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Abstract

Since manually labeling training data is slow and expensive, recent industrial and sci-
entific research efforts have turned to weaker or noisier forms of supervision sources.
However, existing weak supervision approaches fail to model multi-resolution
sources for sequential data, like video, that can assign labels to individual elements
or collections of elements in a sequence. A key challenge in weak supervision is
estimating the unknown accuracies and correlations of these sources without using
labeled data. Multi-resolution sources exacerbate this challenge due to complex
correlations and sample complexity that scales in the length of the sequence. We
propose Dugong, the first framework to model multi-resolution weak supervision
sources with complex correlations to assign probabilistic labels to training data.
Theoretically, we prove that Dugong, under mild conditions, can uniquely recover
the unobserved accuracy and correlation parameters and use parameter sharing
to improve sample complexity. Our method assigns clinician-validated labels to
population-scale biomedical video repositories, helping outperform traditional
supervision by 36.8 F1 points and addressing a key use case where machine learning
has been severely limited by the lack of expert labeled data. On average, Dugong im-
proves over traditional supervision by 16.0 F1 points and existing weak supervision
approaches by 24.2 F1 points across several video and sensor classification tasks.

1 Introduction

Modern machine learning models rely on a large amount of labeled data for their success. However,
since hand-labeling training sets is slow and expensive, domain experts are turning to weaker, or noisier
forms of supervision sources like heuristic patterns [21], distant supervision [38], and user-defined
programmatic functions [48] to generate training labels. The goal of weak supervision frameworks is
to automatically generate training labels to supervise arbitrary machine learning models by estimating
unknown source accuracies [17, 29, 46, 51, 56, 59].

Using these frameworks, practitioners can leverage the power of complex, discriminative models
without hand-labeling large training sets by encoding domain knowledge in supervision sources.
This approach has achieved state-of-the-art performance in many applications [40, 56] and has been
deployed by several large companies [4, 11, 12, 25, 32, 34]. However, current techniques do not
account for sources that assign labels at multiple resolutions (e.g. labeling individual elements and
collections of elements), which is common in sequential modalities like sensor data and video.

Consider training a deep learning model to detect interviews in TV news videos [15]. As shown
in Figure 1, supervision sources used to generate training labels can draw on indirect signals from
closed caption transcripts (per-scene), bounding box movement between frames (per-window),
and pixels in the background of each frame (per-frame). However, existing weak supervision
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Joining me now… Universal health care… Paradise awaits… Thank you very much!

S-W Faces the same size as previous frame?

S-T Transcript section starts with “Joining me now” or ends with “Thank you”?

S-V Show is “State of the Union” on CNN?

S-F Blue Background?

S-W Faces the same size as previous frame?

S-W Faces the same size as previous frame?

Sequential Dependency Structure

S-F Blue Background? S-F Blue Background? S-F Blue Background?
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Figure 1: Multi-resolution weak supervision sources to label video analytics training data. S-X outputs
noisy label vectors λj and represents various supervision sources at different resolutions: Video (S-V),
Transcript (S-T), Window (S-W), and Frame (S-F) (brown, yellow, blue, orange). We show a graphical
model structure for modeling these sources at different resolutions (r=1,2,3): dotted nodes represent
latent true labels, solid nodes represent the noisy supervision sources, and edges represent sequential
relations.

frameworks cannot model two key aspects of this style of sequential supervision. First, sources are
multi-resolution and can assign labels on a per-frame to per-window to per-scene basis, implicitly
creating sequential correlations among the noisy supervision sources that can lead to conflicts within
and across resolutions. Second, we have no principled way to incorporate distribution prior, like how
frames with interviews are distributed within a scene—and this is critical for temporal applications.

The core technical challenge in this setting is integrating diverse sources with unknown correlations and
accuracies at scale without observing any ground truth labels. Traditionally, such issues have been tack-
led via probabilistic graphical models, which are expressive enough to capture sequential correlations
in data. Unfortunately, learning such models via classical approaches such as variational inference [55]
or Gibbs sampling [30] presents both practical and theoretical challenges: these techniques often fail
to scale, in particular in the case of long sequences. Moreover, algorithms for latent-variable models
may not always converge to a unique solution, especially in cases with complex correlations.

We propose Dugong— the first weak supervision framework to integrate multi-resolution supervision
sources of varying quality and incorporate distribution prior to generate high-quality training labels.
Our model uses the agreements and disagreements among diverse supervision sources, instead of
traditional hand-labeled data, at different resolutions (e.g., frame, window, and scene-level) to output
probabilistic training labels at the required resolution for a downstream end model. We develop a
simple and scalable approach that estimates parameters associated with source accuracy and correlation
by solving a pair of linear systems.

We develop conditions under which the underlying statistical model is identifiable. With mild
conditions on the correlation structure of sources, we prove that the model parameters are recoverable
directly from the systems. We show that we can reduce the dependence of sample complexity on the
length of the sequence from exponential to linear to independent, using various degrees of parameter
sharing, which we analyze theoretically. Applying recent results in weak supervision literature, we
then show that the generalization error of the end model scales asO(1/

√
n) in the number of unlabeled

data points—the same asymptotic rate as supervised approaches.

We experimentally validate our framework on five real-world sequential classification tasks over
modalities like medical video, gait sensor data, and industry-scale video data. For these tasks, we
collaborate with domain experts like cardiologists to create multi-resolution weak supervision sources.
Our approach outperforms traditional supervision by 16.0 F1 points and existing state-of-the-art weak
supervision approaches by 24.2 F1 points on average.

We also create an SGD variant of our method that enables implementation in modern frameworks like
PyTorch and achieves 90× faster runtimes compared to prior Gibbs-sampling based approaches [3, 48].
This scalability enables using clinician-generated supervision sources to automatically label
population-scale biomedical repositories such as the UK Biobank [50] on the order of days, addressing
a key use case where machine learning has been severely limited by the lack of expert labeled data
and improving over state-of-the-art traditional supervision by 31.7 F1 points.
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Figure 2: A schematic of the Dugong pipeline. Users provide a set of unlabeled sequences where each
sequenceX=[X1,...,XT ], a set of weak supervision sources S1,...,Sm, each of which assigns labels
at multiple resolutions (frame, window, scene), a sequential structure (i.e., Gsource and Gtask), and a
distribution prior P̄Y . The label model estimates the unknown accuracies and correlation strengths of
the supervision sources and assigns probabilistic training labels to each element, which can be used to
train a downstream end model.

2 Training Machine Learning Models with Weak Supervision

Practitioners often weakly supervise machine learning models by programmatically generating
training labels through the process shown in Figure 2. First, users provide multiple weak supervision
sources, which assign noisy labels to unlabeled data. These labels overlap and conflict, and a label
model is used to integrate them into probabilistic labels. These probabilistic labels are then used to
train a discriminative model, which we refer to as the end model.

While generating training labels across various sequential applications, we found that supervision
sources often assign labels at different resolutions: given a sequence with T elements, sources can
assign a single label per element, per collection of elements, or for the entire sequence. We describe
a set of such supervision sources as multi-resolution. For example in Figure 1, to train an end model
that detects interviews in TV shows, noisy labels can be assigned to each frame, each window, or each
scene. Sources S-F, S-W, and S-V each assign labels to a frame at resolution level r=1, a window at
r=2, and scene at r=3, respectively. While each source operates at a specific resolution, the sources
together are multi-resolution. The main challenge is combining source labels into probabilistic training
labels by estimating source accuracies and correlations without ground-truth labels.

2.1 Problem Setup

We set up our classification problem as follows:

• Let X = [X1,X2,...,XT ]∈X be an unlabeled sequence with T elements (video frames in
Figure 1).

• For each sequence X , we assign labels to tasks at multiple resolutions (Y1, Y1,2, Yseq etc.
in Figure 1). We formally refer to the tasks using indices T ={1,...,|T |} (|T |=4+3+1=8
for the resolutions r=1,2,3 shown in Figure 1).

• These tasks are at multiple resolutions (3 resolutions in Figure 1) with the set of tasks at
resolution r denotedRr⊆T .

• Y ∈Y is a vector [y1,...,y|T |] of unobserved true labels for each task, and (X,Y ) are drawn
i.i.d. from some distributionD.

Users provide m multi-resolution sources S1, ... ,Sm. Each source Sj assign labels λj to a set of
tasks τj ⊆ T , (henceforth coverage set), with size sj = |τj |. Each source only assigns labels at a
specific resolution r, enforcing τj⊆Rr for fixed r. Users also provide a task dependency graphGtask
specifying relations among tasks, a source dependency graph Gsource specifying relations among
supervision sources that arise due to shared inputs (Figure 1), and a distribution prior P̄ (Y ) describing
likelihood of labels in a sequence (Figure 2). While Gsource is user-defined, it can also be learned
directly from the source outputs [3, 54].
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We want to apply weak supervision sourcesS to an unlabeled datasetX consisting ofn sequences, com-
bine them into probabilistic labels, and use those to supervise an end model fw :X →Y (Figure 2). Since
the labels from the supervision sources overlap and conflict, we learn a label model P (Y |λ) that takes
as input the noisy labels and outputs probabilistic labels at the resolutions required by the end model.

