using a finite number of
samples which is provably convergent towards (8) as the sample-size increases. We thus begin by
studying the convergence properties of the time discretized MMD flow (8) in the next section.

3 Convergence properties of the MMD flow

We are interested in analyzing the asymptotic properties of the gradient flow of F . Although we know
from Propositions 2 and 4 that F decreases in time, it can very well converge to local minima. One
way to see this is by looking at the equilibrium condition for (7). As a non-negative and decreasing
function, t 7→ F(νt) is guaranteed to converge towards a finite limit l ≥ 0, which implies in turn that
the r.h.s. of (7) converges to 0. If νt happens to converge towards some distribution ν∗, it is possible
to show that the equilibrium condition (11) must hold [40, Prop. 2] ,∫

‖∇fµ,ν∗(x)‖2 dν∗(x) = 0. (11)
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Condition (11) does not necessarily imply that ν∗ is a global optimum unless when the loss function
has a particular structure [14]. For instance, this would hold if the kernel is linear in at least one of its
dimensions. However, when a characteristic kernel is required (to ensure the MMD is a distance),
such a structure can’t be exploited. Similarly, the claim that KSD flow converges globally, [41, Prop.
3, Appendix B.1], requires an assumption [41, Assump. A] that excludes local minima which are
not global (see Appendix D.1; recall KSD is related to MMD). Global convergence of the flow is
harder to obtain, and will be the topic of this section. The main challenge is the lack of convexity of
F w.r.t. the Wassertein metric. We show that F is merely Λ-convex, and that standard optimization
techniques only provide a loose bound on its asymptotic value. We next exploit a Lojasiewicz type
inequality to prove convergence to the global optimum provided that a particular quantity remains
bounded at all times.

3.1 Optimization in a (W2) non-convex setting

The displacement convexity of a functional F is an important criterion in characterizing the con-
vergence of its Wasserstein gradient flow. Displacement convexity states that t 7→ F(ρt) is a
convex function whenever (ρt)t∈[0,1] is a path of minimal length between two distributions µ and ν
(see Definition 2). Displacement convexity should not be confused with mixture convexity, which
corresponds to the usual notion of convexity. As a matter of fact, F is mixture convex in that it
satisfies: F(tν + (1 − t)ν′) ≤ tF(ν) + (1 − t)F(ν′) for all t ∈ [0, 1] and ν, ν′ ∈ P2(X ) (see
Lemma 25). Unfortunately, F is not displacement convex. Instead, F only satisfies a weaker notion
of displacement convexity called Λ-displacement convexity, given in Definition 4 (Appendix A.4).
Proposition 5. Under Assumptions (A) to (C), F is Λ-displacement convex, and satisfies

F(ρt) ≤ (1− t)F(ν) + tF(ν′)−
∫ 1

0

Λ(ρs, vs)G(s, t) ds (12)

for all ν, ν′ ∈ P2(X ) and any displacement geodesic (ρt)t∈[0,1] from ν to ν′ with velocity vectors
(vt)t∈[0,1]. The functional Λ is defined for any pair (ρ, v) with ρ ∈ P2(X ) and ‖v‖ ∈ L2(ρ),

Λ(ρ, v) =

∥∥∥∥∫ v(x).∇xk(x, .) dρ(x)

∥∥∥∥2

H
−
√

2λdF(ρ)
1
2

∫
‖v(x)‖2 dρ(x), (13)

where (s, t) 7→ G(s, t) = s(1− t)1{s ≤ t}+ t(1− s)1{s ≥ t} and λ is defined in Assumption (C).

Proposition 5 can be obtained by computing the second time derivative of F(ρt), which is then lower-
bounded by Λ(ρt, vt) (see Appendix D.2). In (13), the map Λ is a difference of two non-negative
terms: thus

∫ 1

0
Λ(ρs, vs)G(s, t) ds can become negative, and displacement convexity does not hold

in general. [10, Theorem 6.1] provides a convergence when only Λ-displacement convexity holds
as long as either the potential or the interaction term is convex enough. In fact, as mentioned in
[10, Remark 6.4], the convexity of either term could compensate for a lack of convexity of the other.
Unfortunately, this cannot be applied for MMD since both terms involve the same kernel but with
opposite signs. Hence, even under convexity of the kernel, a concave term appears and cancels
the effect of the convex term. Moreover, the requirement that the kernel be positive semi-definite
makes it hard to construct interesting convex kernels. However, it is still possible to provide an
upper bound on the asymptotic value of F(νn) when (νn)n∈N are obtained using (8). This bound is
given in Theorem 6, and depends on a scalar K(ρn) :=

∫ 1

0
Λ(ρns , v

n
s )(1− s) ds, where (ρns )s∈[0,1]

is a constant speed displacement geodesic from νn to the optimal value µ, with velocity vectors
(vns )s∈[0,1] of constant norm.

Theorem 6. Let K̄ be the average of (K(ρj))0≤j≤n. Under Assumptions (A) to (C) and if γ ≤ 1/3L,

F(νn) ≤ W 2
2 (ν0, µ)

2γn
− K̄. (14)

Theorem 6 is obtained using techniques from optimal transport and optimization. It relies on
Proposition 5 and Proposition 4 to prove an extended variational inequality (see Proposition 16), and
concludes using a suitable Lyapunov function. A full proof is given in Appendix D.3. When K̄ is
non-negative, one recovers the usual convergence rate as O( 1

n ) for the gradient descent algorithm.
However, K̄ can be negative in general, and would therefore act as a barrier on the optimal value
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that F(νn) can achieve when n→∞. In that sense, the above result is similar to [9, Theorem 6.9].
Theorem 6 only provides a loose bound, however. In Section 3.2 we show global convergence, under
the boundedness at all times t of a specific distance between νt and µ.

3.2 A condition for global convergence

The lack of convexity of F , as shown in Section 3.1, suggests that a finer analysis of the convergence
should be performed. One strategy is to provide estimates for the dynamics in Proposition 2 using
differential inequalities which can be solved using the Gronwall’s lemma (see [43]). Such inequalities
are known in the optimization literature as Lojasiewicz inequalities (see [8]), and upper-bound F(νt)
by the absolute value of its time derivative

∫
‖∇fµ,νt(x)‖2 dνt(x). The latter is the squared weighted

Sobolev semi-norm of fµ,νt (see Appendix D.4), also written ‖fµ,νt‖Ḣ(νt)
. Thus one needs to find

a relationship between F(νt) = 1
2‖fµ,νt‖

2
H and ‖fµ,νt‖Ḣ(νt)

. For this purpose, we consider the
weighted negative Sobolev distance on P2(X ), defined by duality using ‖.‖Ḣ(ν) (see also [45]).

Definition 1. Let ν ∈ P2(x), with its corresponding weighted Sobolev semi-norm ‖.‖Ḣ(ν). The
weighted negative Sobolev distance ‖p− q‖Ḣ−1(ν) between any p and q in P2(x) is defined as

‖p− q‖Ḣ−1(ν) = sup
f∈L2(ν),‖f‖Ḣ(ν)≤1

∣∣∣∣∫ f(x) dp(x)−
∫
f(x) dq(x)

∣∣∣∣ (15)

with possibly infinite values.

Equation (59) plays a fundamental role in dynamic optimal transport. It can be seen as the minimum
kinetic energy needed to advect the mass ν to q (see [41]). It is shown in Appendix D.4 that

‖fµ,νt‖2H ≤ ‖fµ,νt‖Ḣ(νt)
‖µ− νt‖Ḣ−1(νt)

. (16)

Provided that ‖µ− νt‖Ḣ−1(νt)
remains bounded by some positive constant C at all times, (16) leads

to a functional version of Lojasiewicz inequality for F . It is then possible to use the general strategy
explained earlier to prove the convergence of the flow to a global optimum:
Proposition 7. Under Assumption (A),

(i) If ‖µ− νt‖2Ḣ−1(νt)
≤ C, for all t ≥ 0, then: F(νt) ≤ C

CF(ν0)−1+4t ,

(ii) If ‖µ− νn‖2Ḣ−1(νn)
≤ C for all n ≥ 0, then: F(νn) ≤ C

CF(ν0)−1+4γ(1− 3
2γL)n

.

Proofs of Proposition 7 (i) and (ii) are direct consequences of Propositions 2 and 4 and the bounded
energy assumption: see Appendix D.4. The fact that (59) appears in the context of Wasserstein flows
of F is not a coincidence. Indeed, (59) is a linearization of the Wasserstein distance (see [44, 45] and
Appendix D.6). Gradient flows of F defined under different metrics would involve other kinds of
distances instead of (59). For instance, [47] consider gradient flows under a hybrid metric (a mixture
between the Wasserstein distance and KL divergence), where convergence rates can then be obtained
provided that the chi-square divergence χ2(µ‖νt) remains bounded. As shown in Appendix D.6,
χ2(µ‖νt)

1
2 turns out to linearize KL(µ‖νt)

1
2 when µ and νt are close. Hence, we conjecture that

gradient flows of F under a metric d can be shown to converge when the linearization of the metric
remains bounded. This can be verified on simple examples for ‖µ − νt‖Ḣ−1(νt)

as discussed in
Appendix D.5. However, it remains hard to guarantee this condition in general. One possible approach
could be to regularize F using an estimate of (59). Indeed, [41] considers the gradient flow of a
regularized version of the negative Sobolev distance which can be written in closed form, and shows
that this decreases the MMD. Combing both losses could improve the overall convergence properties
of the MMD, albeit at additional computational cost. In the next section, we propose a different
approach to improve the convergence, and a particle-based algorithm to approximate the MMD flow
in practice.

4 A practical algorithm to descend the MMD flow

4.1 A noisy update as a regularization

We showed in Section 3.1 that F is a non-convex functional, and derived a condition in Section 3.2 to
reach the global optimum. We now address the case where such a condition does not necessarily hold,
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and provide a regularization of the gradient flow to help achieve global optimality in this scenario.
Our starting point will be the equilibrium condition in (11). If an equilibrium ν∗ that satisfies (11)
happens to have a positive density, then fµ,ν∗ would be constant everywhere. This in turn would
mean that fµ,ν∗ = 0 when the RKHS does not contain constant functions, as for a gaussian kernel
[56, Corollary 4.44]. Hence, ν∗ would be a global optimum since F(ν∗) = 0. The limit distribution
ν∗ might be singular, however, and can even be a dirac distribution [40, Theorem 6]. Although the
gradient ∇fµ,ν∗ is not identically 0 in that case, (11) only evaluates it on the support ν∗, on which
∇fµ,ν∗ = 0 holds. Hence a possible fix would be to make sure that the unnormalised witness gradient
is also evaluated at points outside of the support of ν∗. Here, we propose to regularize the flow by
injecting noise into the gradient during updates of (9),

Xn+1 = Xn − γ∇fµ,νn(Xn + βnUn), n ≥ 0, (17)

where Un is a standard gaussian variable and βn is the noise level at n. Compared to (8), the sample
here is first blurred before evaluating the gradient. Intuitively, if νn approaches a local optimum
ν∗, ∇fµ,νn would be small on the support of νn but it might be much larger outside of it, hence
evaluating ∇fµ,νn outside the support of νn can help in escaping the local minimum. The stochastic
process (17) is different from adding a diffusion term to (5). The latter case would correspond
to regularizing F using an entropic term as in [40, 52] (see also Appendix A.5 on the Langevin
diffusion) and was shown to converge to a global optimum that is in general different from the global
minmum of the un-regularized loss. Eq. (17) is also different from [12, 17], where F (and thus
its associated velocity field) is regularized by convolving the interaction potential W in (4) with a
mollifier. The optimal solution of a regularized version of the functional F will be generally different
from the non-regularized one, however, which is not desirable in our setting. Eq. (17) is more closely
related to the continuation methods [13, 24, 25] and graduated optimization [27] used for non-convex
optimization in Euclidian spaces, which inject noise into the gradient of a loss function F at each
iteration. The key difference is the dependence of fµ,νn of νn, which is inherently due to functional
optimization. We show in Proposition 8 that (17) attains the global minimum of F provided that the
level of the noise is well controlled, with the proof given in Appendix E.1.
Proposition 8. Let (νn)n∈N be defined by (17) with an initial ν0. Denote Dβn(νn) =
Ex∼νn,u∼g[‖∇fµ,νn(x + βnu)‖2] with g the density of the standard gaussian distribution. Un-
der Assumptions (A) and (D), and for a choice of βn such that

8λ2β2
nF(νn) ≤ Dβn(νn), (18)

the following inequality holds: F(νn+1)−F(νn) ≤ −γ
2

(1− 3γL)Dβn(νn), (19)

where λ and L are defined in Assumptions (A) and (D) and depend only on the choice of the kernel.
Moreover if

∑n
i=0 β

2
i →∞, then

F(νn) ≤ F(ν0)e−4λ2γ(1−3γL)
∑n
i=0 β

2
i . (20)

A particular case where
∑n
i=0 β

2
i →∞ holds is when βn decays as 1/

√
n while still satisfying (18).

In this case, convergence occurs in polynomial time. At each iteration, the level of the noise needs to
be adjusted such that the gradient is not too blurred. This ensures that each step decreases the loss
functional. However, βn does not need to decrease at each iteration: it could increase adaptively
whenever needed. For instance, when the sequence gets closer to a local optimum, it is helpful to
increase the level of the noise to probe the gradient in regions where its value is not flat. Note that for
βn = 0 in (19) , we recover a similar bound to Proposition 4.

4.2 The sample-based approximate scheme

We now provide a practical algorithm to implement the noisy updates in the previous section, which
employs a discretization in space. The update (17) involves computing expectations of the gradient
of the kernel k w.r.t the target distribution µ and the current distribution νn at each iteration n. This
suggests a simple approximate scheme, based on samples from these two distributions, where at each
iteration n, we model a system of N interacting particles (Xi

n)1≤i≤N and their empirical distribution
in order to approximate νn. More precisely, given i.i.d. samples (Xi

0)1≤i≤N and (Y m)1≤m≤M from
ν0 and µ and a step-size γ, the approximate scheme iteratively updates the i-th particle as

Xi
n+1 = Xi

n − γ∇fµ̂,ν̂n(Xi
n + βnU

i
n), (21)
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where U in are i.i.d standard gaussians and µ̂, ν̂n denote the empirical distributions of (Y m)1≤m≤M
and (Xi

n)1≤i≤N , respectively. It is worth noting that for βn = 0, (21) is equivalent to gradient
descent over the particles (Xi

n) using a sample based version of the MMD. Implementing (21) is
straightforward as it only requires to evaluate the gradient of k on the current particles and target
samples. Pseudocode is provided in Algorithm 1. The overall computational cost of the algorithm
at each iteration is O((M + N)N) with O(M + N) memory. The computational cost becomes
O(M +N) when the kernel is approximated using random features, as is the case for regression with
neural networks (Appendix F). This is in contrast to the cubic cost of the flow of the KSD [41], which
requires solving a linear system at each iteration. The cost can also be compared to the algorithm in
[52], which involves computing empirical CDF and quantile functions of random projections of the
particles.

The approximation scheme in (21) is a particle version of (17), so one would expect it to converge
towards its population version (17) as M and N goes to infinity. This is shown below.
Theorem 9. Let n ≥ 0 and T > 0. Let νn and ν̂n defined by (8) and (21) respectively. Suppose
Assumption (A) holds and that βn < B for all n, for some B > 0. Then for any T

γ ≥ n:

E [W2(ν̂n, νn)] ≤ 1

4

(
1√
N

(B + var(ν0)
1
2 )e2LT +

1√
M
var(µ)

1
2 )

)
(e4LT − 1)

Theorem 9 controls the propagation of the chaos at each iteration, and uses techniques from [30].
Notice also that these rates remain true when no noise is added to the updates, i.e. for the original
flow when B = 0. A proof is provided in Appendix E.2. The dependence in

√
M underlines the

fact that our procedure could be interesting as a sampling algorithm when one only has access to M
samples of µ (see Appendix A.5 for a more detailed discussion).

Experiments

1 102 104
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(a) Training error
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(b) Test error

10 5 10 3 10 1 101

noise level 
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(c) Sensitivity to noise
MMD
MMD + noise injection
MMD + diffusion
KSD

Figure 1: Comparison between different training methods for student-teacher ReLU networks with
gaussian output non-linearity and synthetic data uniform on a hyper-sphere. In blue, (21) is used
without noise βn = 0 while in red noise is added with the following schedule: β0 > 0 and βn is
decreased by half after every 103 epochs. In green, a diffusion term is added to the particles with
noise level kept fixed during training (βn = β0). In purple, the KSD is used as a cost function instead
of the MMD. In all cases, the kernel is estimated using random features (RF) with a batch size of 102.
Best step-size was selected for each method from {10−3, 10−2, 10−1} and was used for 104 epochs
on a dataset of 103 samples (RF). Initial parameters of the networks are drawn from i.i.d. gaussians:
N (0, 1) for the teacher and N (10−3, 1) for the student. Results are averaged over 10 different runs.

Figure 1 illustrates the behavior of the proposed algorithm (21) in a simple setting and compares it
with three other methods: MMD without noise injection (blue traces), MMD with diffusion (green
traces) and KSD (purple traces, [41]). Here, a student network is trained to produce the outputs of a
teacher network using gradient descent. More details on the experiment are provided in Appendix G.1.
As discussed in Appendix F, this setting can be seen as a stochastic version of the MMD flow since the
kernel is estimated using random features at each iteration ((91) in Appendix G.1). Here, the MMD
flow fails to converge towards the global optimum. Such behavior is consistent with the observations
in [14] when the parameters are initialized from a gaussian noise with relatively high variance (which
is the case here). On the other hand, adding noise to the gradient seems to lead to global convergence.
Indeed, the training error decreases below 10−5 and leads to much better validation error. While
adding a small diffusion term (green) help convergence, the noise-injection (red) still outperforms
it. This also holds for KSD (purple) which leads to a good solution (b) although at a much higher

8



computational cost (a). Our noise injection method (red) is also robust to the amount of noise and
achieves best performance over a wide region (c). On the other hand, MMD + diffusion (green)
performs well only for much smaller values of noise that are located in a narrow region. This is
expected since adding a diffusion changes the optimal solution, unlike the injection where the global
optimum of the MMD remains a fixed point of the algorithm.

Another illustrative experiment on a simple flow between Gaussians is given in Appendix G.2.

5 Conclusion

We have introduced MMD flow, a novel flow over the space of distributions, with a practical space-
time discretized implementation and a regularisation scheme to improve convergence. We provide
theoretical results, highlighting intrinsic properties of the regular MMD flow, and guarantees on
convergence based on recent results in optimal transport, probabilistic interpretations of PDEs, and
particle algorithms. Future work will focus on a deeper understanding of regularization for MMD
flow, and its application in sampling and optimization for large neural networks.
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This appendix is organized as follows. In Appendix A, the mathematical background needed for
this paper is given. In Appendix B, we state the main assumptions used in this work. Appendix C
is dedicated to the construction of the gradient flow of the MMD. Appendix D provides proofs for
the convergence results in Section 3. Appendix E is dedicated to the modified gradient flow based
on noise injection. In Appendix F, we discuss the connexion with optimization of neural networks.
Appendix G provides details about the experiments. Finally, some auxiliary results are provided in
Appendix H.

A Mathematical background

We define X ⊂ Rd as the closure of a convex open set, and P2(X ) as the set of probability
distributions on X with finite second moment, equipped with the 2-Wassertein metric denoted W2.
For any ν ∈ P2(X ), L2(ν) is the set of square integrable functions w.r.t. ν.

A.1 Maximum Mean Discrepancy and Reproducing Kernel Hilbert Spaces

We recall here fundamental definitions and properties of reproducing kernel Hilbert spaces (RKHS)
(see [54]) and Maximum Mean Discrepancies (MMD). Given a positive semi-definite kernel (x, y) 7→
k(x, y) ∈ R defined for all x, y ∈ X , we denote by H its corresponding RKHS (see [54]). The
spaceH is a Hilbert space with inner product 〈., .〉H and corresponding norm ‖.‖H. A key property
of H is the reproducing property: for all f ∈ H, f(x) = 〈f, k(x, .)〉H. Moreover, if k is m-
times differentiable w.r.t. each of its coordinates, then any f ∈ H is m-times differentiable and
∂αf(x) = 〈f, ∂αk(x, .)〉H where α is any multi-index with α ≤ m [56, Lemma 4.34]. When k
has at most quadratic growth, then for all µ ∈ P2(X ),

∫
k(x, x) dµ(x) < ∞. In that case, for any

µ ∈ P2(X ), φµ :=
∫
k(., x) dµ(x) is a well defined element inH called the mean embedding of µ.

The kernel k is said to be characteristic when such mean embedding is injective, that is any mean
embedding is associated to a unique probability distribution. When k is characteristic, it is possible
to define a distance between distributions in P2(X ) called the Maximum Mean Discrepancy:

MMD(µ, ν) = ‖φµ − φν‖H ∀ µ, ν ∈ P2(X ). (22)

The difference between the mean embeddings of µ and ν is an element inH called the unnormalised
witness function between µ and ν: fµ,ν = φν − φµ. The MMD can also be seen as an Integral
Probability Metric:

MMD(µ, ν) = sup
g∈B

∫
g dµ−

∫
g dν (23)

where B = {g ∈ H : ‖g‖H ≤ 1} is the unit ball in the RKHS.

A.2 2-Wasserstein geometry

For two given probability distributions ν and µ in P2(X ), we denote by Π(ν, µ) the set of possible
couplings between ν and µ. In other words Π(ν, µ) contains all possible distributions π on X × X
such that if (X,Y ) ∼ π then X ∼ ν and Y ∼ µ. The 2-Wasserstein distance on P2(X ) is defined by
means of an optimal coupling between ν and µ in the following way:

W 2
2 (ν, µ) := inf

π∈Π(ν,µ)

∫
‖x− y‖2 dπ(x, y) ∀ν, µ ∈ P2(X ) (24)

It is a well established fact that such optimal coupling π∗ exists [49, 58] . Moreover, it can be used to
define a path (ρt)t∈[0,1] between ν and µ in P2(X ). For a given time t in [0, 1] and given a sample
(x, y) from π∗, it is possible to construct a sample zt from ρt by taking the convex combination of x
and y: zt = st(x, y) where st is given by:

st(x, y) = (1− t)x+ ty ∀x, y ∈ X , ∀t ∈ [0, 1]. (25)

The function st is well defined since X is a convex set. More formally, ρt can be written as the
projection or push-forward of the optimal coupling π∗ by st:

ρt = (st)#π
∗ (26)
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We recall that for any T : X → X a measurable map, and any ρ ∈ P(X ), the push-forward measure
T#ρ is characterized by:∫

y∈X
φ(y) dT#ρ(y) =

∫
x∈X

φ(T (x)) dρ(x) for every measurable and bounded function φ. (27)

It is easy to see that (26) satisfies the following boundary conditions at t = 0, 1:

ρ0 = ν ρ1 = µ. (28)

Paths of the form of (26) are called displacement geodesics. They can be seen as the shortest paths
from ν to µ in terms of mass transport ([49] Theorem 5.27). It can be shown that there exists a
velocity vector field (t, x) 7→ Vt(x) with values in Rd such that ρt satisfies the continuity equation:

∂tρt + div(ρtVt) = 0 ∀t ∈ [0, 1]. (29)

This equation expresses two facts, the first one is that −div(ρtVt) reflects the infinitesimal changes
in ρt as dictated by the vector field (also referred to as velocity field) Vt, the second one is that the
total mass of ρt does not vary in time as a consequence of the divergence theorem. Equation (29) is
well defined in the distribution sense even when ρt does not have a density. At each time t, Vt can
be interpreted as a tangent vector to the curve (ρt)t∈[0,1] so that the length l((ρt)t∈[0,1]) of the curve
(ρt)t∈[0,1] would be given by:

l((ρt)t∈[0,1])
2 =

∫ 1

0

‖Vt‖2L2(ρt)
dt where ‖Vt‖2L2(ρt)

=

∫
‖Vt(x)‖2 dρt(x) (30)

This perspective allows to provide a dynamical interpretation of the W2 as the length of the shortest
path from ν to µ and is summarized by the celebrated Benamou-Brenier formula ([6]):

W2(ν, µ) = inf
(ρt,Vt)t∈[0,1]

l((ρt)t∈[0,1]) (31)

where the infimum is taken over all couples ρ and v satisfying (29) with boundary conditions given by
(28). If (ρt, Vt)t∈[0,1] satisfies (29) and (28) and realizes the infimum in (31), it is then simply called
a geodesic between ν and µ; moreover it is called a constant-speed geodesic if, in addition, the norm
of Vt is constant for all t ∈ [0, 1]. As a consequence, (26) is a constant-speed displacement geodesic.
Remark 1. Such paths should not be confused with another kind of paths called mixture geodesics.
The mixture geodesic (mt)t∈[0,1] from ν to µ is obtained by first choosing either ν or µ according to
a Bernoulli distribution of parameter t and then sampling from the chosen distribution:

mt = (1− t)ν + tµ ∀t ∈ [0, 1]. (32)

Paths of the form (32) can be thought as the shortest paths between two distributions when distances
on P2(X ) are measured using the MMD (see [9] Theorem 5.3). We refer to [9] for an overview of the
notion of shortest paths in probability spaces and for the differences between mixture geodesics and
displacement geodesics. Although, we will be interested in the MMD as a loss function, we will not
consider the geodesics that are naturally associated to it and will rather consider the displacement
geodesics defined in (26) for reasons that will become clear in Appendix A.4.

A.3 Gradient flows on the space of probability measures

Consider a real valued functional F defined over P2(x). We call ∂F∂ν if it exists, the unique (up
to additive constants) function such that d

dεF(ν + ε(ν′ − ν))|ε=0 =
∫
∂F
∂ν (ν)(dν′ − dν) for any

ν′ ∈ P2(X ). The function ∂F
∂ν is called the first variation of F evaluated at ν. We consider here

functionals F of the form:

F(ν) =

∫
U(ν(x))ν(x)dx+

∫
V (x)ν(x)dx+

∫
W (x, y)ν(x)ν(y)dxdy (33)

where U is the internal potential, V an external potential and W an interaction potential. The formal
gradient flow equation associated to such functional can be written (see [11], Lemma 8 to 10):

∂ν

∂t
= div(ν∇∂F

∂ν
) = div(ν∇(U ′(ν) + V +W ∗ ν)) (34)
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where div is the divergence operator and ∇∂F
∂ν is the strong subdifferential of F associated to the

W2 metric (see [1], Lemma 10.4.1). Indeed, for some generalized notion of gradient∇W2 , and for
sufficiently regular ν and F , the r.h.s. of (34) can be formally written as−∇W2F(ν). The dissipation
of energy along the flow is then given by:

dF(νt)

dt
= −D(νt) with D(ν) =

∫
‖∇∂F(νt(x))

∂ν
‖2νt(x)dx (35)

Such expression can be obtained by the following formal calculations:

dF(νt)

dt
=

∫
∂F(νt)

∂νt

∂νt
∂t

=

∫
∂F(νt)

∂ν
div(νt∇

∂F(νt)

∂ν
) = −

∫
‖∇∂F(νt)

∂ν
‖2dνt.

A.4 Displacement convexity

Just as for Euclidian spaces, an important criterion to characterize the convergence of the Wasserstein
gradient flow of a functional F is given by displacement convexity (see [60, Definition 16.5 (1st
bullet point)])):
Definition 2. [Displacement convexity] We say that a functional ν 7→ F(ν) is displacement convex
if for any ν and ν′ and a constant speed geodesic (ρt)t∈[0,1] between ν and ν′ with velocity vector
field (Vt)t∈[0,1] as defined by (29), the following holds:

F(ρt) ≤ (1− t)F(ν0) + tF(ν1) ∀ t ∈ [0, 1]. (36)

Definition 2 can be relaxed to a more general notion of convexity called Λ-displacement convexity
(see [58, Definition 16.5 (3rd bullet point)]). We first define an admissible functional Λ:
Definition 3. [Admissible Λ functional] Consider a functional (ρ, v) 7→ Λ(ρ, v) ∈ R defined for any
probability distribution ρ ∈ P2(X ) and any square integrable vector field v w.r.t ρ. We say that Λ is
admissible, if it satisfies:

• For any ρ ∈ P2(X ), v 7→ Λ(ρ, v) is a quadratic form.