2.2 Label Model

Given inputsX,S,Gtask,Gsource,P̄ (Y ), we estimate the sources’ unknown accuracies and correlation
strengths. Accuracy parameters µ and correlation parameters φ define a label model Pµ,φ(Y |λ), which
can generate probabilistic training labels. To recover parameters without ground-truth labels Y , we
observe the agreements and disagreements of these noisy sources across different resolutions.

To recover these parameters, we form a graph G describing all relations among sources and task
labels, combiningGsource withGtask. The resulting graphical model encodes conditional independence
structures. Specifically, if (λj ,λk) is not an edge inG, then λj and λk are independent conditioned
on all of the other variables.

For ease of exposition, we assume the binary classification setting where yi∈{−1,1}, λi∈{−1,1}
for T per-element tasks and 1 per-sequence task. The accuracy parameter for source j for some
Z,W ∈{−1,1}sj+1 is

µj(Z,W )=P
(
λj=Z | Yτj =W

)
. (1)

Intuitively, this parameter captures the accuracy of each supervision source with respect to the
ground truth labels in coverage set τj . Next, for each correlation pair of sources (λj ,λk) and for some
Z1∈{−1,1}sj ,Z2∈{−1,1}sk ,W ∈{−1,1}|τj∪τk|, we wish to learn

φj,k(Z1,Z2,W )=P (λj=Z1,λk=Z2 | Yτ =W ), (2)

where τ=τj∪τk.

2.3 Parameter Reduction

Our assumption above of conditioning only on ground-truth labels for tasks in the source’s coverage set
instead of the full T greatly reduces the number of parameters. While we have at least 2T parameters
without the assumption, we now only need to learn 22sj parameters per source, where sj tends to be
much smaller than T .

In addition, we can model each source accuracy conditioned on each task, rather than over its full
coverage set, reducing from 22sj to 4sj parameters and going from exponential to linear dependence on
coverage set size, which is at mostT . Lastly, we can also use parameter sharing: we share across sources
that apply the same logic to label different, same-resolution tasks (µ1 =µ2 =µ3 =µ4 in Figure 1).

3 Modeling Sequential Weak Supervision

The key challenge in sequential weak supervision settings is recovering the unknown accuracies and
correlation strengths in our graphical model of multi-resolution sources, given the noisy labels, the
dependency structures Gsource and Gtask, coverage sets τ , and distribution prior P̄Y . We propose a
provable algorithm that recovers the unique parameters with convergence guarantees by reducing
parameter recovery into systems of linear equations. These systems recover probability terms that
involve the unobserved true label Y by exploiting the pattern of agreement and disagreement among
the noisy supervision sources at different levels of resolution (Section 3.1). We theoretically analyze
this algorithm, showing how the estimation error scales with the number of samples n, the number of
sourcesm, and the length of the sequence T . Our approach additionally leverages repeated structures
in sequential data by sharing appropriate parameters, significantly reducing sample complexity to no
more than linear in the sequence length (Section 3.2). Finally, we consider the impact of our estimation
error on the end model trained with labels produced from our label model, showing that end model
generalization scales with unlabeled data points asO(1/

√
n), the same asymptotic rate as if we had

access to labeled data (Section 3.2).
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3.1 Source Accuracy Estimation Algorithm

Our approach is shown in Algorithm 1: it takes as input samples of sources λ1,...,λm, independencies
resulting from the graph G, and the prior P̄Y and outputs the estimated accuracy and correlation
parameters, µ̂ and φ̂ (for simplicity, we only show the steps for µ in Algorithm 1.)

While we have access to the noisy labels assigned by the supervision sources, we do not observe
the true labels Y and therefore cannot calculate µ directly. However, given access to the user-defined
distribution prior and the joint probabilities, such as P (λj({1}),y2), we can apply Bayes’ law to
estimate µ (Section 3.1.4). Since the joint probabilities also include the unobservable Y term, we
break it into the sum of product variables, such as P (λj({1})y2 =1) (Section 3.1.3). Note that we still
have a dependence on the true label Y : to address this issue, we take advantage of (1) the conditional
independence of some sources (Section 3.1.2), (2) the fact that we can observe the agreement and
disagreements among the sources (Section 3.1.1), and (3) in the binary setting, y2 =1.

We describe the steps of our algorithm and explain the assumptions we require, which involve the
number of conditionally independent pairs of sources we have access to and how accurately they vote
on their tasks.

Algorithm 1: Accuracy Parameter Estimation

Input: Samples of sources λ1,...,λn, Dependency structureG, Dist. prior P̄ (Y )
1 for source j∈{1,...,m} do
2 for coverage subsetsU,V ⊆τj do
3 UsingG, get source set Sj where ∀k,`∈Sj , ∃Uk,U`

s.t. aj(U,V )⊥ak(Uk,V ), aj(U,V )⊥a`(U`,V ), ak(Uk,V )⊥a`(U`,V ). SetUj=U
4 for k,`∈Sj∪{j} do
5 Calculate gen. agreement measure: ak(Uk,V )a`(U`,V )=

∏
Uk,U`

λk(Uk)λ`(U`)

6 Form q=logE[ak(Uk,V )a`(U`,V )]
2 over coverage subsetsUk,U`,V

7 Solve agreement-to-products system: find `U,V s.t. M`U,V =q

8 Form product probability vector r(`U,V )
9 Solve products-to-joints system: find e s.t. B2sje=r

10 µj←e/P̄ (Y )
Output :Parameter µ̂

3.1.1 Generalized Agreement Measure

Given the noisy labels assigned by the supervision sources, λ1,...,λm, we want some measure of
agreement between these sources and the true label Y . For sources j and k, letU,U ′,V be subvectors
of the coverage sets τj ,τk,τj∪τk, respectively. We use the notation

∏
XA(X) to represent the product

of all components ofA indexed byX . We then define a generalized agreement measure as aj(U,V )=∏
λj(U)

∏
Y (V ),which represents the agreement between the supervision source and the unknown

true label whenU=V and |U |=1. Note that this term is not directly observable as it is a function of Y .

Instead, we look at the product of two such terms:

aj(U,V )ak(U ′,V )=
∏
U,U ′

λj(U)λk(U ′)
∏
V

(Y (V ))2 =
∏
U,U ′

λj(U)λk(U ′).

Since the (Y (V ))2 components multiply to 1 in the binary setting, we are able to represent the product
of two generalized agreement measures in terms of the observable agreement and disagreement
between supervision sources. Therefore, we are able to calculate aj(U,V )ak(U ′,V ) across values
ofU,V directly from the observed variables.

3.1.2 Agreements-to-Products System

Given the product of generalized agreement measures, we solve for terms that involve the true label
Y , such as aj(U,V ). Since we cannot observe these terms directly, we instead solve a system of
equations that involve log E[aj(U,V )], the log of the expectation of these values when we have certain
assumptions about independence of different sources, conditioned on variables from Y . We give more
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details in the Appendix. As an example, note that if λj(U) is independent of λk(U ′) given
∏
Y (V )

for |V |=1, which is information that can be read off of the graphical modelG, then

E[aj(U,V )]E[ak(U ′,V )]=E[aj(U,V )ak(U ′,V )]=E
[ ∏
U,U ′

λj(U)λk(U ′)
]
. (3)

In other words, the conditional independencies of the sources translate to independencies of the
accuracy-like terms a.

Note that the middle term in (3) can be calculated directly using observed λ’s. Now we wish to form
a system of equations to solve for the terms on the left-most side. We can take the log of the left-most
term and the right-most term to form a system of linear equations,M`=q. M contains a row for each
pair of sources, ` is the vector we want to solve for and contains the terms with aj(U,V ), and q is the
vector we observe and contains the terms with λj(U)λk(U ′). We can solve this system up to sign
ifM is full rank, which is true ifM has at least three rows. This is true if we have a group of at least
three conditionally independent sources.

Assumptions We now have the notation to formally state our assumptions. We assume that each
aj(U,V ) has at least two other independent accuracies (equivalently, sources independent conditioned
on YV ) and |E [aj(U,V )] | > 0, i.e., our accuracies are correlated with our labels, positively or
negatively), and that we have a list of such independencies (to see how to obtain such a list from the
user-provided graphs, more information is in the Appendix). We also assume that on average, a group
of connected sources have a better than random chance of agreeing with the labels, which enables
us to recover the signs of the accuracies. These are standard weak supervision assumptions [45].

Once we solve for E [aj(U,V )], we can calculate the product variable probabilities
ρj(U, V ) = P (aj(U, V ) = 1) = 1/2(1 + E [aj(U,V )]). Note that product variable probabili-
ties ρ relies on the the true label Y , since aj(U,V ) represents the generalized agreement between the
source label and true label. However, we have now solved for this term despite not observing Y directly.