• For any geodesic (ρt)0≤t≤1 between two distributions ν and ν′ with corresponding vector
fields (Vt)t∈[0,1] it holds that inf0≤t≤1 Λ(ρt, Vt)/‖Vt‖2L2(ρt)

> −∞

We can now define the notion of Λ-convexity:
Definition 4. [Λ convexity] We say that a functional ν 7→ F(ν) is Λ-convex if for any ν, ν′ ∈ P2(X )2

and a constant speed geodesic (ρt)t∈[0,1] between ν and ν′ with velocity vector field (Vt)t∈[0,1] as
defined by (29), the following holds:

F(ρt) ≤ (1− t)F(ν0) + tF(ν1)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds ∀ t ∈ [0, 1]. (37)

where (ρ, v) 7→ Λ(ρ, v) satisfies Definition 3, and G(s, t) = s(1− t)I{s ≤ t}+ t(1− s)I{s ≥ t}.
A particular case is when Λ(ρ, v) = λ

∫
‖v(x)‖2 dρ(x) for some λ ∈ R. In that case, (37) becomes:

F(ρt) ≤ (1− t)F(ν0) + tF(ν1)− λ

2
t(1− t)W 2

2 (ν0, ν1) ∀ t ∈ [0, 1]. (38)

Definition 2 is a particular case of Definition 4, where in (38) one has λ = 0.

A.5 Comparison with the Kullback Leilber divergence flow

Continuity equation and McKean Vlasov process. A famous example of a free energy (33) is
the Kullback-Leibler divergence, defined for ν, µ ∈ P(X ) by KL(ν, µ) =

∫
log( ν(x)

µ(x) )ν(x)dx.
Indeed, KL(ν, µ) =

∫
U(ν(x))dx+

∫
V (x)ν(x)dx with U(s) = s log(s) the entropy function and

V (x) = −log(µ(x)). In this case, ∇∂F
∂ν = ∇ log(ν) +∇V = ∇ log( νµ ) and equation (34) leads to

the classical Fokker-Planck equation

∂ν

∂t
= div(ν∇V ) + ∆ν, (39)
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where ∆ is the Laplacian operator. It is well-known (see for instance [29]) that the distribution of the
Langevin diffusion in (40) satisfies (39),

dXt = −∇ logµ(Xt)dt+
√

2dBt. (40)

Here, (Bt)t≥0 is a d-dimensional Brownian motion. While the entropy term in the KL functional
prevents the particles from "crashing" onto the mode of µ, this role could be played by the interaction
energy W defined in (4) for the MMD. Indeed, consider for instance the gaussian kernel k(x, x′) =

e−‖x−x
′‖2 . It is convex thus attractive at long distances (‖x − x′‖ > 1) but repulsive at small

distances so repulsive.

Convergence to a global minimum. The solution to the Fokker-Planck equation describing the gradient
flow of the KL can be shown to converge towards µ under mild assumptions. This follows from the
displacement convexity of the KL along the Wasserstein geodesics. Unfortunately the MMD is not
displacement convex in general, as shown in Section 3.1 or Appendix D.2. This makes the task of
proving the convergence of the gradient flow of the MMD to the global optimum µ much harder.

Sampling algorithms derived from gradient flows. Two settings are usually encountered in the
sampling literature: density-based, i.e. the target µ is known up to a constant, or sample-based, i.e.
only a set of samples X ∼ µ is accessible. The Unadjusted Langevin Algorithm (ULA), which
involves a time-discretized version of the Langevin diffusion falls into the first category since it
requires the knowledge of ∇ logµ. In a sample-based setting, it may be difficult to adapt the ULA
algorithm, since this would require to estimate ∇ log(µ) based on a set of samples of µ, before
plugging this estimate in the update of the algorithm. This problem, sometimes referred to as score
estimation in the literature, has been the subject of a lot of work but remains hard especially in high
dimensions (see [57],[35],[51]). In contrast, the discretized flow (in time and space) of the MMD
presented in Section 4.2 is naturally adapted to the sample-based setting.

B Main assumptions

We state here all the assumptions on the kernel k used to prove all the results:

(A) k is continuously differentiable onX with L-Lipschitz gradient: ‖∇k(x, x′)−∇k(y, y′)‖ ≤
L(‖x− y‖+ ‖x′ − y′‖) for all x, x′, y, y′ ∈ X .

(B) k is twice differentiable on X .

(C) ‖Dk(x, y)‖ ≤ λ for all x, y ∈ X , where Dk(x, y) is an Rd2 × Rd2

matrix with entries
given by ∂xi∂xj∂x′i∂x′jk(x, y).

(D)
∑d
i=1 ‖∂ik(x, .)− ∂ik(y, .)‖2H ≤ λ2‖x− y‖2 for all x, y ∈ X .

C Construction of the gradient flow of the MMD

C.1 Continuous time flow

Existence and uniqueness of a solution to (5) and (6) is guaranteed under Lipschitz regularity of∇k.

Proof of Proposition 1. [Existence and uniqueness] Under Assumption (A), the map (x, ν) 7→
∇fµ,ν(x) =

∫
∇k(x, .)dν −

∫
∇k(x, .)dµ is Lipschitz continuous on X × P2(X ) (endowed with

the product of the canonical metric on X and W2 on P2(X )), see Proposition 21. Hence, we benefit
from standard existence and uniqueness results of McKean-Vlasov processes (see [30]). Then, it is
straightforward to verify that the distribution of (6) is solution of (5) by ItÃŽ’s formula (see [28]).
The uniqueness of the gradient flow, given a starting distribution ν0, results from the λ-convexity of
F (for λ = 3L) which is given by Lemma 14, and [1, Theorem 11.1.4]. The existence derive from
the fact that the sub-differential of F is single-valued, as stated by (2), and that any ν0 in P2(X ) is in
the domain of F . One can then apply [1, Theorem 11.1.6 and Corollary 11.1.8].

Proof of Proposition 2. [Decay of the MMD] Recalling the discussion in Appendix A.3, the time
derivative of F(νt) along the flow is formally given by (35). But we know from (2) that the strong
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differential ∇ δF(ν)
δν is given by ∇fµ,ν . Therefore, one formally obtains the desired expression by

exchanging the order of derivation and integration, performing an integration by parts and using the
continuity equation (see (35)). We refer to [41] for similar calculations. One can also obtain directly
the same result using the energy identity in [1, Theorem 11.3.2] which holds for λ-displacement
convex functionals. The result applies here since, by Lemma 14, we know that F is λ-displacement
convex with λ = 3L.

C.2 Time-discretized flow

We prove that (8) approximates (5). To make the dependence on the step-size γ explicit, we will
write: νγn+1 = (I − γ∇fµ,νγn)#ν

γ
n (so νγn = νn for any n ≥ 0). We start by introducing an auxiliary

sequence ν̄γn built by iteratively applying∇fµ,νγn where νγn is the solution of (5) at time t = γn:

ν̄γn+1 = (I − γ∇fµ,νγn)#ν̄
γ
n (41)

with ν̄0 = ν0. Note that the latter sequence involves the continuous-time process νt of (5) with
t = γn. Using νγn , we also consider the interpolation path ργt = (I − (t− nγ)∇fµ,νγn)#ν

γ
n for all

t ∈ [nγ, (n+ 1)γ) and n ∈ N, which is the same as in Proposition 3.

Proof of Proposition 3. Let π be an optimal coupling between νγn and νγn, and (x, y) a sample from
π. For t ∈ [nγ, (n+ 1)γ) we write yt = ynγ −

∫ t
nγ
∇fµ,νs(yu) du and xt = x− (t−nγ)∇fµ,νγn(x)

where ynγ = y. We also introduce the approximation error E(t, nγ) := yt−y+(t−nγ)∇fµ,νγn(y)

for which we know by Lemma 12 that E(t, nγ) := E[E(t, nγ)2]
1
2 is upper-bounded by (t− nγ)2C

for some positive constant C that depends only on T and the Lipschitz constant L. This allows to
write:

W2(ργt , νt) ≤ E
[∥∥y − x+ (t− nγ)(∇fµ,νγn(x)−∇fµ,νγn(y)) + E(t, nγ)

∥∥2
] 1

2

≤W2(νγn, νγn) + 4L(t− nγ)W2(νγn, νγn) + E(t, nγ)

≤ (1 + 4γL)W2(νγn, νγn) + (t− γn)2C

≤ (1 + 4γL) (W2(νγn, ν̄
γ
n) +W2(νγn, ν̄

γ
n)) + γ2C

≤ γ [(1 + 4γL)M(T ) + γC]

The second line is obtained using that ∇fµ,νγn(x) is jointly 2L-Lipschitz in x and ν (see Propo-
sition 21) and by the fact that W2(νγn, νγn) = Eπ[‖y − x‖2]

1
2 . The third one is obtained using

t − nγ ≤ γ. For the last inequality, we used Lemmas 10 and 11 where M(T ) is a constant that
depends only on T . Hence for γ ≤ 1

4L we get W2(ργt , νt) ≤ γ( C4L + 2M(T )).

Lemma 10. For any n ≥ 0:

W2(νγn, ν̄
γ
n) ≤ γ C

2L
(enγ2L − 1)

Proof. Let π be an optimal coupling between ν̄γn and νγn and (x̄, x) a joint sample from π. Consider
also the joint sample (ȳ, y) obtained from (x̄ ,x) by applying the gradient flow of F in continuous
time to get y := x(n+1)γ = xnγ −

∫ (n+1)γ

nγ
∇fµ,νs(xu) du with xnγ = x and by taking a discrete

step from x̄ to write ȳ = x̄ − γ∇fµ,νγn(x̄). It is easy to see that y ∼ νγ(n+1) (i.e. a sample from
the continous process (5) at time t = (n+ 1)γ) and ȳ ∼ ν̄γn+1 (i.e. a sample from (41)). Moreover,
we introduce the approximation error E((n + 1)γ, nγ) := y − x + γ∇fµ,νγn(x) for which we
know by Lemma 12 that E((n + 1)γ, nγ) := E[E((n + 1)γ, nγ)2]

1
2 is upper-bounded by γ2C

for some positive constant C that depends only on T and the Lipschitz constant L. Denoting by
an = W2(νγn, ν̄

γ
n), one can therefore write:

an+1 ≤Eπ
[∥∥x− γ∇fµ,νγn(x)− x̄+ γ∇fµ,νγn(x̄) + E((n+ 1)γ, nγ)

∥∥2
] 1

2

≤Eπ
[
‖x− x̄‖2

] 1
2

+ γEπ
[∥∥∇fµ,νγn(x)−∇fµ,νγn(x̄))

∥∥2
] 1

2

+ γ2C
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Using that ∇fµ,νγn is 2L-Lipschitz by Proposition 21 and recalling that Eπ
[
‖x− x̄‖2

] 1
2 =

W2(νγn, ν̄
γ
n), we get the recursive inequality an+1 ≤ (1 + 2γL)an + γ2C. Finally, using Lemma 26

and recalling that a0 = 0, since by definition ν̄γ0 = νγ0 , we conclude that an ≤ γ C
2L (enγ2L − 1).

Lemma 11. For any T > 0 and n such that nγ ≤ T

W2(νγn, ν̄
γ
n) ≤ γ C

8L2
(e4TL − 1)2 (42)

Proof. Consider now an optimal coupling π between ν̄γn and νγn . Similarly to Lemma 10, we denote
by (x̄, x) a joint sample from π and (ȳ, y) is obtained from (x̄, x) by applying the discrete updates
: ȳ = x̄ − γ∇fµ,νγn(x̄) and y = x − γ∇fµ,νγn(x). We again have that y ∼ νγn+1 (i.e. a sample
from the time discretized process (8)) and ȳ ∼ ν̄γn+1 (i.e. a sample from (41)). Now, denoting by
bn = W2(νγn, ν̄

γ
n), it is easy to see from the definition of ȳ and y that we have:

bn+1 ≤ Eπ
[∥∥x− γ∇fµ,νγn(x)− x̄+ γ∇fµ,νγn(x̄)

∥∥2
] 1

2

≤ (1 + 2γL)Eπ
[
‖x− x̄‖2

] 1
2

+ 2γLW2(νγn, νγn))

≤ (1 + 4γL)bn + γLW2(ν̄γn, νγn)

The second line is obtained recalling that∇fµ,ν(x) is 2L-Lipschitz in both x and ν by Proposition 21.

The third line follows by triangular inequality and using Eπ
[
‖x− x̄‖2

] 1
2

= W2(νγn, ν̄
γ
n) = bn, since

π is an optimal coupling between ν̄γn and νγn . By Lemma 10, we haveW2(ν̄γn, νγn) ≤ γ C
2L (e2nγL−1),

hence, for any n such that nγ ≤ T we get the recursive inequality

bn+1 ≤ (1 + 4γL)bn + (C/2L)γ2(e2TL − 1).

Finally, using again Lemma 26, it follows that bn ≤ γ C
8L2 (e4TL − 1)2.