3.1.3 Products-to-Joints System

Given the product variable probabilities, we now want to solve for the joint probabilities p , such
as P (λj,1,Y2). Fortunately, linear combinations of the appropriate pj(Z,W ) =P (λj =Z,Yτj =W )
result in ρj(U,V ) terms. Our goal is to solve for the unknown joint probabilities given the estimated
ρj product variables, user-defined distribution prior P̄Y , and observed labels from the sources λ.

Say that λ1 has coverage τ1 =[1], so that it only votes on the value of y1. Then, forU={1},V ={1},
we know ρ1(U,V ) = P (λ1,1y1 = 1). But we have that P (λ1,1y1 = 1) = p1(+1,+1)+p1(−1,−1),
which is the agreement probability. Using similar logic, we can set up a series of linear equations:1 1 1 1

1 0 1 0
1 1 0 0
1 0 0 1


p1(+1,+1)
p1(−1,+1)
p1(+1,−1)
p1(−1,−1)

=

 1
P (λ1,1 =1)
P (Y1 =1)
ρ1(U,V )

.
Note that because of how we set up this system, the vector on the left-hand side contains the
probabilities we need to estimate the joint probabilities. The right hand side vector contains either
observable (P (λ1,1 =1)), estimated (ρ1(U,V )), or user-defined (P (Y1 =1), from P̄Y ) terms. In this
example, the matrix is full-rank and we can therefore solve for the p1 terms.

To extend this system to the general case, we form a system of linear equations,B2sje=r. B2sj is the
products-to-joints matrix (we discuss its form below), e is the vector we want to solve for and contains
the pj(Z,W ) terms, and r is the vector we have access to and contains observable, user-defined, and
estimated ρj(U,V ) terms. B2sj is 22sj×22sj -dimensional 0/1 matrix. Let⊗ be the Kronecker product;
then, we can representB2sj as a Hadamard-like matrix (we show it is full rank in the Appendix):

B2sj =
1

2

[
1 1
1 −1

]
⊗2sj +

1

2
11T .

We can now solve for terms required to calculate the joint probabilities and use them to obtain the µ pa-
rameters by using Bayes’ law and the user-defined distribution priorµj(z,w)=pj(Z,W )/P (Yτj =W ).
We can calculate the φ parameters in a similar fashion as µ, except now we operate over pairs of
supervision sources, always working with products of correlated sources λiλj (details in Appendix).

6



3.1.4 SGD-Based Variant

Note that Algorithm 1 explicitly builds and solves the linear systems that are set up via the agreement
measure constraints. This involves a small amount of bookkeeping. However, there is a simple
variant that relies on SGD for optimization and simply uses the constraints between the accuracies
and correlations. That is, we use `2 losses on the constraints (and additional ones required to make
the probabilities consistent) and directly optimize over the accuracy and correlation variables µ,φ.
Under the assumptions we have set up in this section, these algorithms are effectively equivalent; in
the experiments, we use the SGD-based variant due to its ease of implementation in PyTorch.

3.2 Theoretical Analysis: Scaling with Sequential Supervision

Our ultimate goal is to train an end model using the labels aggregated from the supervision sources
using the estimated µ and φ for the label model. We first analyze Algorithm 1 with parameter sharing
as described in Section 2.3 and discuss the general case in the Appendix. We bound our estimation
error and observe the scaling in terms of the number of unlabeled samples n, the number of sources
m, and the length of our sequence T . We then connect the generalization error to the end model to the
estimation error of Algorithm 1, showing that generalization error scales asymptotically inO(

√
1/n),

the same rate as supervised methods but in terms of number of unlabeled sequences.

We have n samples of each of the m sources for sequences of length T , and the graph structure
G=(V,E). We allow for coverage sets of size up to T . We assume the previously-stated conditions
on the availability of conditionally independent sources are met, that ∀j,|E[aj(U,V )]|≥b∗min>0, and
that sign recovery is possible (for example, it is sufficient to have ∀j,U,V ,

∑
λk∈Sj

E[ak(U,V )]> 0

where Sj is defined as in Algorithm 1). We also take pmin to be the smallest of the entries in P̄ (Y ).
Let ‖·‖ be the spectral norm.

Theorem 1 Under the assumptions above, let µ̂ and φ̂ be estimates of the true µ∗ and φ∗ produced
with Algorithm 1 with parameter reduction. Then,

E[‖µ̂−µ∗‖]≤
√
mT

24

pminb∗min

‖B−12T ‖‖M
†‖

(√
18log(12)

n
+

2log(12)

n

)
. (4)

The expectation E[‖φ̂−φ∗‖] satisfies the bound (4), replacing
√
mT withmT andB2 withB4.

Interpreting the Theorem The above formula scales with n as O(
√

1/n), and critically, no
more than linear in T . We prove a more general bound without parameter reduction, which scales
exponentially in T in Appendix D. The expression scales withm asO(

√
m) andO(m) for estimating

µ and φ, respectively. The standard scaling factors for the random vectors produced by the sources
are m and m2; however, we need only two additional sources for each source, leading to the

√
m

and m rates. The linear systems enter the expression only via ‖B†‖. These are fixed; in particular,
‖B†2‖=1.366 and ‖B†4‖=1.112.

End Model Generalization After obtaining the label model parameters, we use them to
generate probabilistic training labels for the resolution required by the end model. The pa-
rameter error bounds from Theorem 1 allow us to apply a result from [45], which states that
under the common weak supervision assumptions (e.g., the parameters of the distribution we
seek to learn are in the space of the true distribution), the generalization error for Y satisfies
E[l(ŵ,X,Y )−l(w∗,X,Y )]≤ γ+8(‖µ̂−µ∗‖+‖φ̂−φ∗‖). Here, l is a bounded loss function and w
are the parameters of an end model fw :X →Y . We also have ŵ as the parameters learned with the
estimated label model using µ and φ, and w∗= argminwl(w,X,Y ), the minimum in the supervised
case. This result states that the generalization error for our end models scales with the amount of
unlabeled data asO(1/

√
n), the same asymptotic rate as if we had access to the true labels.

4 Experimental Results

We validate Dugong on real-world sequential classification problems, comparing end model
performance trained on labels from Dugong and other baselines. Dugong improves over traditional
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Figure 3: (Left) Dugong has fewer false positives than data programming on a cyclist detection task
since it uses sequential correlations and distributional knowledge to assign better training labels. (Right)
Increasing unlabeled data can help match a benchmark model trained with 686×more ground truth
data, i.e., using traditional supervision (TS).

supervision and other state-of-the-art weak supervision methods by 16.0 and 24.2 F1 points on average
in terms of end model performance, respectively. We also conduct ablations to compare parameter
reduction techniques, the effect of modeling dependencies, and the advantage of using a user-defined
prior, with average improvements of 3.7, 10.4, and 13.7 F1 points, respectively. Finally, we show how
our model scales with the amount of unlabeled data, coming within 0.1 F1 points of a model trained
on 686×more ground-truth labels.

4.1 Datasets

We consider two types of tasks, spanning various modalities: (a) tasks that are expensive and slow
to label due to the domain expertise required, and (b) previously studied, large-scale tasks with strong
baselines often based on hand-labeled data developed over months. All datasets include a small
hand-labeled development set (< 10% of the unlabeled data) used to tune supervision sources and
end model hyperparameters. Results are reported on test set as the mean± S.D. of F1 scores across
5 random weight initializations. See Appendix D for additional task and dataset details, precision
and recall scores, and end model architectures.

Domain Expertise These tasks can require hours of expensive expert annotations to build large-scale
training sets. The Bicuspid Aortic Valve (BAV) [13] task is to classify a congenital heart defect over MRI
videos from a population-scale dataset [50]. Labels generated from Dugong and sources based on char-
acteristics like heart area and perimeter are validated by cardiologists. Interview Detection (Interview)
identifies interviews of Bernie Sanders from TV news broadcasts; across a large corpus of TV news, in-
terviews with Sanders are rare, so it requires significant labeling effort to curate a training set. Freezing
Gait (Gait) is ankle sensor data from Parkinson’s patients and the task is to classify abnormal gait [28],
using supervision sources over characteristics like peak-to-peak distance. Finally, EHR consists of tag-
ging mentions of disorders in patient notes from electronic health records. We only report label model
results for EHR, but Dugong improves over a majority vote baseline by 3.7 F1 points (Appendix D.5).

Large-Scale Movie Shot Detection (Movie) classifies frames that contain a change in scene using
sources that use information about pixel values, frame-level metadata, and sequence-level changes. This
task is well-studied in literature [20, 52] but adapting the method to specialized videos requires manually
labeling thousands of minutes of video. Instead, we use 686× fewer ground truth labels and various
supervision sources to match the performance of a model pre-trained on a benchmark dataset with
ground truth labels (Figure 3). Basketball operates over a subset of ActivityNet [7] and uses supervision
sources over frames and sequences. Finally, we use a representative dataset for cyclist detection from
a large automated driving company (Cars) [36] and show that we outperform their best baseline by 9.9
F1 points. The Cars end model is proprietary, so we only report label model results (Appendix D.5).
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End Model Performance Improvement

Task Prop T TS MV DP Dugong TS MV DP

BAV 0.07 5 22.1 ± 5.1 6.2 ± 7.6 53.2 ± 4.4 53.8 ± 7.6 +31.7 +47.6 +0.6
Interview 0.03 5 80.0 ± 3.4 58.0 ± 5.3 8.7 ± 0.2 92.0 ± 2.2 +12.0 +34.0 +83.3
Gait 0.33 5 47.5 ± 14.9 61.6 ± 0.4 62.9 ± 0.7 68.0 ± 0.7 +20.5 +6.4 +5.1
Shot 0.10 5 83.2 ± 1.0 86.0 ± 0.9 86.2 ± 1.1 87.7 ± 1.0 +4.5 +1.7 +1.5
Basketball 0.12 5 26.8 ± 1.3 8.1 ± 5.4 7.7 ± 3.3 38.2 ± 4.1 +11.4 +30.1 +30.5

Table 1: End model performance in terms of F1 score (mean± std.dev). Improvement in terms of mean
F1 score. Prop: proportion of positive examples in the dev set, T : number of elements in a sequence.
We compare end model performance on labels from labeled dev set (TS), majority vote across sources
(MV), and data programming (DP) and outperform each across all tasks.

4.2 Baselines

For the tasks described above, we compare to the following baselines (Table 1): Traditional Supervision
(TS) in which end models are trained using the hand-labeled development set; Non-sequential Majority
Vote (MV): in which we force all supervision sources assign labels per-element, and calculate training
labels by taking majority vote across sources; and Data Programming (DP) [46]: a state-of-the-art
weak supervision technique that learns the accuracies of the sources but does not model sequential
correlations.

In tasks with domain expertise required, our approach improves over traditional supervision by up to
36.8 F1 points and continually improves precision as we add unlabeled data, as shown in Figure 3. Large-
scale datasets have manually curated baselines developed over months; Dugong is still able to improve
over baselines by up to 30.5 F1 points by capturing sequential relations properly — as shown in Figure 3,
only modeling source accuracies (DP) can fail to take into account the distribution prior and sequential
correlations among sources that can help filter false positives, which Dugong does successfully.

4.3 Ablations

We demonstrate how each component of our model is critical by comparing end model performance
trained on labels from Dugong without any sequential dependencies, Dugong without parameter
sharing for sources with shared logic (Section 2.3), and Dugong with various distribution priors:
user-defined, development-set based, and uniform. We report these comparisons in Appendix D and
summarize results here.

Without sequential dependencies, end model performance worsens by 10.4 F1 points on average,
highlighting the importance of modeling correlations among sources. We see that sharing parameters
among sources that use the same logic to assign labels at the same resolution performs 3.7 F1 points
better on average. Using a user-defined distribution prior improves over using a uniform distribution
prior by 13.7 F1 points and a development-set based distribution prior by 1.7 F1 points on average,
highlighting how domain knowledge in forms other than supervision sources is key to generating high
quality training labels.

5 Conclusion

We propose Dugong, the first weak supervision framework that integrates multi-resolution weak super-
vision sources including complex dependency structures to assign probabilistic labels to training sets
without using any hand-labeled data. We prove that our approach can uniquely recover the parameters as-
sociated with supervision sources under mild conditions, and that the sample complexity of an end model
trained using noisy sources matches that of supervised approaches. Experimentally, we demonstrate
that Dugong improves over traditional supervision by 16.0 F1 points and existing weak supervision
approaches by 24.2 F1 points for real-world classification tasks training over large, population-scale
biomedical repositories like UKBiobank [50] and industry-scale video datasets for self-driving cars.
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First we discuss related work and then provide a glossary of the terminology and notation used
throughout this paper for ease of reference. Afterwards, we provide our theoretical analysis, and
extended theorem statement, proofs, and more details on model identifiability. Lastly, we include
additional details and experiments.

A Related Work

Our work is related to several weak supervision techniques such as traditional distant supervi-
sion [8, 23, 38, 51], co-training methods [5], pattern-based supervision [18] and feature annotation
techniques [33, 35, 58]. Recent works also use generative models [3, 47, 48] and other methods [17, 29]
to integrate these noisy sources. However, these approaches do not handle sequential correlations
or multi-resolution sources and require expensive sampling-based techniques that can lead to
non-identifiability. One recent approach directly models weak supervision sources using deep
generative models for trajectory data, but does not use weak supervision sources to label training
data for arbitrary end models [59]. Our proposed approach is also related to recent techniques for
estimating classifier accuracies without labeled data in the presence of structural constraints [42].
Similarly, our approach is related to crowdsourcing [10, 27], specifically to spectral and method of
moments-based approaches [2, 9, 16, 61]. However, we focus on the settings that are not covered by
crowdsourcing, such as multi-resolution sources, sequential correlation structures, and regimes in
which a small number of labelers, or sources, assign noisy labels to a large set of datapoints. We also
theoretically characterize how the end model trained on labels from noisy sources generalizes.

B Glossary

The glossary is given in Table 2 below.

C Proofs and Extended Theoretical Analysis

We give more details on the theoretical results we provided in the body. We start by providing the
proof of Theorem 1. Afterwards, we discuss model identifiability, expressing tradeoffs involving
multi-resolution models. Finally, we provide further detail on simulations and how to access
conditional independencies from graphs.

First, we begin with a proof of Theorem 1. The following lemma will be useful. We use a little
bit of notation. Let D = (d1, ... , dt) be a random vector in {−1,+1}t. For particular vectors
U,V,Z ∈{−1,+1}t, we write pD(Z) =P (d1 = z1,...,dt = zt) and ρD(U) =P (

∏
UDU = 1). The p

term is a joint probability and the ρ term is a product probability. Let

Bt=
1

2

[
1 1
1 −1

]
⊗t+1

2
11T .

Here, 1 is the all 1’s vector andA⊗k represents taking the Kronecker productA⊗A a total of k times.

Let the vector e contain the 2t entries pD(Z), withZ taken in the following order. zt=+1 for the first
2t−1 entries and−1 for the latter 2t−1 entries, zt−1 =+1 for the first 2t−2 entries, and so on, so that
z1 alternates between +1 and−1. Similarly, let the vector r contain the 2t choices of ρD(U) running
over all 2t subsets of {1,...,t}. We write ρD(∅)=1. Then, the ordering of the entry in r is similar to
the ones in e: the first half of the U terms in ρD do not contain the entry t, the latter half do, and so
on, so that every alternating entry contains the entry 1. Then,

Lemma 1 With the setup above,Bte=r.

Proof: We prove the result by induction on t. For the base case we take t=1. Then, using the above
formula forB1, we must have the following, which is clearly true[

1 1
1 0

][
pD([1])
pD([−1])

]
=

[
ρD(∅)
ρD({1})

]
.
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Symbol Used for

X Unlabeled data sequence,X=[X1,X2,...,XT ]∈X
T Length of the unlabeled data sequence
n Number of data sequences
T Task indices
Y Latent, ground-truth label vector, Y =[y1,y2,...,yT ,yT+1,...,y|T |]∈Y
yi Ground-truth label for ith task, yi∈{−1,1}
D Distribution from which we assume (X,Y ) data points are sampled i.i.d.
r Resolution level. r=1 refers to resolution level in which each of the T elements is labeled
Rr⊆T Set of task indices that are at resolution r
Gtask Task dependency graph describing the correlation structure among tasks in a graph
m Number of sources
λi Output of Sj forX , λi∈{−1,1,0}
τj Coverage set of λj - the task indices τj⊆T for which Sj can label. For Sj operating at resolution r,

τj⊆Rr
sj Size of the jth source coverage set, sj= |τj |
Gsource Source dependency graph that describe the correlation structure among source,

particularly for correlations due to shared inputs
G Full dependency graph,G=(V,E) obtained by combiningGsource andGtask.

V ={λ1,...,λm}∪{y1,...,y|T |}
µj Accuracy parameter for source j; µj(Z,W )=P

(
λj=Z | Yτj =W

)
φj,k Correlation parameter for sources j,k;

φj,k(Z1,Z2,W )=P (λj=Z1,λk=Z2 | Yτ =W )
P̄Y Class prior for the Y label vector
aj Generalized agreement measure; aj(U,V )=

∏
λj(U)

∏
Y (V );

Products are observable for common V
U,V Subsets of the coverage set τj
M Matrix for first linear system, each row encodes pairs of agreements that factorize
q Observable vector with E[λj(U)λk(U ′)] terms
` Solution for products variable system systemM`=q;

Contains the terms logE[ak(U ′,V )]
2

ρj Product variable obtainable from generalized agreement;
ρj(U,V )=P (aj(U,V )=1)= 1

2 + 1
2E[aj(U,V )]

pj Joint distribution for source j and Yτj ;pj(Z,W )=P (λj=Z,Yτj =W )
B2sj Products-to-joints transformation matrix
r Vector containing the ρj(U,V ); is estimated after products variable system is solved
e Vector containing the pj(Z,W ), solution to products-to-joints systemB2sje=r

Table 2: Glossary of variables and symbols used in this paper.