Lemma 12. [Taylor expansion] Consider the process ẋt = −∇fµ,νt(xt), and denote by E(t, s) =

E[‖xt − xs + (t− s)∇fµ,νs(xs)‖2]
1
2 for 0 ≤ s ≤ t ≤ T . Then one has:

E(t, s) ≤ 2L2r0e
LT (t− s)2 (43)

with r0 = E(x,z)∼ν0⊗µ[‖x− z‖]

Proof. By definition of xt and E(t, s) one can write:

E(t, s) = E

[∥∥∥∥∫ t

s

(∇fµ,νs(xs)−∇fµ,νu(xu)) du

∥∥∥∥2
] 1

2

≤
∫ t

s

E
[
‖(∇fµ,νs(xs)−∇fµ,νu(xu))‖2

] 1
2

du

≤ 2L

∫ t

s

E
[
(‖xs − xu‖+W2(νs, νu))2

] 1
2 du ≤ 4L

∫ t

s

E
[
‖xs − xu‖2

] 1
2

du

Where we used an integral expression for xt in the first line then applied a triangular inequality for
the second line. The last line is obtained recalling that∇fµ,ν(x) is jointly 2L-Lipschitz in x and ν by

Proposition 21 and that W2(νs, νu) ≤ E
[
‖xs − xu‖2

] 1
2

. Now we use again an integral expression
for xu which further gives:

E(t, s) ≤4L

∫ t

s

E

[∥∥∥∥∫ u

s

∇fµ,νl(xl) dl

∥∥∥∥2
] 1

2

du

≤4L

∫ t

s

∫ u

s

E
[
‖E [∇1k(xl, x

′
l)−∇1k(xl, z)]‖

2
] 1

2

dl du

≤4L2

∫ t

s

∫ u

s

E [‖x′l − z‖] dl du
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Again, the second line is obtained using a triangular inequality and recalling the expression of
∇fµ,ν(x) from Proposition 21. The last line uses that∇k is L-Lipschitz by Assumption (A). Now
we need to make sure that ‖x′l − z‖ remains bounded at finite times. For this we will first show that
rt = E[‖xt − z‖] satisfies an integro-differential inequality:

rt ≤E
[∥∥∥∥x0 − z −

∫ t

0

∇fµ,νs(xs) ds

∥∥∥∥]
≤r0 +

∫ t

0

E [‖∇1k(xs, x
′
s)−∇1k(xs, z)‖] ds ≤ r0 + L

∫ t

0

rs ds

Again, we used an integral expression for xt in the first line, then a triangular inequality recalling the
expression of ∇fµ,νs . The last line uses again that ∇k is L-Lipschitz. By Gronwall’s lemma it is
easy to see that rt ≤ r0e

Lt at all times. Moreover, for all t ≤ T we have a fortiori that rt ≤ r0e
LT .

Recalling back the upper-bound on E(t, s) we have finally:

E(t, s) ≤ 4L2r0e
LT

∫ t

s

∫ u

s

dl du = 2L2r0e
LT (t− s)2

We show now that (8) decreases the functional F . In all the proofs, the step-size γ is fixed.

Proof of Proposition 4. Consider a path between νn and νn+1 of the form ρt = (I − γt∇fµ,νn)#νn.
We know by Proposition 21 that ∇fµ,νn is 2L Lipschitz, thus by Lemma 22 and using φ(x) =
−γ∇fµ,νn(x), ψ(x) = x and q = νn it follows that F(ρt) is differentiable and hence absolutely
continuous. Therefore one can write:

F(ρ1)−F(ρ0) = Ḟ(ρ0) +

∫ 1

0

Ḟ(ρt)− Ḟ(ρ0)dt. (44)

Moreover, Lemma 22 also allows to write:

Ḟ(ρ0) = −γ
∫
‖∇fµ,νn(x)‖2dνn(x); |Ḟ(ρt)− Ḟ(ρ0)| ≤ 3Ltγ2

∫
‖∇fµ,νn(X)‖2dνn(X).

where t ≤ 1. Hence, the result follows directly by applying the above expression to (44).

D Convergence of the gradient flow of the MMD

D.1 Equilibrium condition

We discuss here the equilibrium condition (11) and relate it to [41, Assumption A]. Recall that (11) is
given by:

∫
‖∇fµ,ν∗(x)‖2 dν∗(x) = 0. Under some mild assumptions on the kernel which are states

in [41, Appendix C.1] it is possible to write (11) as:∫
‖∇fµ,ν∗(x)‖2 dν∗(x) = 〈fµ,ν∗ , Dν∗fµ,ν∗〉H = 0

where Dν∗ is a Hilbert-Schmidt operator given by:

Dν∗ =

∫ d∑
i=1

∂ik(x, .)⊗ ∂ik(x, .) dν∗(x)

Hence (11) is equivalent to say that fµ,ν∗ belongs to the null space of Dν∗ . In [41, Theorem 2], a
similar equilibrium condition is derived by considering the time derivative of the MMD along the
KSD gradient flow:

1

2

d

dt
MMD2(µ, νt) = −λ〈fµ,νt , (

1

λ
I − (Dνt + λI)−1)fµ,νt〉H

The r.h.s is shown to be always negative and thus the MMD decreases in time. Hence, as t approaches
∞, the r.h.s tends to 0 since the MMD converges to some limit value l. This provides the equilibrium
condition:

λ〈fµ,ν∗ , (
1

λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H = 0

18



It is further shown in [41, Lemma 2] that the above equation is also equivalent to having fµ,ν∗ in
the null space of Dν∗ in the case when Dν∗ has finite dimensions. We generalize this statement to
infinite dimension in Proposition 13. In [41, Assumption A], it is simply assumed that if fµ,ν∗ 6= 0
then Dν∗fµ,ν∗ 6= 0 which exactly amounts to assuming that local optima which are not global don’t
exist.
Proposition 13.

〈fµ,ν∗ , (
1

λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H = 0 ⇐⇒ fµ,ν∗ ∈ null(Dν∗)

Proof. This follows simply by recalling Dν∗ is a symmetric non-negative Hilbert-Schmidt operator
it has therefore an eigen-decomposition of the form:

Dν∗ =

∞∑
i=1

λiei ⊗ ei

where ei is an ortho-norrmal basis ofH and λi are non-negative. Moreover, fµ,ν∗ can be decomposed
in (ei)1≤i in the form:

fµ,ν∗ =

∞∑
i=0

αiei

where αi is a squared integrable sequence. It follows that 〈fµ,ν∗ , ( 1
λI − (Dν∗ + λI)−1)fµ,ν∗〉H can

be written as:

〈fµ,ν∗ , (
1

λ
I − (Dν∗ + λI)−1)fµ,ν∗〉H =

∞∑
i=1

λi
λi + λ

α2
i

Hence, if fµ,ν∗ ∈ null(Dν∗) then 〈fµ,ν∗ , Dν∗fµ,ν∗〉H = 0, so that
∑∞
i=1 λiα

2
i = 0. Since λi are

non-negative, this implies that λiα2
i = 0 for all i. Therefore, it must be that 〈fµ,ν∗ , ( 1

λI − (Dν∗ +

λI)−1)fµ,ν∗〉H = 0. Similarly, if 〈fµ,ν∗ , ( 1
λI − (Dν∗ + λI)−1)fµ,ν∗〉H = 0 then λiα

2
i

λi+λ
= 0 hence

〈fµ,ν∗, Dν∗fµ,ν∗〉H = 0. This means that fµ,ν∗ belongs to null(Dν∗).

D.2 Λ-displacement convexity of the MMD

We provide now a proof of Proposition 5:

Proof of Proposition 5. [Λ- displacement convexity of the MMD] To prove that ν 7→ F(ν) is Λ-
convex we need to compute the second time derivative F̈(ρt) where (ρt)t∈[0,1] is a displacement
geodesic between two probability distributions ν0 and ν1 as defined in (26). Such geodesic always
exists and can be written as ρt = (st)#π with st = x+ t(y− x) for all t ∈ [0, 1] and π is an optimal
coupling between ν0 and ν1 ([49], Theorem 5.27). We denote by Vt the corresponding velocity
vector as defined in (29). Recall that F(ρt) = 1

2‖fµ,ρt‖
2
H, with fµ,ρt defined in (1). We start by

computing the first derivative of t 7→ F(ρt). Since Assumptions (A) and (B) hold, Lemma 23 applies
for φ(x, y) = y − x, ψ(x, y) = x and q = π, thus we know that F̈(ρt) is well defined and given by:

F̈(ρt) =E
[
(y − x)T∇1∇2k(st(x, y), st(x

′, y′))(y′ − x′)
]

+ E
[
(y − x)T (H1k(st(x, y), st(x

′, y′))−H1k(st(x, y), z))(y − x)
] (45)

Moreover, Assumption (C) also holds which means by Lemma 23 that the second term in (45) can be
lower-bounded by −

√
2λdF(ρt)E[‖y − x‖2] so that:

F̈(ρt) = E
[
(y − x)T∇1∇2k(st(x, y), st(x

′, y′))(y′ − x′)
]
−
√

2λdF(ρt)E[‖y − x‖2]

Recall now that (ρt)t∈[0,1] is a constant speed geodesic with velocity vector (Vt)t∈[0,1] thus by a
change of variable, one further has:

F̈(ρt) ≥
∫ [

V Tt (x)∇1∇2k(x, x′)Vt(x
′)
]

dρt(x)−
√

2λdF(ρt)

∫
‖Vt(x)‖2 dρt(x).

Now we can introduce the function Λ(ρ, v) = 〈v, (Cρ −
√

2λdF(ρ)
1
2 I)v〉L2(ρ) which is defined

for any pair (ρ, v) with ρ ∈ P2(X ) and v a square integrable vector field in L2(ρ) and where Cρ is
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a non-negative operator given by (Cρv)(x) =
∫
∇x∇x′k(x, x′)v(x′)dρ(x′) for any x ∈ X . This

allows to write F̈(ρt) ≥ Λ(ρt, Vt). It is clear that Λ(ρ, .) is a quadratic form on L2(ρ) and satisfies
the requirement in Definition 3. Finally, using Lemma 24 and Definition 4 we conclude that F is
Λ-convex. Moreover, by the reproducing property we also know that for all ρ ∈ P2(X ):

Eρ
[
v(x)T∇1∇2k(x, x′)v(x′)

]
= Eρ

[〈
v(x)T∇1k(x, .), v(x′)T∇1k(x′, .)

〉
H

]
.

By Bochner integrability of v(x)T∇1k(x, .) it is possible to exchange the order of the integral and the
inner-product [46, Theorem 6]. This leads to the expression ‖E[v(x)T∇1k(x, .)]‖2H. Hence Λ(ρ, v)
has a second expression of the form:

Λ(ρ, v) =
∥∥Eρ [v(x)T∇1k(x, .)

]∥∥2

H −
√

2λdF(ρ)
1
2Eρ

[
‖v(x)‖2

]
.

We also provide a result showing Λ convexity for F only under Assumption (A):
Lemma 14 (Λ-displacement convexity). Under Assumption (A), for any ν, ν′ ∈ P2(X ) and any
constant speed geodesic ρt from ν to ν′, F satisfies for all 0 ≤ t ≤ 1:

F(ρt) ≤ (1− t)F(ν) + tF(ν′) + 3LW 2
2 (ν, ν′)

Proof. Let ρt be a constant speed geodesic of the form ρt = st#π where π is an optimal coupling
between ν and ν′ and st(x, y) = x+t(y−x). Since Assumption (A) holds, one can apply Lemma 22
with ψ(x, y) = x, φ(x, y) = y − x and q = π. Hence, one has that F(ρt) is differentiable and its
differential satisfies:

|Ḟ(ρt)− Ḟ(ρs)| ≤ 3L|t− s|
∫
‖y − x‖2 dπ(x, y)

This implies that Ḟ(ρt) is Lipschitz continuous and therefore is differentiable for almost all t ∈ [0, 1]

by Rademacher’s theorem. Hence, F̈(ρt) is well defined for almost all t ∈ [0, 1]. Moreover, from the
above inequality it follows that F̈(ρt) ≥ −3L

∫
‖y − x‖2 dπ(x, y) = −3LW 2

2 (ν, ν′) for almost all
t ∈ [0, 1]. Using Lemma 24 it follows directly that F satisfies the desired inequality.

D.3 Descent up to a barrier

To provide a proof of Theorem 6, we need the following preliminary results. Firstly, an upper-bound
on a scalar product involving ∇fµ,ν for any µ, ν ∈ P2(X ) in terms of the loss functional F , is
obtained using the Λ-displacement convexity of F in Lemma 15. Then, an EVI (Evolution Variational
Inequality) is obtained in Proposition 16 on the gradient flow of F in W2. The proof of the theorem
is given afterwards.
Lemma 15. Let ν be a distribution in P2(X ) and µ the target distribution such that F(µ) = 0. Let
π be an optimal coupling between ν and µ, and (ρt)t∈[0,1] the displacement geodesic defined by (26)
with its corresponding velocity vector (Vt)t∈[0,1] as defined in (29). Finally let ∇fν,µ(X) be the
gradient of the unnormalised witness function between µ and ν. The following inequality holds:∫

∇fµ,ν(x).(y − x)dπ(x, y) ≤ F(µ)−F(ν)−
∫ 1

0

Λ(ρs, Vs)(1− s)ds

where Λ is defined Proposition 5.

Proof. Recall that for all t ∈ [0, 1], ρt is given by ρt = (st)#π with st = x + t(y − x). By
Λ-convexity of F the following inequality holds:

F(ρt) ≤ (1− t)F(ν) + tF(µ)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds

Hence by bringing F(ν) to the l.h.s and dividing by t and then taking its limit at 0 it follows that:

Ḟ(ρt)|t=0 ≤ F(µ)−F(ν)−
∫ 1

0

Λ(ρs, Vs)(1− s)ds. (46)
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where Ḟ(ρt) = dF(ρt)/dt and since limt→0G(s, t) = (1− s). Moreover, under Assumption (A),
Lemma 22 applies for φ(x, y) = y − x, ψ(x, y) = x and q = π. It follows therefore that Ḟ(ρt) is
differentiable with time derivative given by: Ḟ(ρt) =

∫
∇fµ,ρt(st(x, y)).(y−x) dπ(x, y). Hence at

t = 0 we get: Ḟ(ρt)|t=0 =
∫
∇fµ,ν(x).(y − x) dπ(x, y) which shows the desired result when used

in (46).