Next, we assume the result holds for t = k, and we show it is true for t = k+ 1. That is, we have
Btek = rk, and we’d like to show thatBt+1ek+1 = rk+1. It follows from the definition ofBt+1 that
it can be decomposed as

Bt+1 =

[
Bt Bt
Bt B̄t

]
,

where the bar indicates flipped 1’s and 0’s. Furthermore, from our ordering, we have that ek+1 can
be written as [ek∩(dt+1 =1),ek∩(dt+1 =−1)]T , where we augment each probability term in ek with
either dt+1 = 1 or dt+1 =−1. Similarly, we have that rk+1 = [rk;rk∪dt+1]T . Then, what we want
to show,Bt+1ek+1 =rk+1, is equivalent to[

Bt Bt
Bt B̄t

][
ek∩(dt+1 =1)
ek∩(dt+1 =−1)

]
=

[
rk

rk∪dt+1

]
.

The result follows almost immediately. For the block of rk+1 on the top, we are summing the Bt
including both cases dt+1 =1 and dt+1 =−1, which sums up to rk using the law of total probability
and the inductive hypothesis. For the bottom block, we are summing over the probabilities of cases
where dt+1 =1 and the other terms in eachU multiply to 1, along with those with dt+1 =−1 and the
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others multiplying to−1, which gives all the cases where the terms inU∪{t+1}multiply to 1, which
is indeed the lower subvector on the right. Thus we are done. �

Now we are ready for the proof of Theorem 1. Recall our assumptions: we see n samples for each
of them sources for sequences of length T , and we have the graph structureG=(V,E). Our coverage
sets are of length up to T . We have sufficiently many conditionally independent sources, and also
that ∀j,|E[aj(U,V )]|≥ b∗min>0. Finally, we assume that sign recovery is possible. One way to have
this is to require that ∀j,U,V ,

∑
λk∈Sj

E[ak(U,V )]>0 where Sj is defined as in Algorithm 1.

With this, we prove a more general statement, without parameter reduction, and then we show how
to obtain from it the parameter reduction case in Theorem 1.

Theorem 2 Under the assumptions previously described, let µ̂ and φ̂ be estimates of the true µ∗ and
φ∗ produced with Algorithm 1. Then,

E[‖µ̂−µ∗‖]≤22T
√
m

6

pminb∗min

‖B−12T ‖‖M
†‖

(√
18log(6×2T )

n
+

2log(6×2T )

n

)
. (5)

The expectation E
[∣∣∣∣∣∣φ̂−φ∗∣∣∣∣∣∣] satisfies the bound (4), replacing

√
mwithm,B2T withB4T , and 2T

with 22T .

Moreover, ‖M†‖=1, and with parameter tying, (5) reduces to the expression in Theorem 1.

Proof: There are two steps to the proof. First, we must show that the true parameters µ∗ and φ∗ are
produced by Algorithm 1 when we have access to the true, population-level joint probabilities of the
sources. Afterwards, we compute the noisy version due to sampling error.

Population-Level Result There are two necessary results: first, we need to show that the true param-
eters are solutions to the second system, and, secondly, that they are the unique solutions. We start with
the first system. We work over each source j and some fixedU,V coverage sets for λj and Y . From the
algorithm, we have a set of sources Sj ∈V (G) with c= |Sj∪{j}|≥3 so that λj(U) and λk(Uk) are in-
dependent conditioned on

∏
Y (V ), and likewise for each pair of sources in Sj over their corresponding

U ’s. For simplicity, we take c=3 exactly, but it is easy to solve larger systems, and the proof below does
not depend on the value of c. We then say we have Sj∪{j}={j,k,f}, that is, our sources are λj ,λk,λf .

We formulate the resulting matrixM . Recall that each row ofM corresponds to an equation

logE[aj(U,V )]
2
+logE[ak(U ′,V )]

2
=logE

[ ∏
U,U ′

λj(U)λk(U ′)

]2
.

We have 3 such equations, for the pairs (j,k),(j,f), and (k,f). Then, our linear system is M`= q,
given by

[
1 1 0
1 0 1
0 1 1

] logE[aj(U,V )]
2

logE[ak(U ′,V )]
2

logE[af (U ′′,V )]
2

=


logE

[∏
U,U ′λj(U)λk(U ′)

]2
logE

[∏
U,U ′′λj(U)λf (U ′′)

]2
logE

[∏
U ′,U ′′λk(U ′)λf (U ′′)

]2
. (6)

The 3 × 3 matrix above is full-rank, so that we can obtain the unique solution—the vector of
E[aj(U,V )]

2 terms. Note that the above easily extends for more than 3 such equations. In the case of
c>3 sources, the matrix has

(
c
2

)
rows, each with exactly two 1’s. The resulting matrix is also full-rank.

To see this, we apply a result of A. M. Odlyzko [41] that states for 0/1, constant row-sum matrices
(sum is 2 in our case), with c>4,

(
c−1
2

)
+1 distinct rows always guarantee that the matrix is full rank.

For c= 4, Odlyzko’s result requires 2
(

c−2
(c−2)/2)

)
+1 = 5 distinct rows, and we have

(
4
2

)
= 6, so this

case works as well.

The only remaining step for the first system is to deal with identifiability. The above allows us to get
the squares of the E[aj(U,V )] terms. We thus need to recover their signs by using the sign recovery
assumption. One obvious approach is to require that each of our sources has accuracy that satisfies
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E[aj(U,V )]>0. However, much milder assumptions are possible: Note that once we know the sign
of a single source accuracy, say k, we get all others, since for each source f , we have an equation
for each pair (k,f). So in fact, as mentioned in the assumptions, the much weaker requirement that∑
λk∈Sj

E[ak(U,V )]>0 is sufficient. There are other potential variants as well.

Now, by running the above procedure for all sources j and all the U,V ’s, we are ready to form the
second system. We apply Lemma 1 with t=2sj andD=(λj ,Yτj ) obtaining thatB2sje=r.

To solve uniquely, we need to show that B2sj is also full-rank. Note that the rank is not affected
by adding a constant to each entry, unless it produces a 0 row, which it does not in this case, since
the Hadamard matrix here was selected to have no all−1 rows. The Kronecker product of matrices

multiplies the corresponding ranks. Since
[
1 1
1 −1

]
is full-rank, B2sj must be as well. Thus, there

is a unique solution to our system, and it is indeed the desired pj(Z,W )’s. Moreover, we can uniquely
recover the µ parameters as well, as long as we know the distribution of Y . Finally, the same logic
applies to the φ parameters, concluding the argument for the population-level result.

Sampling-Level Result Now we apply a matrix concentration inequality to bound the sampling
error. First, we require more notation.

For the first system, we’d like to estimate terms like logE
[∏

U,U ′λj(U)λk(U ′)
]2

. Again, say we
are working with three sources j,k,f . Let us say they all work with the same coverage subset U of
maximal size T , which is an upper bound for our general case.

Then, for j we create o = 2T indicator variables, one for each configuration of λj(U). Call these
variables cj,1,cj,2,...,cj,o, and likewise for k and l. For example, if T =2, then cj,1,...,cj,4 correspond
to 1{λj=[−1,−1]},1{λj=[−1,1]}, and so on.

We stack these vectors together to form the vector c of length 3o, and we estimate the matrix
O∗=E

[
ccT
]
. We do this by estimating c1,c2,...,cn from our samples λ1,...,λn, filling in the indicators

accordingly. Then, we use the estimate Ô= 1
n

∑n
i=1c

i(ci)T . Our first step is obtaining a bound on
‖∆O‖=‖O∗−Ô‖.

We use the matrix Bernstein inequality following [53]. Let ∆O = Ô − O∗ =
∑n
i=1 Si, where

Si=
1
n (ci(ci)T−O∗). Then, using Theorem 1.6.2 in [53], we can write

E[‖∆O‖]≤
√

2v(∆O)log(6o)+
1

3
Llog(6o). (7)

Here, the dimensions of ∆O are 3o × 3o, v(∆O) is the variance of ∆O, which is defined as
‖E
[
∆O∆T

O

]
‖, and, finally, L is an upper bound on ‖ 1n (ci(ci)T −O∗)‖. We can apply the result by

taking the bound on ‖ci‖2 to be 3o/n and a bound on ‖O∗‖ to be 3o/n as well. We also need to bound
the variance v(∆O); using the same ideas as in [53], we get v(∆O)≤ 3o‖O‖

n . Then, we have that

E[‖∆O‖]≤
√

18o2log(6o)

n
+

2olog(6o)

n
. (8)

This tells us how to bound the error between all the configurations that λj and λk can take on. We
define b∗ as

b∗=


E
[∏

U,U ′λj(U)λk(U ′)
]

E
[∏

U,U ′λj(U)λf (U ′)
]

E
[∏

U,U ′λk(U)λf (U ′)
]
.

Note that the U sets are the same for all the sources, but we’re summing over all possible values for
each pair.