Proposition 16. Consider the sequence of distributions νn obtained from (8). For n ≥ 0, consider
the scalar K(ρn) :=

∫ 1

0
Λ(ρns , V

n
s )(1 − s) ds where (ρns )0≤s≤1 is a constant speed displacement

geodesic from νn to the optimal value µ with velocity vectors (V ns )0≤s≤1. If γ ≤ 1/L, where L is
the Lispchitz constant of∇k in Assumption (A), then:

2γ(F(νn+1)−F(µ)) ≤W 2
2 (νn, µ)−W 2

2 (νn+1, µ)− 2γK(ρn). (47)

Proof. Let Πn be the optimal coupling between νn and µ, then the optimal transport between νn and
µ is given by:

W 2
2 (µ, νn) =

∫
‖X − Y ‖2dΠn(νn, µ) (48)

Moreover, consider Z = X − γ∇fµ,νn(X) where (X,Y ) are samples from πn. It is easy to see
that (Z, Y ) is a coupling between νn+1 and µ, therefore, by definition of the optimal transport map
between νn+1 and µ it follows that:

W 2
2 (νn+1, µ) ≤

∫
‖X − γ∇fµ,νn(X)− Y ‖2dπn(νn, µ) (49)

By expanding the r.h.s in (49), the following inequality holds:

W 2
2 (νn+1, µ) ≤W 2

2 (νn, µ)− 2γ

∫
〈∇fµ,νn(X), X − Y 〉dπn(νn, µ) + γ2D(νn) (50)

where D(νn) =
∫
‖∇fµ,νn(X)‖2dνn. By Lemma 15 it holds that:

−2γ

∫
∇fµ,νn(X).(X − Y )dπ(ν, µ) ≤ −2γ (F(νn)−F(µ) +K(ρn)) (51)

where (ρnt )0≤t≤1 is a constant-speed geodesic from νn to µ and K(ρn) :=
∫ 1

0
Λ(ρns , v

n
s )(1− s)ds.

Note that when K(ρn) ≤ 0 it falls back to the convex setting. Therefore, the following inequality
holds:

W 2
2 (νn+1, µ) ≤W 2

2 (νn, µ)− 2γ (F(νn)−F(µ) +K(ρn)) + γ2D(νn) (52)

Now we introduce a term involving F(νn+1). The above inequality becomes:

W 2
2 (νn+1, µ) ≤W 2

2 (νn, µ)− 2γ (F(νn+1)−F(µ) +K(ρn)) (53)

+ γ2D(νn)− 2γ(F(νn)−F(νn+1)) (54)

It is possible to upper-bound the last two terms on the r.h.s. by a negative quantity when the step-size
is small enough. This is mainly a consequence of the smoothness of the functional F and the fact
that νn+1 is obtained by following the steepest direction of F starting from νn. Proposition 4 makes
this statement more precise and enables to get the following inequality:

γ2D(νn)− 2γ(F(νn)−F(νn+1) ≤ −γ2(1− 3γL)D(νn), (55)

where L is the Lispchitz constant of∇k. Combining (54) and (55) we finally get:

2γ(F(νn+1)−F(µ)) + γ2(1− 3γL)D(νn) ≤W 2
2 (νn, µ)−W 2

2 (νn+1, µ)− 2γK(ρn). (56)

and under the condition γ ≤ 1/(3L) we recover the desired result.

We can now give the proof of the Theorem 6.
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Proof of Theorem 6. Consider the Lyapunov function Lj = jγ(F(νj)− F(µ)) + 1
2W

2
2 (νj , µ) for

any iteration j. At iteration j + 1, we have:

Lj+1 = jγ(F(νj+1)−F(µ)) + γ(F(νj+1)−F(µ)) +
1

2
W 2

2 (νj+1, µ)

≤ jγ(F(νj+1)−F(µ)) +
1

2
W 2

2 (νj , µ)− γK(ρj)

≤ jγ(F(νj)−F(µ)) +
1

2
W 2

2 (νj , µ)− γK(ρj)− jγ2(1− 3

2
γL)

∫
‖∇fµ,νj (X)‖2dνj

≤ Lj − γK(ρj).

where we used Proposition 16 and Proposition 4 successively for the two first inequalities. We thus
get by telescopic summation:

Ln ≤ L0 − γ
n−1∑
j=0

K(ρj) (57)

Let us denote K̄ the average value of (K(ρj))0≤j≤n over iterations up to n. We can now write the
final result:

F(νn)−F(µ) ≤ W 2
2 (ν0, µ)

2γn
− K̄ (58)

D.4 Lojasiewicz type inequalities

Given a probability distribution ν, the weighted Sobolev semi-norm is defined for all squared integrable

functions f in L2(ν) as ‖f‖Ḣ(ν) =
(∫
‖∇f(x)‖2 dν(x)

) 1
2

with the convention ‖f‖Ḣ(ν) = +∞ if
f does not have a square integrable gradient. The Negative weighted Sobolev distance ‖.‖Ḣ−1(ν) is
then defined on distributions as the dual norm of ‖.‖Ḣ(ν). For convenience, we recall the definition
of ‖.‖Ḣ−1(ν):

Definition 5. Let ν ∈ P2(x), with its corresponding weighted Sobolev semi-norm ‖.‖Ḣ(ν). The
weighted negative Sobolev distance ‖p− q‖Ḣ−1(ν) between any p and q in P2(x) is defined as

‖p− q‖Ḣ−1(ν) = sup
f∈L2(ν),‖f‖Ḣ(ν)≤1

∣∣∣∣∫ f(x) dp(x)−
∫
f(x) dq(x)

∣∣∣∣ (59)

with possibly infinite values.

There are several possible choices for the set of test functions f . While it is often required that f
vanishes at the boundary (see [41]), we do not make such restriction and rather use the definition
from [45]. We refer to [50] for more discussion on the relationship between different choices for the
set of test functions.

We provide now a proof for Proposition 7.

Proof of Proposition 7. This proof follows simply from the definition of the negative Sobolev dis-
tance. Under Assumption (A), the kernel has at most quadratic growth hence, for any µ, ν ∈ P2(X )2,
fµ,ν ∈ L2(ν). Consider g = ‖fµ,νt‖−1

Ḣ(νt)
fµ,νt , then g ∈ L2(νt) and ‖g‖Ḣ(νt)

≤ 1. Therefore, we
directly have: ∣∣∣∣∫ g dνt −

∫
g dµ

∣∣∣∣ ≤ ‖νt − µ‖Ḣ−1(νt)
(60)

Now, recall the definition of g, which implies that∣∣∣∣∫ g dνt −
∫
g dµ

∣∣∣∣ = ‖∇fµ,νt‖
−1
L2(νt)

∣∣∣∣∫ fµ,νt dνt −
∫
fµ,νt dµ

∣∣∣∣ . (61)
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Moreover, we have that
∫
fµ,νt dνt−

∫
fµ,νt dµ = ‖fµ,νt‖2H, since fµ,νt is the unnormalised witness

function between νt and µ. Combining (60) and (61) we thus get the desired Lojasiewicz inequality
on fµ,νt :

‖fµ,νt‖2H ≤ ‖fµ,νt‖Ḣ(νt)
‖µ− νt‖Ḣ−1(νt)

(62)

where ‖fµ,νt‖Ḣ(νt)
= ‖∇fµ,νt‖L2(νt) by definition. Then, using Proposition 2 and recalling by

assumption that: ‖µ− νt‖2Ḣ−1(νt)
≤ C, we have:

Ḟ(νt) = −‖∇fµ,νt‖2L2(νt)
≤ − 1

C
‖fµ,νt‖4H = − 4

C
F(νt)

2 (63)

It is clear that if F(ν0) > 0 then F(νt) > 0 at all times by uniqueness of the solution. Hence, one
can divide by F(νt)

2 and integrate the inequality from 0 to some time t. The desired inequality is
obtained by simple calculations.

Then, using Proposition 4 and (63) where νt is replaced by νn it follows:

F(νn+1)−F(νn) ≤ −γ
(

1− 3

2
Lγ

)
‖∇fµ,νn‖2L2(νn) ≤ −

4

C
γ

(
1− 3

2
γL

)
F(νn)2.

Dividing by both sides of the inequality by F(νn)F(νn+1) and recalling that F(νn+1) ≤ F(νn) it
follows directly that:

1

F(νn)
− 1

F(νn+1)
≤ − 4

C
γ

(
1− 3

2
γL

)
.

The proof is concluded by summing over n and rearranging the terms.

D.5 A simple example

Consider a gaussian target distribution µ(x) = N (a,Σ) and initial distribution ν0 = N (a0,Σ0). In
this case it is sufficient to use a kernel that captures the first and second moments of the distribution.
We simply consider a kernel of the form k(x, y) = (x>y)2 + x>y. In this case, it is easy to see by
simple computations that the following equation holds:

Ẋt = −(Σt − Σ + ata
>
t − aa>)Xt − (at − a), ∀t ≥ 0 (64)

Where at and Σt are the mean and covariance matrix of νt and satisfy the equations:

Σ̇t = −(StΣt + ΣtSt) (65)
ȧt = −Stat − (at − a). (66)

Where we introduced St = Σt − Σ + ata
>
t − aa> for simplicity. (64) implies that νt is in fact a

gaussian distribution since Xt is obtained by summing gaussian increments. The same conclusion
can be reached by solving the corresponding continuity equation. Thus we will be only interested in
the behavior of at and Σt. First we can express the squared MMD in terms of those parameters:

MMD2(µ, νt) = ‖St‖2 + ‖at − a‖2. (67)

Since at and Σt are obtained from the gradient flow of the MMD, it follows that ‖at− a‖2 and ‖St‖2
remain bounded. Moreover, the Negative Sobolev distance is obtained by solving a finite dimensional
quadratic problem and can be simply written as:

D(µ, νt) = tr(QtΣtQt) + ‖at − a‖2 (68)

where Qt is the unique solution of the Lyapounov equation:

ΣtQt +QtΣt = Σt − Σ + (at − a)(at − a)> := Gt. (69)

We first consider the one dimensional case, for which (69) has a particularly simple solution and
allows to provide a closed form expression for the negative Sobolev distance:

Qt =
Gt
2Σt

, D(µ, νt) =
G2
t

4Σt
+ (at − a)2. (70)

Recalling (67) and that MMD2(µ, νt) is bounded at all times by definition of νt, it follows that both
Gt and at − a are also bounded. Hence, it is easy to see that D(µ, νt) will remain bounded iff Σt
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remains bounded away from 0. This analysis generalizes the higher dimensions using [4, Lemma 3.2
(iii)] which provides an expression for Qt in terms of Gt and the singular value decomposition of
Σt = UtDtU

>
t :

Qt = Ut

((
1

(Dt)i + (Dt)j

)
� U>t GtUt

)
U>t . (71)

Here,� denotes the Hadamard product of matrices. It is easy to see from this expression thatD(µ, νt)
will be bounded if all singular values ((Dt)i)1≤i≤d of Σt remain bounded away from 0.

D.6 Lojasiewicz-type inequalities for F under different metrics

The Wasserstein gradient flow of F can be seen as the continuous-time limit of the so called
minimizing movement scheme [1]. Such proximal scheme is defined using an initial distribution ν0,
a step-size τ , and an iterative update equation:

νn+1 ∈ arg min
ν
F(ν) +

1

2τ
W 2

2 (ν, νn). (72)

In [1], it is shown that the continuity equation ∂tνt = div(νt∇fµ,νt) can be obtained as the limit
when τ → 0 of (72) using suitable interpolations between the elements νn. In [47], a different
transport equation that includes a birth-death term is considered:

∂tνt = βdiv(νt∇fµ,νt) + α(fµ,νt −
∫
fµ,νt(x) dνt(x))νt (73)

When β = 0 and α = 1, it is shown formally in [47] that the above dynamics corresponds to the
limit of a proximal scheme using the KL instead of the Wasserstein distance. For general β and
α, (74) corresponds to the limit of a different proximal scheme where W 2

2 (ν, νn) is replaced by
the Wasserstein-Fisher-Rao distance d2

α,β(ν, νn) (see [16, 33, 37]). d2
α,β(ν, νn) is an interpolation

between the squared Wasserstein distance (β = 1 and α = 0) and the squared Fisher-Rao distance as
defined in [16, Definition 6] (β = 0 and α = 1). Such scheme is consistent with the one proposed in
[47] and which uses the KL. In fact, as we will show later, both the KL and the Fisher-Rao distance
have the same local behavior therefore both proximal schemes are expected to be equivalent in the
limit when τ → 0.

Under (74), the time evolution of F is given by [47, Proposition 3.1]:

Ḟ(νt) = −β
∫
‖∇fµ,νt‖2 dνt(x)− α

∫ ∣∣∣∣fµ,νt(x)−
∫
fµ,νt(x

′) dνt(x
′)

∣∣∣∣2 dνt(x) (74)

We would like to apply the same approach as in Section 3.2 to provide a condition on the convergence
of (74). Hence we first introduce an analogue to the Negative Sobolev distance in Definition 1 by
duality:

Dν(p, q) = sup
g∈L2(ν)

β‖∇g‖2L2(ν)+α‖g−ḡ‖
2
L2(ν)≤1

∣∣∣∣∫ g(x) dp(x)−
∫
g(x) dq(x)

∣∣∣∣ (75)

where ḡ is simply the expectation of g under ν. Such quantity defines a distance, since it is the dual
of a semi-norm. Now using the particular structure of the MMD, we recall that fµ,ν ∈ L2(ν) and
that β‖∇f‖2L2(ν) + α‖f − f̄‖2L2(ν) <∞. Hence for a particular g of the form:

g =
fµ,ν(

β‖∇fµ,ν‖2L2(ν) + α‖fµ,ν − f̄µ,ν‖2L2(ν)

) 1
2

the following inequality holds:

Dν(µ, ν) ≥
∣∣∫ fµ,ν dν(x)−

∫
fµ,ν dµ(x)

∣∣(
β‖∇fµ,ν‖2L2(ν) + α‖fµ,ν − f̄µ,ν‖2L2(ν)

) 1
2

.
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But since fµ,ν is the unnormalised witness function between µ and ν we have that 2F(ν) =∣∣∫ fµ,ν dν(x)−
∫
fµ,ν dµ(x)

∣∣. Hence one can write that:

D2
ν(µ, ν)

(
β‖∇fµ,ν‖2L2(ν) + α‖fµ,ν − f̄µ,ν‖2L2(ν)

)
≥ 4F2(ν) (76)

Now provided that D2
ν(µ, νt) remains bounded at all time t by some constant C > 0 one can easily

deduce a rate of convergence for F(νt) just as in Proposition 7. In fact, in the case when β = 1
and α = 0 one recovers Proposition 7. Another interesting case is when β = 0 and α = 1. In this
case, Dν(p, q) is defined for p and q such that the difference p− q is absolutely continuous w.r.t. ν.
Moreover, Dν(p, q) has the simple expression:

Dν(p, q) =

∫ (
p− q
ν

(x)

)2

dν(x)

where p−q
ν denotes the radon nikodym density of p − q w.r.t. ν. More importantly, D2

ν(µ, ν) is
exactly equal to χ2(µ‖ν)

1
2 . As we will show now, (χ2)

1
2 turns out to be a linearization of

√
2KL

1
2

and the Fisher-Rao distance.

Linearization of the KL and the Fisher-Rao distance. We first show the result for the KL. Given
a probability distribution ν′ that is absolutely continuous w.r.t to ν and for 0 < ε < 1 denote by
G(ε) := KL(ν‖(ν + ε(ν′ − ν)). It can be shown that G(ε) = 1

2χ
2(ν′‖ν)ε2 + o(ε2). To see this,

one needs to perform a second order Taylor expansion of G(ε) at ε = 0. Exchanging the derivatives
and the integral, Ġ(ε) and G̈(ε) are both given by:

Ġ(ε) = −
∫

µ− ν
ν + ε(µ− ν)

dν

G̈(ε) =

∫
(ν − µ)2

(ν + ε(µ− ν))2
dν

Hence, we have for ε = 0: Ġ(0) = 0 and G̈(0) = χ2(µ‖ν). Therefore, it follows: G(ε) =
1
2χ

2(µ‖ν)ε2 + o(ε2), which means that

lim
ε→0

1

ε
[2KL (ν‖ν + ε(ν′ − ν))]

1
2 = χ2(ν′‖ν)

1
2 .

The same approach can be used for the Fisher-Rao distance d0,1(ν, ν′). From [16, Theorem 3.1] we
have that:

d2
0,1(ν, ν′) = 2

∫
(
√
ν(x)−

√
ν′(x))2 dx

where ν and ν′ are assumed to have a density w.r.t. Lebesgue measure. Using the exact same approach

as for the KL one easily show that limε→0
1
ε

[
2d2

0,1 (ν‖ν + ε(ν′ − ν))
] 1

2 = χ2(ν′‖ν)
1
2 .

Linearization of the W2. Similarly, it can be shown that the Negative weighted Sobolev distance is
a linearization of the W2 under suitable conditions. We recall here [59, Theorem 7.26] which relates
the two quantities:

Theorem 17. Let ν ∈ P(X ) be a probability measure with finite second moment, absolutely
continuous w.r.t the Lebesgue measure and let h ∈ L∞(X ) with

∫
h(x) dν(x) = 0. Then

‖h‖Ḣ−1(ν) ≤ lim inf
ε→0

1

ε
W2(ν, (1 + εh)ν).

Theorem 17 implies that for any probability distribution ν′ that has a bounded density w.r.t. to ν one
has:

‖ν′ − ν‖Ḣ−1(ν) ≤ lim inf
ε→0

1

ε
W2(ν, ν + ε(ν′ − ν)).

To get the converse inequality, one needs to assume that the support of ν is X . Proposition 18 provides
such inequality and uses techniques from [45].
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Proposition 18. Let ν ∈ P(X ) be a probability measure with finite second moment, absolutely contin-
uous w.r.t the Lebesgue measure with support equal to X and let h ∈ L∞(X ) with

∫
h(x) dν(x) = 0

and 1 + h ≥ 0. Then

lim sup
ε→0

1

ε
W2(ν, (1 + εh)ν) ≤ ‖h‖Ḣ−1(ν)

Proof. Consider the elliptic equation: νh+div(ν∇F ) = 0 with Neumann boundary condition on ∂X .
Such equation admits a unique solutionF in Ḣ(ν) up to a constant since ν is supported on all ofX (see
[44, Section 7 (Linearizations)]). Moreover, we have that

∫
F (x)h(x) dν(x) =

∫
‖∇F (x)‖2 dν(x)

which implies that ‖h‖Ḣ−1(ν) ≥ ‖F‖Ḣ(ν). Now consider the path: su = (1 + uεh)ν for u ∈ [0, 1].
su is a probability distribution for all u ∈ [0, 1] with s0 = ν and s1 = (1 + εh)ν. It is easy to see
that su satisfies the continuity equation:

∂usu + div(suVu) = 0

with Vu = ε∇F
1+uεh . Indeed, for any smooth test function f one has:

d

du

∫
f(x) dsu(x) = ε

∫
f(x)h(x) dν(x) = ε

∫
∇f(x).∇F (x) dν(x) =

∫
∇f(x).Vu(x) dsu(x).

We used the definition of F for the second equality and that ν admits a density w.r.t. to su provided
that ε is small enough. Such density is given by 1/(1 + uεh) and is positive and bounded when
ε ≤ 1

2‖h‖∞ . Now, using the Benamou-Brenier formula for W2(ν, (1 + εh)ν) one has in particular
that:

W2(ν, (1 + εh)ν) ≤
∫
‖Vu‖L2(su) du

Using the expressions of Vu and su, one gets by simple computation:

W2(ν, (1 + εh)ν) ≤ε
∫ (∫

‖∇F (x)‖2

1− uε+ uε(h+ 1)
dν(x)

) 1
2

du

≤ ε
(∫
‖∇F (x)‖2 dν(x)

) 1
2
∫ 1

0

(1− uε)− 1
2 du.

Finally, ε
∫ 1

0
(1− uε)− 1

2 du = 2(1−
√

1− ε)→ 1 when ε→ 0, hence:

lim sup
ε→0

W2(ν, (1 + εh)) ≤ ‖F‖Ḣ(ν) ≤ ‖h‖Ḣ−1(ν).

Theorem 17 and Proposition 18 allow to conclude that limε→0
1
εW2(ν, ν + ε(ν′ − ν)) = ‖ν −

ν′‖Ḣ−1(ν) for any ν′ that has a bounded density w.r.t. ν.

By analogy, one could wonder if D is also a linearization of the the Wasserstein-Fisher-Rao distance.
We leave such question for future work.

E Algorithms

E.1 Noisy Gradient flow of the MMD

Proof of Proposition 8. To simplify notations, we write Dβn(νn) =
∫
‖V (x+ βnu)‖2g(u) dνn du

where V := ∇fµ,νn and g is the density of a standard gaussian. The symbol ⊗ denotes the product
of two independent probability distributions. Recall that a sample xn+1 from νn+1 is obtained using
xn+1 = xn − γV (xn + βnun) where xn is a sample from νn and un is a sample from a standard
gaussian distribution that is independent from xn. Moreover, by assumption βn is a non-negative
scalar satisfying:

8λ2β2
nF(νn) ≤ Dβn(νn) (77)

Consider now the map (x, u) 7→ st(x) = x− γtV (x+ βnu) for 0 ≤ t ≤ 1, then νn+1 is obtained
as a push-forward of νn ⊗ g by s1: νn+1 = (s1)#(νn ⊗ g). Moreover, the curve ρt = (st)#(νn ⊗ g)
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is a path from νn to νn+1. We know by Proposition 21 that ∇fµ,νn is 2L-Lipschitz, thus using
φ(x, u) = −γV (x + βnu), ψ(x, u) = x and q = νn ⊗ g in Lemma 22 it follows that F(ρt) is
differentiable in t with:

Ḟ(ρt) =

∫
∇fµ,ρt(st(x)).(−γV (x+ βnu))g(u) dνn(x) du

Moreover, Ḟ(ρ0) is given by Ḟ(ρ0) = −γ
∫
V (x).V (x + βnu)g(u) dνn(x) du and the following

estimate holds:

|Ḟ(ρt)− Ḟ(ρ0)| ≤ 3γ2Lt

∫
‖V (x+ βnu)‖2g(u) dνn(x) du = 3γ2LtDβn(νn). (78)

Using the absolute continuity of F(ρt), one has F(νn+1)−F(νn) = Ḟ(ρ0) +
∫ 1

0
Ḟ(ρt)−Ḟ(ρ0) dt.

Combining with (78) and using the expression of Ḟ(ρ0), it follows that:

F(νn+1)−F(νn) ≤ −γ
∫
V (x).V (x+ βnu)g(u) dνn(x) du+

3

2
γ2LDβn(νn). (79)

Adding and subtracting γDβn(νn) in (79) it follows directly that:

F(νn+1)−F(νn) ≤− γ(1− 3

2
γL)Dβn(νn)

+ γ

∫
(V (x+ βnu)− V (x)).V (x+ βnu)g(u) dνn(x) du

(80)

We shall control now the last term in (80). Recall now that for all 1 ≤ i ≤ d, Vi(x) = ∂ifµ,νn(x) =
〈fµ,νn , ∂ik(x, .)〉 where we used the reproducing property for the derivatives of fµ,νn in H (see
Appendix A.1). Therefore, it follows by Cauchy-Schwartz inH and using Assumption (D):

‖V (x+ βnu)− V (x)‖2 ≤ ‖fµ,νn‖2H

(
d∑
i=1

‖∂ik(x+ βnu, .)− ∂ik(x, .)‖2H

)
≤ λ2β2

n‖fµ,νn‖2H‖u‖2

for all x, u ∈ X . Now integrating both sides w.r.t. νn and g and recalling that g is a standard gaussian,
we have: ∫

‖V (x+ βnu)− V (x)‖2g(u) dνn(x) du ≤ λ2β2
n‖fµ,νn‖2H (81)

Getting back to (80) and applying Cauchy-Schwarz in L2(νn ⊗ g) it follows:

F(νn+1)−F(νn) ≤− γ(1− 3

2
γL)Dβn(νn) + γλβn‖fµ,νn‖HD

1
2

βn
(νn) (82)

It remains to notice that ‖fµ,νn‖2H = 2F(νn) and that βn satisfies (77) to get:

F(νn+1)−F(νn) ≤ −γ
2

(1− 3

2
γL)Dβn(νn).

We introduce now Γ = 4γ(1− 3
2γL)λ2 to simplify notation and prove the second inequality. Using

(77) again in the above inequality we directly have: F(νn+1) − F(νn) ≤ −Γβ2
nF(νn). One can

already deduce that Γβ2
n is necessarily smaller than 1. Hence, taking F(νn) to the r.h. side and

iterating over n it follows that:

F(νn) ≤ F(ν0)

n−1∏
i=0

(1− Γβ2
n)

Simply using that 1− Γβ2
n ≤ e−Γβ2

n leads to the desired upper-bound F(νn) ≤ F(ν0)e−Γ
∑n−1
i=0 β2

n .
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E.2 Sample-based approximate scheme

Proof of Theorem 9. Let (uin)1≤i≤N be i.i.d standard gaussian variables and (xi0)1≤i≤N i.i.d. sam-
ples from ν0. We consider (xin)1≤i≤N the particles obtained using the approximate scheme (21):
xin+1 = xin− γ∇fµ̂,ν̂n(xin + βnu

i
n) starting from (xi0)1≤i≤N , where ν̂n is the empirical distribution

of these N interacting particles. Similarly, we denote by (x̄in)1≤i≤N the particles obtained using the
exact update equation (17): x̄in+1 = x̄in − γ∇fµ,νn(x̄in + βnu

i
n) also starting from (xi0)1≤i≤N . By

definition of νn we have that (x̄in)1≤i≤N are i.i.d. samples drawn from νn with empirical distribution
denoted by ν̄n. We will control the expected error cn defined as c2n = 1

N

∑N
i=1 E

[
‖xin − x̄in‖2

]
. By

recursion, we have:

cn+1 =
1√
N

(
N∑
i=1

E
[∥∥xin − x̄in − γ (∇fµ̂,ν̂n(xin + βnu

i
n)−∇fµ,νn(x̄in + βnu

i
n)
)∥∥2
]) 1

2

≤cn +
γ√
N

[
N∑
i=1

Ei

] 1
2

+
γ√
N

[
N∑
i=1

Gi

] 1
2

+
γ√
N

(
N∑
i=1

E
[∥∥∇fµ,ν̂n (xin + βnu

i
n

)
−∇fµ,ν̄n

(
x̄in + βnu

i
n

)∥∥2
]) 1

2

≤cn + 2γL
(
cn + E

[
W2(ν̂n, ν̄n)2

] 1
2

)
+

γ√
N

[
N∑
i=1

Ei

] 1
2

+
γ√
N

[
N∑
i=1

Gi

] 1
2

where the second line follows from a simple triangular inequality and the last line is obtained recalling
that ∇fµ,ν(x) is jointly 2L Lipschitz in x and ν by Proposition 21. Here, Ei represents the error
between ν̄n and νn while Gi represents the error between µ̂ and µ and are given by:

Ei = E
[∥∥∇fµ,ν̄n(x̄in + βnu

i
n)−∇fµ,νn(x̄in + βnu

i
n)
∥∥2
]

Gi = E
[∥∥∇fµ̂,ν̂n(xin + βnu

i
n)−∇fµ,ν̂n(xin + βnu

i
n)
∥∥2
]

We will first control the error term Ei. To simplify notations, we write yi = x̄in + βnu
i
n. Recalling

the expression of∇fµ,ν from Proposition 21 and expanding the squared norm in Ei, it follows:

Ei = E


∥∥∥∥∥∥ 1

N

N∑
j=1

∇k(yi, x̄jn)−
∫
∇k(yi, x)dνn(x)

∥∥∥∥∥∥
2


=
1

N2

N∑
j=1

E

[∥∥∥∥∇k(yi, x̄jn)−
∫
∇k(yi, x)dνn(x)

∥∥∥∥2
]

≤ L2

N2

N∑
j=1

E

[∥∥∥∥x̄jn − ∫ xdνn(x)

∥∥∥∥2
]

=
L2

N
var(νn).