We wish to bound ‖b∗−b̂‖, where b̂ is the version of b∗ obtained with the use of the estimated Ô. We
do this for j,k to write the following. By ’same sign’ forw,z, we refer to them having the same parity
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in the number of +1’s, so that the parity of the products of the terms agree.

|b∗j,k−b̂j,k|=

∣∣∣∣∣
( ∑
w,z same sign

P (λj=w,λk=z)−
∑

w,z opp. sign
P (λj=w,λk=z)

)

−

( ∑
w,z same sign

ĉw,z−
∑

w,z opp. sign
ĉw,z

)∣∣∣∣∣.
Here we broke up the product over the sum of terms that multiply to 1 and those that multiply to−1.
On the estimated side, we use the corresponding values of ĉ, which are our empirical estimates of
the means of the c indicators. Now, we upper bound by moving the sum out, to get

|b∗j,k−b̂j,k|≤
∑
w,z
|P (λj=w,λk=z)−Ôwz|.

Summing over all the sources, we get that

‖b∗−b̂‖1≤‖O∗−O‖1.

From this, we have that

‖b∗−b̂‖≤
√

3o‖O∗−O‖. (9)

Now we have control over the gap between b and b∗. Recall that we form q̂ from log(b̂2), then we solve
the 3×3 system in (6). Let ∆b = b̂−b∗. We have that, with the summation below running over the
three pairs starting with (j,k),

‖q̂−q∗‖2 =
∑
(j,k)

(
log(b̂2j,k)−log((b∗)2j,k)

)2
=4

∑
(j,k)

(
log(|b̂j,k|)−log(|(b∗)j,k|)

)2
=4

∑
(j,k)

(
log(|b∗j,k+(∆b)j,k|)−log(|b∗j,k|)

)2
=4

∑
(j,k)

[
log

(
1+

∣∣∣∣∣ (∆b)j,k
b∗j,k

∣∣∣∣∣
)]2

≤4
∑
(j,k)

(
|(∆b)j,k|
|b∗j,k|

)2

≤ 4

(b∗min)2
∑
(j,k)

(∆b)
2
j,k.

Here we used the fact that (log(1+x))2 ≤ x2. Next, we sum and take square roots and plug in our
bound, (9)

‖q̂−q∗‖≤ 2

b∗min

‖∆b‖

≤ 2
√

3o

b∗min

‖O∗−O‖.
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Next, we recall that ρ̂= 1
2 +exp(

ˆ̀

2 ) and similarly for ρ∗. Here, the exponent is taken by entry. To
obtain ˆ̀, we solve our systemM ˆ̀= q̂. Then, we have that

‖ρ̂−ρ∗‖=

∥∥∥∥∥exp

(
ˆ̀

2

)
−exp

(
`∗

2

)∥∥∥∥∥
=

∥∥∥∥∥exp

(
`∗

2

)(
exp

(
ˆ̀−`∗

2

)
−1

)∥∥∥∥∥
≤
∥∥∥∥exp

(
`∗

2

)∥∥∥∥
∥∥∥∥∥exp

(
ˆ̀−`∗

2

)
−1

∥∥∥∥∥
=‖ρ∗‖

∥∥∥∥∥exp

(
ˆ̀−`∗

2

)
−1

∥∥∥∥∥
≤
√

3

∥∥∥∥∥exp

(
ˆ̀−`∗

2

)
−1

∥∥∥∥∥.
If x is small, the we have that exp(x)≤2x+1. So, for large enough n, and thus the case of small ˆ̀−`∗,∥∥∥∥∥exp

(
ˆ̀−`∗

2

)
−1

∥∥∥∥∥≤‖ˆ̀−`∗‖.
Thus,

‖ρ̂−ρ∗‖≤
√

3‖ˆ̀−`∗‖
≤
√

3‖M†‖‖q̂−q∗‖

≤ 6
√
o

b∗min

‖M†‖‖O∗−O‖.

Since ‖x‖∞≤‖x‖, we also get that

‖ρ̂−ρ∗‖∞≤
6
√
o

b∗min

‖M†‖‖O∗−O‖.

This concludes our error analysis for the first system; we proceed to the second. Recall that we
assemble the vector r by stacking together o=2T entries of various ρ’s. Thus,

‖r∗−r̂‖≤
√
o‖ρ̂−ρ∗‖∞

≤ 6o

b∗min

‖M†‖‖O∗−O‖.

Next, we deal with the second system: B2T e=r means e=B−12T r, asB2T is full rank, so

‖ê−e∗‖=‖B−12T (r̂−r∗)‖
≤‖B−12T ‖‖r̂−r

∗‖

≤‖B−12T ‖
6o

b∗min

‖M†‖‖O∗−O‖.

All of this was for a fixed source, and we have m such sources. Now, forming µ from the terms in
e only involves scaling by the probabilities of the Y ’s; the smallest such term is pmin. We have that

‖µ̂−µ∗‖≤
√
m‖B−12T ‖

6o

pminb∗min

‖M†‖‖O∗−O‖.
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Taking expectations, we have that

E[‖µ̂−µ∗‖]≤
√
m‖B−12T ‖

6o

pminb∗min

‖M†‖

(√
18o2log(6o)

n
+

2olog(6o)

n

)
.

Recall that o=2T , we get

E[‖µ̂−µ∗‖]≤22T
√
m

6

pminb∗min

‖B−12T ‖‖M
†‖

(√
18log(6×2T )

n
+

2log(6×2T )

n

)
.

Now we have the general expression. In the case of parameter reduction, we take T =1 in the powers,
since all of our sources only use a single step, but now we use up tomT of them, which replacesm.
We then have,

E[‖µ̂−µ∗‖]≤
√
mT

24

pminb∗min

‖B−12T ‖‖M
†‖

(√
18log(12)

n
+

2log(12)

n

)
.

The expressions for φ follow similarly, but with pairs of edges, so that we replace
√
m withm, and

similarly in T . �

C.1 Identifiability

Next we discuss identifiability for our models. Our algorithm already implicitly guarantees identifiabil-
ity under our assumptions, but we may be interested in which situations are sufficient, in the challenging
multi-resolution setting with many latent labels, to guarantee model identifiability in general.

Our approach is to apply results from the seminal work [1], which provides identifiability results
based on Kruskals’ theorem on the uniqueness of 3-tensor decompositions. Applying this result in
creative ways, [1] recovers results on identifiability for latent mixtures of product distributions, hidden
Markov models (HMMs), and other latent variable models. The sense of identifiability here is generic
identifiability, which corresponds to the information-geometric view. We consider the parameter
space of our models as a variety, and demonstrate identifiability everywhere except potentially a
measure-zero subvariety.

We break down our approach into two cases. The first case does not have any type of parameter
reduction. The second case does. In both cases, we consider the parametrizations of both the true
label and the sources. As usual, our sequence is of length T .

General case First, we consider the case where the distribution of true labels does not factorize
across time. We consider labels for all subsets of steps of lengths 1 (Y1 resolution, or frames), length
T (the full-sequence level) and one additional resolution window level, such g, with 1<g<T . We
assume that the labels are in {0,...,r−1}, so that our label alphabet is

Y=rT+1+(T−g+1).

Next, we considerm sources that vote on (some part) of the time series sequenceX . We view these
as being independent conditioned on Y (we can group non-independent sources together if necessary
and simply count the remaining components).

Let us say that each supervision source is capable of producing one of v possible votes on the time
series. One concrete example is sources that can label each window of length up tow (with each label
having r choices). Then the total number of possible votes is

v=rT +rT−1+...+rT−w+1 =
rT+1−rT+1−w

r−1
.

Now we can apply Corollary 5 from [1], which states that identifiability is guaranteed if
m≥2dlogvr

2T+2−ge+1.

For an example of how this works, consider r=2, so that each subset gets a binary label, as throughout
our paper. Then, v= 2T+1−2T+1−w. If our window size is just 1, we get v= 2T , and then, if, say
g=2, that 2dlogv2

2T+2−ge+1=2×2+1=5, so that we need 5 sources.
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Figure 4: Simulation plots. (Left) Estimation error ||µ̂− µ∗||2 decreases with increasing N and
improves with parameter tying (Ours). (Middle) Modeling sequential dependencies (Ours) leads to
improved prediction performance over naive model. (Right) Our runtime is up to 90× faster than
Gibbs-sampling based approaches.

Parameter Reduction The previous approach is challenging practically, as we showed in our
theorem in the previous section. The parameter space is very large—which makes parameter recovery
challenging even if identifiability is ensured. In fact there is a tension between identifiability and
recovery, since the first requires a large number of parameters, while the second is easier with fewer.
Below we describe identifiability in the general case using based on parameter reduction. We exploit
a type of reduction to the HMM model.

First, we use a Markovian model for Y =(y1,...,y2T+1). The 2T+1 is simply for convenience here.
We group together windows of length u. For convenience, say u|(2T+1). Then, let each of the groups
(y1,...,yu),(yu+1,...,y2u),... form a stationary Markov chain. The state space corresponds to the space
of labels of subsets of the window, which has cardinality r2

u

—we allow labels for any particular subset
of the window.