The second line is obtained using the independence of the auxiliary samples (x̄in)1≤i≤N and recalling
that they are distributed according to νn. The last line uses the fact that ∇k(y, x) is L-Lipshitz
in x by Assumption (A). To control the variance var(νn) we use Lemma 19 which implies that
var(νn)

1
2 ≤ (B + var(ν0)

1
2 )eLT for all n ≤ 2T

γ . For Gi, it is sufficient to expand again the

squared norm and recall that ∇k(y, x) is L-Lipschitz in x which then implies that Gi ≤ L2

M var(µ).
Finally, one can observe that E[W 2

2 (ν̂n, ν̄n)] ≤ 1
N

∑N
i=1 E

[
‖xin − x̄in‖2

]
= c2n, hence cn satisfies

the recursion:

cn+1 ≤ (1 + 4γL)cn +
γL√
N

(B + var(ν0)
1
2 )e2LT +

γL√
M
var(µ).

Using Lemma 26 to solve the above inequality, it follows that:

cn ≤
1

4

(
1√
N

(B + var(ν0)
1
2 )e2LT +

1√
M
var(µ))

)
(e4LT − 1)

28



Lemma 19. Consider an initial distribution ν0 with finite variance, a sequence (βn)n≥0 of non-
negative numbers bounded by B <∞ and define the sequence of probability distributions νn of the
process (17):

xn+1 = xn − γ∇fµ,νn(xn + βnun) x0 ∼ ν0

where (un)n≥0 are standard gaussian variables. Under Assumption (A), the variance of νn satisfies
for all T > 0 and n ≤ T

γ the following inequality:

var(νn)
1
2 ≤ (B + var(ν0)

1
2 )e2TL

Proof. Let g be the density of a standard gaussian. Denote by (x, u) and (x′, u′) two independent
samples from νn ⊗ g. The idea is to find a recursion from var(νn) to var(νn+1):

var(νn+1)
1
2 =

(
E
[
‖x− E [x′]− γ∇fµ,νn(x+ βnu) + γE [∇fµ,νn(x′ + βnu

′)]‖2
]) 1

2

≤ var(νn)
1
2 + γ

(
E
[
‖∇fµ,νn(x+ βnu)− E [∇fµ,νn(x′ + βnu

′)]‖2
]) 1

2

≤ var(νn)
1
2 + 2γLEx,x′∼νn

u,u′∼g

[
‖x+ βnu− x′ + βnu

′‖2
] 1

2

≤ var(νn)
1
2 + 2γL(var(νn)

1
2 + βn)

The second and last lines are obtained using a triangular inequality while the third line uses that
∇fµ,νn(x) is 2L-Lipschitz in x by Proposition 21. Recalling that βn is bounded by B it is easy to
conclude using Lemma 26.

F Connection with Neural Networks

In this sub-section we establish a formal connection between the MMD gradient flow defined in (5)
and neural networks optimization. Such connection holds in the limit of infinitely many neurons and
is based on the formulation in [48]. To remain consistent with the rest of the paper, the parameters of
a network will be denoted by x ∈ X while the input and outputs will be denoted as z and y. Given a
neural network or any parametric function (z, x) 7→ ψ(z, x) with parameter x ∈ X and input data z
we consider the supervised learning problem:

min
(x1,...,xm)∈X

1

2
E(y,z)∼p

∥∥∥∥∥y − 1

m

m∑
i=1

ψ(z, xi)

∥∥∥∥∥
2
 (83)

where (y, z) ∼ p are samples from the data distribution and the regression function is an average of
m different networks. The formulation in (83) includes any type of networks. Indeed, the averaged
function can itself be seen as one network with augmented parameters (x1, ..., xm) and any network
can be written as an average of sub-networks with potentially shared weights. In the limit m→∞,
the average can be seen as an expectation over the parameters under some probability distribution ν.
This leads to an expected network Ψ(z, ν) =

∫
ψ(z, x) dν(x) and the optimization problem in (83)

can be lifted to an optimization problem in P2(X ) the space of probability distributions:

min
ν∈P2(X )

L(ν) :=
1

2
E(y,z)∼p

[∥∥∥∥y − ∫ ψ(z, x) dν(x)

∥∥∥∥2
]

(84)

For convenience, we consider L̄(ν) the function obtained by subtracting the variance of y from L(ν),
i.e.: L̄(ν) = L(ν) − var(y). When the model is well specified, there exists µ ∈ P2(X ) such that
Ey∼P(.|z)[y] =

∫
ψ(z, x) dµ(x). In that case, the cost function L̄ matches the functional F defined

in (3) for a particular choice of the kernel k. More generally, as soon as a global minimizer for (84)
exists, Proposition 20 relates the two losses L̄ and F .
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Proposition 20. Assuming a global minimizer of (84) is achieved by some µ ∈ P2(X ), the following
inequality holds for any ν ∈ P2(X ):(

L̄(µ)
1
2 + F 1

2 (ν)
)2

≥ L̄(ν) ≥ F(ν) + L̄(µ) (85)

where F(ν) is defined by (3) with a kernel k constructed from the data as an expected product of
networks:

k(x, x′) = Ez∼P
[
ψ(z, x)Tψ(z, x′)

]
(86)

Moreover, L̄ = F iif L̄(µ) = 0, which means that the model is well-specified.

The framing (85) implies that optimizing F can decrease L and vice-versa. Moreover, in the well
specified case, optimizing F is equivalent to optimizing L. Hence one can use the gradient flow
of the MMD defined in (5) to solve (84). One particular setting when (84) is well-specified is the
student-teacher problem as in [14]. In this case, a teacher network of the form ΨT (z, µ) produces
a deterministic output y = ΨT (z, µ) given an input z while a student network ΨS(z, ν) tries to
learn the mapping z 7→ ΨT (z, µ) by minimizing (84). In practice µ and ν are given as empirical
distributions on some particles Ξ = (ξ1, ..., ξM ) and X = (x1, ..., xN ) with µ = 1

M

∑M
j=1 δξj and

ν = 1
N

∑N
i=1 δxi . The particles (xi)1≤i≤N are then optimized using gradient descent starting from

an initial configuration (xi0)1≤i≤N . This leads to the update equation:

xin+1 = xin − γEz∼p

 1

N

N∑
j=1

ψ(z, xjn)− 1

M

M∑
j=1

ψ(z, ξj)

∇xinψ(z, xin)

 , (87)

where (xin)1≤i≤N are the particles at iteration n with empirical distribution νn. Here, the gradi-
ent is rescaled by the number of particles N . Re-arranging terms and recalling that k(x, x′) =
Ez∼p[ψ(z, x)Tψ(z, x′)], equation (87) becomes:

xin+1 = xin − γ∇fµ,νn(xin).

with ∇fµ,νn(xin) =
(

1
N

∑N
j=1∇2k(xjn, x

i
n)− 1

M

∑M
j=1∇2k(ξj , xin)

)
. The above equation is a

discretized version of the gradient flow of the MMD defined in (5). Such discretization is obtained
from (21) by setting the noise level βn to 0. Hence, in the limit when N → ∞ and γ → 0, one
recovers the gradient flow defined in (9). In general the kernel k is intractable and can be approximated
using nb samples (z1, ..., znb) from the data distribution: k̂(x, x′) = 1

nb

∑nb
b=1 ψ(zb, x)Tψ(zb, x

′).
This finally leads to an approximate update:

xin+1 = xin − γ∇f̂µ,νn(xin).

where ∇f̂µ,νn is given by:

∇f̂µ,νn(xin) =
1

nb

nb∑
b=1

 1

N

N∑
j=1

ψ(zb, x
j
n)− 1

M

M∑
j=1

ψ(zb, ξ
j)

∇xinψ(zb, x
i
n)).

We provide now a proof for Proposition 20:

Proof of Proposition 20. Let Ψ(z, ν)=
∫
ψ(z, x) dν(x). By (86), we have: k(x, x′) =∫

z
ψ(z, x)Tψ(z, x′) ds(z) where s denotes the distribution of z. It is easy to see that F(ν) =

1
2

∫
‖Ψ(z, ν)−Ψ(z, µ)‖2 ds(z). Indeed expanding the square in the l.h.s and exchanging the order

of integrations w.r.t p and (µ ⊗ ν) one gets F(ν). Now, introducing Ψ(z, µ) in the expression of
L(ν), it follows by a simple calculation that:

L(ν) = L(µ) + F(ν) +

∫
〈Ψ(z, µ)−m(z),Ψ(z, ν)−Ψ(z, µ)〉dp(z) (88)

where m(z) is the conditional mean of y, i.e.: m(z) =
∫
y dp(y|z). On the other hand we have

that 2L(µ) = var(y) +
∫
‖Ψ(z, µ)−m(z)‖2 dp(z), so that

∫
‖Ψ(z, µ)−m(z)‖2 dp(z) = 2L̄(µ).

Hence, using Cauchy-Schwartz for the last term in (88), one gets the upper-bound:

L(ν) ≤ L(µ) + F(ν) + 2L̄(µ)
1
2F(ν)

1
2 .
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This in turn gives an upper-bound on L̄(ν) after subtracting var(y)/2 on both sides of the inequality.
To get the lower bound on L̄ one needs to use the global optimality condition of µ for L from [15,
Proposition 3.1]. Indeed, for any 0 < ε ≤ 1 it is easy to see that:

ε−1(L(µ+ ε(ν − µ))− L(µ)) =

∫
〈Ψ(z, µ)−m(z),Ψ(z, ν)−Ψ(z, µ)〉dp(z) + o(ε).

Taking the limit ε→ 0 and recalling that the l.h.s is always non-negative by optimality of µ, it follows
that

∫
〈Ψ(z, µ)−m(z),Ψ(z, ν)−Ψ(z, µ)〉dp(z) must also be non-negative. Therefore, from (88)

one gets that L(ν) ≥ L(µ) + F(ν). The final bound is obtained by subtracting var(y)/2 again from
both sides of the inequality.

G Numerical Experiments

G.1 Student-Teacher networks

We consider a student-teacher network setting similar to [14]. More precisely, using the notation
from Appendix F, we denote by Ψ(z, ν) the neural network of the form: Ψ(z, ν) =

∫
ψ(z, x) dν(x)

where z is an input vector in Rp and ν is a probability distribution over the parameters x. Hence Ψ is
an expectation over sub-networks ψ(z, x) with parameters x. Here, we choose ψ of the form:

ψ(z, x) = G
(
b1 +W 1σ(W 0z + b0)

)
. (89)

where x is obtained as the concatenation of the parameters (b1,W 1, b0,W 0) ∈ X , σ is the ReLU non-
linearity while G is a fixed function and is defined later. Note that using x to denote the parameters
of a neural network is unusual, however, we prefer to keep a notation which is consistent with the
rest of the paper. We will only consider the case when ν is given by an empirical distribution of N
particles X = (x1, ...xN ) for some N ∈ N. In that case, we denote by νX such distribution to stress
the dependence on the particles X , i.e.: ν := νX = 1

N

∑N
i=1 δxi . The teacher network ΨT (z, νΞ)

is given by M particles Ξ = (ξ1, ..., ξM ) which are fixed during training and are initially drawn
according to a normal distributionN (0, 1). Similarly, the student network ΨS(z, νX) has N particles
X = (x1, ..., xN ) that are initialized according to a normal distributionN (10−3, 1). Here we choose
M = 1 and N = 1000. The inputs z are drawn from a uniform distribution S on the sphere in Rp
as in [14] with p = 50. The number of hidden layers H is set to 3 and the output dimension is 1.
The parameters of the student networks are trained to minimize the risk in (90) using SGD with
mini-batches of size nb = 102 and optimal step-size γ selected from: {10−3, 10−2, 10−1}.

min
X

Ez∼S
[
(ΨT (z, νΞ)−ΨS(z, νX))2

]
(90)

When G is simply the identity function and no bias is used, one recovers the setting in [15]. In
that case the network is partially 1-homogeneous and [15, Theorem 3.5] applies ensuring global
optimality. Here, we are interested in the case when global optimality is not guaranteed by the
homogeneity structure, hence we choose G to be a gaussian with fixed bandwidth σ = 2. As shown
in Appendix F, performing gradient descent to minimize (90) can be seen as a particle version of
the gradient flow of the MMD with a kernel given by k(x, x′) = Ez∼S[ψ(z, x)ψ(z, x′)] and target
distribution µ given by µ = νΞ. Hence one can use the noise injection algorithm defined in (21) to
train the parameters of the student network. Since k is defined through an expectation over the data,
it can be approximated using nb data samples {z1, ..., zB}:

k̂(x, x′) =
1

nb

nb∑
b=1

ψ(zb, x)ψ(zb, x
′). (91)

Such approximation of the kernel leads to a simple expression for the gradient of the unnormalised
witness function between νΞ and νX :

∇f̂νΞ,νX (x) =
1

nb

nb∑
b=1

 1

M

M∑
j=1

ψ(zb, ξ
j)− 1

N

N∑
i=1

ψ(zb, x
i)

∇xψ(zb, x), ∀x ∈ X . (92)

Algorithm 2, provides the main steps to train the parameters of the student network using the
noisy gradient flow of the MMD proposed in (21). It can be easily implemented using automatic
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differentiation packages like PyTorch. Indeed, one only needs to compute an auxiliary loss function
Faux instead of the actual MMD loss F and perform gradient descent using Faux. Such function is
given by:

Faux =
1

nb

N∑
i=1

nb∑
b=1

(
NoGrad

(
ybS
)
− ybT

)
ψ(zb, x̃in)

To compute Faux, two forward passes on the student network are required. A first forward pass
using the current parameter values Xn = (x1

n, ..., x
N
n ) of the student network is used to compute the

predictions ybS given an input zb. For such forward pass, the gradient w.r.t to the parameters Xn is
not used. This is enforced, here, formally by calling the function NoGrad. The second forward pass
is performed using the noisy parameters x̃in = xin + βnu

i
n and requires implementing special layers

which can inject noise to the weights. This second forward pass will be used to provide a gradient to
update the particles using back-propagation. Indeed, it is easy to see that∇xinFaux gives exactly the
gradient∇f̂νΞ,νX (x̃in) used in Algorithm 2.

G.2 Learning gaussians
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Figure 2: Gradient flow of the MMD from a gaussian initial distributions ν0 ∼ N (10, 0.5) towards
a target distribution µ ∼ N (0, 1) using N = M = 1000 samples from µ and ν0 and a gaussian
kernel with bandwidth σ = 2. (21) is used without noise βn = 0 in red and with noise βn = 10 up to
n = 5000, then βn = 0 afterwards in blue. The left figure shows the evolution of the MMD at each
iteration. The middle figure shows the initial samples (black for µ), and the right figure shows the
final samples after 105 iterations with step-size γ = 0.1.