Next, we similarly set up a model for each of the sources. We set the number of outputs for each
window of length u to again be v. Again, if we havem conditionally independent sources, our alphabet
over the sources is vm. Moreover, the Kruskal rank of the product distribution matrix of the sources has
full Kruskal rank if each of the functions does. This puts us in a position to apply Theorem 6 from [1],
for the HMM-style model we’ve just defined. We need, for identifiability, that the number of windows
we label, which is k=(2T+1)/u, satisfies(

k+vm−1

vm−1

)
≥r2

u

.

We can write this as a function of T :(
(2T+1)/u+vm−1

vm−1

)
≥r2

u

.

Now we can express this in terms of particular variables; note that this is a tradeoff between:

• u, the complexity of the chain for Y ,
• T , the parameter for the length of the sequence,
• v, the resolution of the supervision source votes, and
• m, the number of conditionally independent sources.

C.2 Simulations

Simulations of effects of increasingN and parameter tying on estimation error, effects of modeling
sequential dependencies on prediction performance, and runtime are shown in Figure 4.

C.3 Conditional Independencies

In Section 3.1, we discussed assumptions that are used in the parameter recovery algorithm. We
described that we use a list of independencies among the source agreement measures (that is, the
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aj(U,V ) terms). These independencies can be derived from the source graphs, which are provided
by the user. Below, we give additional details on this operation.

Note that there are multiple types of graphical models that provide us with such independencies. Our
method is agnostic to this choice, as long as we can obtain the list of independencies. The illustrative
example we consider is that of a binary Ising model where the sources have no singleton potentials. For
simplicity of notation, we simply show a single label Y =Y1 and the sources λ1,...,λm (that is, we take
τ1 ={1,...,m}); normally, we would have a full model over all the Yi’s andλj’s. We write the density as

f(Y,λ1,λ2,...,λm)=
1

Z
exp

(
θY Y +

m∑
i=1

θY,iY λi+
∑

(i,j)∈E
θi,jλiλj

)
.

Here,Z is the partition function,E is the edge set among the sources in the graphical model, and the
θ’s are canonical parameters. The following argument provides the intuition for why the aj(U,V )
are independent in this setting whenever their nodes are disconnected in the graph. We have that

f(Y,λ1,λ2,...,λm)=
1

Z
exp

(
θY Y +

m∑
i=1

θY,iY λi+
∑

(i,j)∈E
θi,jλiλj

)

=exp

(
θY Y +

m∑
i=1

θY,iY λi+
∑

(i,j)∈E
θi,j(λiY )(λjY )

)

=exp

(
θY Y +

m∑
i=1

θY,iai(U,V )+
∑

(i,j)∈E
θi,jai(U,V )aj(U,V )

)
,

which indeed factorizes as long as there is no path inGsource between i and j (other than the one through
Y ). Next, these terms are summed to produce a distribution over the aj’s, and symmetries enable us
to produce the desired independencies.

The above showed the simplified case whereU is a single source and V consists of the Y label only.
This can be extended to the case where |U |>1 or |V |>1 (or both). There is a parity requirement for
the symmetries to work. Specifically, at least one of the ai,aj must involve an even number of terms,
that is, |U |+|V | is even.

D Extended Experimental Details

We describe additional details about the tasks described in Section 4, including details about
supervision sources, the user-defined class prior, and the end model trained on labels generated by
baselines and our method. Dataset statistics provided in Table 3.

D.1 Dataset Details and Train/Dev/Test Splits

Bicuspid Aortic Valive (BAV): We use the dataset from [13] and use the train/dev/test splits from
that work.

Interview Detection (Interview): We use the dataset from [15] and use the dev/test splits from that
work. We additionally use an additional 57 hours of unlabelled data as the train split.

Freezing Gait (Gait): Our dataset consists of sensor data sessions from different patients. We reserve
a collection of sessions for dev and test, and split by patient to ensure that dev and test come from
similar distributions.

Movie Shot Detection (Shot): Our total dataset consists of 589 Hollywood movies (roughly 1200
hours). We treat windows of 16 consecutive frames as elements in our sequence notation and classify
individual elements with the end model (so a sequence of length five is 80 consecutive frames). We
have ground truth annotations for 45 minutes of data randomly distributed across 29 of the movies,
which we split into the dev and test set by scene. We note that this gives an unfair advantage to
traditional supervision, but Dugong outperforms nonetheless.

ActivityNet Basketball Identification (Basketball): We take the subset of ActivityNet videos
containing sports videos and aim to identify basketball videos. We sample one frame every two
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seconds and classify individual frames as either coming from basketball videos or the other sports
videos. We randomly select 5% of the videos as our dev set and 5% of the videos as our test set.

Cyclist Detection in Self-Driving Car Dataset (Car): Our dataset consists of 50 minute of
self-driving car dash cam footage, split into five videos [36]. The task is to identify whether individual
frames, sampled at 10 FPS, contain cyclists. We select one video to split into dev and test, and reserve
the rest of the videos as unlabelled training data. We split dev/test by taking a strided window of 5
frames with a stride of 10 frames (starting dev and test at frames 1 and 6 respectively) to ensure that
dev and test come from the same distribution.

Disorder Tagging in Electronic Health Record Text (EHR): This dataset consists of 299 patient
notes sampled from MIMIC-III[26, 39], labeled for all mentions of disorders (e.g., aortic stenosis,
pneumonia). The dataset is split into 133 development documents and 166 test documents, containing
10,940 and 16,641 sentences respectively. Training data consists of 10,000 sentences randomly
sampled from 5,000 unlabeled MIMIC-III documents. Labels are generated per-word in IO
(inside/outside) tag format.

D.2 Task-Specific End Models

For BAV and Shot tasks, we use previously published end model architectures. For Gait and Open
tasks, we rely on generic, off-the-shelf architectures commonly used for these modalities. We do
not claim that these end models achieve the best possible performance for these tasks; our goal is to
compare the relative improvements that our sequential weak supervision model provides compared to
other baselines, which is orthogonal to achieving state-of-the-art performance for these specific tasks.

Bicuspid Aortic Valve (BAV): We use the CNN-LSTM architecture described in [13] for use in
classifying aortic valve malformations. This architecture includes a frame encoder for learning
frame-level features and a sequence encoder for combining individual frames into a single feature
vector. The frame encoder is a Dense Convolutional Network (DenseNet) [24] with 40 layers and
a growth rate of 12, pretrained on 50,000 images from CIFAR-10 [31]. The sequence encoder is
a bidirectional Long Short-term Memory (LSTM) [22] with soft attention [57]. All weights were
fine-tuned during training. Models are trained using all MRI frames as input.

Interview Detection (Interview): We use ResNet-50 pre-trained on ImageNet to classify individual
frames of the video.

Freezing Gait (Gait): We use a single layer bidirectional LSTM and hidden state dimension 300 as
our end model that takes in a multivariate sensor stream as input. In order to provide longer sequential
context, we pass in a windowed version of each candidate that includes past and future frames. Window
size was tuned empirically, with [-3,+1] performing best overall. Since the sequence length of each
frame slightly varies, we then pad these sequences (with 0’s) and truncate any sequences over a
pre-defined maximum sequence length. To provide more contextual signal, we also add multiplicative
attention to pool over the hidden states in the LSTM.

Movie Shot Detection (Shot): We use a C3D ConvNet with a ResNet-18 backbone pre-trained on
the Kinetics dataset [19]. This is a common architecture for deep shot detection [20, 52]. We feed
in 16 conseuctive frames as input and classify whether or not there is a shot boundary in the 16 frames.

ActivityNet Basketball Identification (Basketball): We use ResNet-18 pre-trained on ImageNet to
classify individual frames of the video.

Cyclist Detection in Self-Driving Car Dataset (Car): We only report label model results for this
dataset, since we cannot release the proprietary end model used for this task.

Disorder Tagging in Electronic Health Record Text (EHR): We only report label model results for
this dataset.

D.3 Supervision Sources

Supervision sources are expressed as Python functions with an average of 5 lines each. We list how
many of the supervision sources operated on an element-level basis, a subsequence level basis (more
than one frame), and a sequence level basis in Table 3. The supervision sources relied on the following
information to assign noisy labels:
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Bicuspid Aortic Valve (BAV): First, the aortic valve in each frame was segmented using an
intensity-based thresholding technique. The supervision sources relied on feature values derived from
these segmented regions (i.e., area, perimeter, average intensity, eccentricity, and ratio of area and
perimeter) to assign labels to each frame. Each supervision source assigned a label to the same frame
that it used information from.

Interview Detection (Interview): Two weak supervision sources use face identities on individual
frames; they vote yes if Bernie Sanders or a host are detected in a particular frame, respectively. One
labeling function checks whether the text “thank you" appears in the transcript within 30 seconds of
a segment, and another checks whether there are the same number faces over the course of 30 seconds.