Figure 2 illustrates the behavior of the proposed algorithm (21) in a simple setting, and compares it
with the gradient flow of the MMD without noise injection. In this setting, the MMD flow fails to
converge to the global optimum. Indeed, as shown in Figure 2(right), some of the final samples (in
red) obtained using noise-free gradient updates tend to get further away from the target samples (in
black). Most of the remaining samples collapse to a unique point at the center near the origin. This
can also be seen from Figure 2(left) where the training error fails to decrease below 10−3. On the
other hand, adding noise to the gradient seems to lead to global convergence, as seen visually from
the samples. The training error decreases below 10−4 and oscillates between 10−8 and 10−4. The
oscillation is due to the step-size, which remained fixed while the noise was set to 0 starting from
iteration 5000. It is worth noting that adding noise to the gradient slows the speed of convergence,
as one can see from Figure 2(left). This is expected since the algorithm doesn’t follow the path of
steepest descent. The noise helps in escaping local optima, however, as illustrated here.

H Auxiliary results

Proposition 21. Under Assumption (A), the unnormalised witness function fµ,ν between any proba-
bility distributions µ and ν in P2(X ) is differentiable and satisfies:

∇fµ,ν(z) =

∫
∇1k(z, x) dµ(x)−

∫
∇1k(z, x) dν(x) ∀z ∈ X (93)

where z 7→ ∇1k(x, z) denotes the gradient of z 7→ k(x, z) for a fixed x ∈ X . Moreover, the map
(z, µ, ν) 7→ fµ,ν(z) is Lipschitz with:

‖∇fµ,ν(z)−∇fµ′,ν′(z′)‖ ≤ 2L(‖z − z′‖+W2(µ, µ′) +W2(ν, ν′)) (94)
Finally, each component of ∇fµ,ν belongs toH.
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Algorithm 1 Noisy gradient flow of the MMD

1: Input N , niter, β0, γ
2: Output (xiniter )1≤i≤N

3: Initialize N particles from initial distribution ν0 : xi0
i.i.d∼ ν0

4: Initialize the noise level: β = β0

5: for n = 0, . . . , niter do
6: Sample M points from the target µ: {y1, ..., yM}.
7: Sample N gaussians : {u1

n, ..., u
N
n }

8: for i = 1, . . . , N do
9: Compute the noisy values: x̃in = xin + βnu

i
n

10: Evaluate vector field:∇fµ̂,ν̂n(x̃in) = 1
N

N∑
j=1

∇2k(xjn, x̃
i
n)− 1

M

M∑
m=1
∇2k(ym, x̃in)

11: Update the particles: xin+1 = xin − γ∇fµ̂,ν̂n(x̃in)

12: Update the noise level using an update rule h: βn+1 = h(βn, n).

Algorithm 2 Noisy gradient flow of the MMD for student-teacher learning

1: Input N , niter, β0, γ, nb, Ξ = (ξj)1≤j≤M .
2: Output (xiniter )1≤i≤N .
3: Initialize N particles from initial distribution ν0 : xi0

i.i.d∼ ν0.
4: Initialize the noise level: β = β0.
5: for n = 0, ..., niter do
6: Sample minibatch of nb data points: {z1, ..., znb}.
7: for b = 1, ..., nb do
8: Compute teacher’s output: ybT = 1

M

∑M
j=1 ψ(zb, ξj).

9: Compute students’s output: ybS = 1
N

∑N
i=1 ψ(zb, xin).

10: Sample N gaussians : {u1
n, ..., u

N
n }.

11: for i = 1, ..., N do
12: Compute noisy particles: x̃in = xin + βnu

i
n

13: Evaluate vector field: ∇f̂νΞ,νXn
(x̃in) = 1

nb

∑nb
b=1(ybS − ybT )∇xinψ(zb, x̃in)

14: Update particle i: xin+1 = xin − γ∇f̂νΞ,νXn
(x̃in)

15: Update the noise level using an update rule h: βn+1 = h(βn, n).
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Proof. The expression of the unnormalised witness function is given in (1). To establish (93), we
simply need to apply the differentiation lemma [32, Theorem 6.28]. By Assumption (A), it follows
that (x, z) 7→ ∇1k(z, x) has at most a linear growth. Hence on any bounded neighborhood of
z, x 7→ ‖∇1k(z, x)‖ is upper-bounded by an integrable function w.r.t. µ and ν. Therefore, the
differentiation lemma applies and∇fµ,ν(z) is differentiable with gradient given by (93).

To prove the second statement, we will consider two optimal couplings: π1 with marginals µ and µ′
and π2 with marginals ν and ν′. We use (93) to write:

‖∇fµ,ν(z)−∇fµ′,ν′(z′)‖ = ‖Eπ1
[∇1k(z, x)−∇1k(z′, x′)]− Eπ2

[∇1k(z, y)−∇1k(z′, y′)]‖
≤ Eπ1

[‖∇1k(z, x)−∇1k(z′, x′)‖] + Eπ2
[‖∇1k(z, y)−∇1k(z′, y′)‖]

≤ L (‖z − z′‖+ Eπ1 [‖x− x′‖] + ‖z − z′‖+ Eπ2 [‖y − y′‖])
≤ L(2‖z − z′‖+W2(µ, µ′) +W2(ν, ν′))

The second line is obtained by convexity while the third one uses Assumption (A) and finally the last
line relies on π1 and π2 being optimal. The desired bound is obtained by further upper-bounding the
last two terms by twice their amount.

Lemma 22. Let U be an open set, q a probability distribution in P2(X × U) and ψ and φ two
measurable maps from X × U to X which are square-integrable w.r.t q. Consider the path ρt from
(ψ)#q and (ψ + φ)#q given by: ρt = (ψ + tφ)#q ∀t ∈ [0, 1]. Under Assumption (A), F(ρt) is
differentiable in t with

Ḟ(ρt) =

∫
∇fµ,ρt(ψ(x, u) + tφ(x, u))φ(x, u) dq(x, u)

where fµ,ρt is the unnormalised witness function between µ and ρt as defined in (1). Moreover:∣∣∣Ḟ(ρt)− Ḟ(ρs)
∣∣∣ ≤ 3L |t− s|

∫
‖φ(x, u)‖2 dq(x, u)

Proof. For simplicity, we write ft instead of fµ,ρt and denote by st(x, u) = ψ(x, u) + tφ(x, u) The
function h : t 7→ k(st(x, u), st(x

′, u′)) − k(st(x, u), z) − k(st(x
′, u′), z) is differentiable for all

(x, u),(x′, u′) in X × U and z ∈ X . Moreover, by Assumption (A), a simple computation shows that
for all 0 ≤ t ≤ 1:∣∣∣ḣ∣∣∣ ≤ L [(‖z − φ(x, u)‖+ ‖ψ(x, u)‖) ‖φ(x′, u′)‖+ (‖z − φ(x′, u′)‖+ ‖ψ(x′, u′)‖) ‖φ(x, u)‖]

The right hand side of the above inequality is integrable when z, (x, u) and (x′, u′) are independent
and such that z ∼ µ and both (x, u) and (x′, u′) are distributed according to q. Therefore, by the
differentiation lemma [32, Theorem 6.28] it follows that F(ρt) is differentiable and:

Ḟ(ρt) = E [(∇1k(st(x, u), st(x
′, u′))−∇1k(st(x, u), z)).φ(x, u)] . (95)

By Proposition 21, we directly get Ḟ(ρt) =
∫
∇fµ,ρt(ψ(x, u) + tφ(x, u))φ(x, u) dq(x, u). We shall

control now the difference |Ḟ (ρt)− Ḟ(ρt′)| for 0 ≤ t, t′ ≤ 1. Using Assumption (A) and recalling
that st(x, u)− st′(x, u) = (t− t′)φ(x, u) a simple computation shows:∣∣∣Ḟ(ρt)− Ḟ(ρt′)

∣∣∣ ≤ L |t− t′|E [(2‖φ(x, u)‖+ ‖φ(x′, u′)‖) ‖φ(x, u)‖]

≤ L|t− t′|(2E
[
‖φ(x, u)‖2

]
+ E [‖φ(x, u)‖]2)

≤ 3L|t− t′|
∫
‖φ(x, u)‖2 dq(x, u).

which gives the desired upper-bound.

We denote by (x, y) 7→ H1k(x, y) the Hessian of x 7→ k(x, y) for all y ∈ X and by (x, y) 7→
∇1∇2k(x, y) the upper cross-diagonal block of the hessian of (x, y) 7→ k(x, y).
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Lemma 23. Let q be a probability distribution in P2(X × X ) and ψ and φ two measurable maps
from X × X to X which are square-integrable w.r.t q. Consider the path ρt from (ψ)#q and
(ψ+ φ)#q given by: ρt = (ψ+ tφ)#q ∀t ∈ [0, 1]. Under Assumptions (A) and (B), F(ρt) is twice
differentiable in t with

F̈(ρt) =E
[
φ(x, y)T∇1∇2k(st(x, y), st(x

′, y′))φ(x′, y′)
]

+ E
[
φ(x, y)T (H1k(st(x, y), y′t)−H1k(st(x, y), z))φ(x, y)

]
where (x, y) and (x′, y′) are independent samples from q, z is a sample from µ and st(x, y) =
ψ(x, y) + tφ(x, y). Moreover, if Assumption (C) also holds then:

F̈(ρt) ≥ E
[
φ(x, y)T∇1∇2k(st(x, y), st(x

′, y′))φ(x′, y′)
]
−
√

2λdF(ρt)
1
2E[‖φ(x, y)‖2]

where we recall that X ⊂ Rd.

Proof. The first part is similar to Lemma 22. In fact we already know by Lemma 22 that Ḟ(ρt) exists
and is given by:

Ḟ(ρt) = E [(∇1k(st(x, y), st(x
′, y′))−∇1k(st(x, y), z)).φ(x, y)]

Define now the function ξ : t 7→ (∇1k(st(x, y), st(x
′, y′)) − ∇1k(st(x, y), z)).φ(x, y) which is

differentiable for all (x, y),(x′, y′) in X × X and z ∈ X by Assumption (B). Moreover, its time
derivative is given by:

ξ̇ =φ(x′, y′)T∇2∇1k(st(x, y), st(x
′, y′))φ(x, y) (96)

+ φ(x, y)T (H1k(st(x, y), st(x
′, y′))−H1k(st(x, y), z))φ(x, y) (97)

By Assumption (A) it follows in particular that ∇2∇1k and H1k are bounded hence |ξ̇| is upper-
bounded by (‖φ(x, y)‖+‖φ(x′, u′)‖)‖φ(x, y)‖ which is integrable. Therefore, by the differentiation
lemma [32, Theorem 6.28] it follows that Ḟ(ρt) is differentiable and F̈(ρt) = E

[
ξ̇
]
. We prove now

the second statement. Bu the reproducing property, it is easy to see that the last term in the expression
of ξ̇ can be written as:

〈φ(x, y)TH1k(st(x, y), .)φ(x, y), k(st(x
′, y′), .)− k(z, .)〉H

Now, taking the expectation w.r.t x′ ,y′ and z which can be exchanged with the inner-product inH
since (x′, y′, z) 7→ k(st(x

′, y′), .)− k(z, .) is Bochner integrable [46, Definition 1, Theorem 6] and
recalling that such integral is given by fµ,ρt one gets the following expression:

〈φ(x, y)TH1k(st(x, y), .)φ(x, y), fµ,ρt〉H
Using Cauchy-Schwartz and Assumption (C) it follows that:

|
〈
φ(x, y)TH1k(st(x, y), .)φ(x, y), fµ,ρt

〉
H | ≤ λd‖φ(x, y)‖2‖fµ,ρt‖

One then concludes using the expression of F̈(ρt) and recalling that F(ρt) = 1
2‖fµ,ρt‖

2.

Lemma 24. Assume that for any geodesic (ρt)t∈[0,1] between ρ0 and ρ1 in P(X ) with velocity
vectors (Vt)t∈[0,1] the following holds:

F̈(ρt) ≥ Λ(ρt, Vt)

for some admissible functional Λ as defined in Definition 3, then:

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds

with G(s, t) = s(1− t)1{s ≤ t}+ t(1− s)1{s ≥ t} for 0 ≤ s, t ≤ 1.

Proof. This is a direct consequence of the general identity ([58], Proposition 16.2). Indeed, for any
continuous function φ on [0, 1] with second derivative φ̈ that is bounded below in distribution sense
the following identity holds:

φ(t) = (1− t)φ(0) + tφ(1)−
∫ 1

0

φ̈(s)G(s, t)ds.
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This holds a fortiori for F(ρt) since F is smooth. By assumption, we have that F̈(ρt) ≥ Λ(ρt, Vt),
hence, it follows that:

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)−
∫ 1

0

Λ(ρs, Vs)G(s, t)ds.

Lemma 25. [Mixture convexity] The functionalF is mixture convex: for any probability distributions
ν1 and ν2 and scalar 1 ≤ λ ≤ 1:

F(λν1 + (1− λ)ν2) ≤ λF(ν1) + (1− λ)F(ν2)

Proof. Let ν and ν′ be two probability distributions and 0 ≤ λ ≤ 1. Expanding the RKHS norm in
F it follows directly that:

F(λν + (1− λ)ν′)− λF(ν)− (1− λ)F(ν′) = −1

2
λ(1− λ)MMD(ν, ν′)2 ≤ 0.

which concludes the proof.

Lemma 26. [Discrete Gronwall lemma] Let an+1 ≤ (1 + γA)an + b with γ > 0, A > 0, b > 0 and
a0 = 0, then:

an ≤
b

γA
(enγA − 1).

Proof. Using the recursion, it is easy to see that for any n > 0:

an ≤ (1 + γA)na0 + b

(
n−1∑
i=0

(1 + γA)k

)

One concludes using the identity
∑n−1
i=0 (1 + γA)k = 1

γA ((1 + γA)n − 1) and recalling that
(1 + γA)n ≤ enγA.
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