Freezing Gait (Gait): The first supervision source employed uses stride time arrhythmicity [43, 44],
which is calculated as average coefficient of variation for the past 3 stride times of the left and right leg.
In addition to stride time arrhythmicity, other supervision sources we use involve the swing angular
range of the shank, and the amplitude and variance in shank angular velocity. Out of the five total
supervision sources used for this task, 3 of them operated on an element-level basis, and 2 of them
operated on a sequence level (4 and 11 frames at a time).

Movie Shot Detection (Shot): We compute frame-to-frame differences in HSV, RGB, and optical flow
histograms. We detect frames that have large amounts of visual change from the frames immediately
preceding them by detecting outliers in the frame-to-frame differences between histograms. These
make up our three sequence-level weak supervision sources. We also introduce two weak supervision
sources based on face detections. We run the MTCNN face detector [60] twice a second (once every
twelve frames for a film shot at 24 FPS) and say that there is no shot change between detections if
we find the same number of faces or if we find faces in the same location. On the other hand, if we
find faces in different locations between detections, we say that there is a shot change. These make
up our two subsequence-level weak supervision sources.

ActivityNet Basketball Identification (Basketball): We use an off-the-shelf object detector [49] on
one frame every two seconds to generate primitives. Our weak supervision sources operate on the
objects detected in each frame; we detect whether a person and ball are detected in the frame, what
the distance between the person and ball in the frame are, the color of the ball, and how much vertical
distance the ball moves across a sequence.

Cyclist Detection in Self-Driving Car Dataset (Car): We aim to classify whether frames contain
cyclists in a representative sample of a self-driving car dataset. We detect whether frames have people
or bicycles using an off-the-shelf object detector [37]. The object detect small bikes (i.e. when the
bikes are far away), so we also write some heuristics for small person detections.

Disorder Tagging in Electronic Health Record Text (EHR): Supervision sources are a collection
of biomedical lexicons from the Unified Medical Language System (UMLS) [6] and a single stopword
list. UMLS lexicons are broken down by semantic type (e.g., Disease or Syndrome, Finding) with
each type mapped to a positive or negative label as per [14]. Positive and negative lexicons are merged
by source vocabulary (e.g., SNOMEDCT_US) to generate 12 supervision sources.

Dataset Statistics Supervision Statistics
Dataset End Model T Ntrain Ndev Ntest m R1 R2 R3

BAV CNN-LSTM 5 4329 10 6 94 5 5 0 0
Interview ResNet-50 5 6835 3026 3563 4 2 2 0
Gait LSTM 3 1793 630 1014 5 3 0 2
Shot C3D ConvNet 5 35,376 363 369 5 0 2 3
Basketball ResNet-18 5 3594 212 244 4 3 0 1
Car - 5 4785 670 669 4 4 0 0
EHR - 2 10,000 10,940 16,641 12 12 0 0

Table 3: We report the train/dev/test split in terms of the number of sequences in each set. The dev
and test set have ground truth labels, which we assign labels to the train set using our method or one
of the baseline methods. m is the number of supervision sources, withR1,R2, andR3 the number of
supervision sources that label individual elements, subsequences, or the whole sequence, respectively.
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D.4 User-Defined Class Prior

We set the task-specific class prior for the tasks in the following manner. As discussed in Section 4,
the user-defined prior outperformed the uniform and development set based for Open and Shot, but
not for BAV and Gait.

Bicuspid Aortic Valve (BAV): The labels were assigned on a sequence level for this task. The estimated
incidence of BAV in the population is 1-2%, which was used to set the user-defined prior. However, the
development and test sets have much higher prevalence rates (6-7%) as an artifact of their construction,
thus an empirical prior derived directly from the development set performed best overall. Note the
uniform class balance performs poorly due to incorrectly assuming that all label combinations within a
sequence are equally likely, i.e., frames within a single sequence can alternate between BAV and normal.

Interview Detection (Interview): The class priors were set starting with the class balance from the
development set, and then slightly adjusting probabilities based on intuition of interview incidence.

Freezing Gait (Gait): We design our own class prior by first starting with the class balance from the val-
idation set, and then slightly adjusting probabilities based on intuition of freezing behavior. For example,
we don’t expect freezing and non-freezing behavior to alternate frequently in successive gait cycles so
we assign very low probabilities to these events. Other sequences, such as consecutive freezing and con-
secutive non-freezing are likely more common, so we assign relatively high probabilities to these events.

Movie Shot Detection (Shot): In this task, the labels are assigned to individual candidates in a five-
candidate sequence. Each candidate is in turn a window of 16 consecutive frames. We set our prior based
on the development set, but we manually reduce the likelihood of rare sequences to 0% (in particular,
we set the likelihood of a sequence to 0% if we observe five or fewer instances in our development set).

ActivityNet Basketball Identification (Basketball): In this task, labels are assigned per-frame for
the end model, but our sequential modeling views sequences of five frames. We set our prior based
on the development set, then slightly adjust the values based on intuition.

Cyclist Detection in Self-Driving Car Dataset (Car): We set our prior based on the development
set, but manually reduce the likelihood of rare sequences to 0 (in particular, we set the likelihood of
a sequence to 0 if we observe five or fewer instances in our development set).

Disorder Tagging in Electronic Health Record Text (EHR): We set our prior based on the
development set.

D.5 Detailed Results

We report detailed precision, recall, and F1 results for all datasets in Tables 4 and 5.

D.6 Parameter Ablations

We examine how the following elements of our method improve empirical performance (Table 5):

No parameter reduction (w.o Param Tie): We force our model to learn a separate accuracy parameter
per supervision source per resolution it labels and a separate correlation parameter per pairwise
dependency. We show that this can hurt end model performance by 3.7 F1 points on average since
there is not enough data to correctly estimate this many parameters.

No sequential Dependencies (w.o Temp Deps): We remove all sequential dependencies from our model,
but still learn accuracy parameters for the supervision sources with parameter reduction. This hurts
end model performance by 10.4 F1 points on average since removing the sequential dependencies
among the supervision sources leads to “double counting” of the votes from sources that use similar
information from the underlying data and overestimates the accuracies for these sources.

D.7 Class Prior Ablations

We examine the effect of the user-defined prior for the distribution of labels in a sequence (Table 5):

Uniform Probability (Uniform): All label configurations for a given sequence are equally likely.

Prior based on Dev Set (Dev): Class priors are set empirically using the development set.
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Baselines

Task Metric TS MV DP Dugong

Precision 26.1 ± 3.8 6.9 ± 8.6 70.0 ± 19.8 100.0 ± 0.0
BAV Recall 20.0 ± 7.0 5.7 ± 7.0 45.7 ± 5.7 37.1 ± 7.0

F1 22.1 ± 5.1 6.2 ± 7.6 53.2 ± 4.4 53.8 ± 7.6
Precision 72.4 ± 4.0 48.7 ± 5.7 4.5 ± 0.1 89.6 ± 4.2

Interview Recall 89.5 ± 3.0 72.4 ± 6.4 99.1 ± 0.0 94.6 ± 0.8
F1 80.0 ± 3.4 58.0 ± 5.3 8.7 ± 0.2 92.0 ± 2.2

Precision 65.2 ± 13.7 47.0 ± 1.0 50.3 ± 1.6 65.6 ± 1.5
Gait Recall 47.6 ± 28.1 89.8 ± 3.0 84.1 ± 2.2 70.8 ± 2.4

F1 47.5 ± 14.9 61.6 ± 0.4 62.9 ± 0.6 68.0 ± 0.7
Precision 87.7 ± 2.5 79.7 ± 2.1 79.0 ± 1.9 87.8 ± 2.9

Shot Recall 79.3 ± 1.3 93.4 ± 1.0 94.3 ± 1.2 87.6 ± 3.4
F1 83.2 ± 1.0 86.0 ± 0.9 86.2 ± 1.1 87.7 ± 1.0

Precision 30.3 ± 3.6 10.0 ± 6.9 7.6 ± 2.9 33.0 ± 4.0
Basketball Recall 24.1 ± 0.4 6.8 ± 4.4 8.0 ± 3.7 46.0 ± 7.2

F1 26.8 ± 1.3 8.1 ± 5.4 7.7 ± 3.3 38.2 ± 4.1
Precision N/A 57.7 57.8 95.3

Car∗ Recall N/A 81.3 83.7 64.9
F1 N/A 67.5 68.4 77.3

Precision N/A 82.7 79.1 85.6
EHR∗ Recall N/A 57.4 61.2 61.4

F1 N/A 67.8 69.0 71.5
Table 4: Precision, recall, and F1 numbers for baselines. All reported values are means across five
random weight initializations,± standard deviation, except for the Car and EHR task, where we only
report label model performance.

Parameter Ablations Class Prior

Task Metric w.o Param Tie w.o Temp Deps Uniform Dev User

Precision 75.3 ± 13.6 42.5 ± 17.0 24.7 ± 13.3 100.0 ± 0.0 99.8 ± 0.5
BAV Recall 42.9 ± 9.0 45.7 ± 5.7 17.1 ± 5.7 37.1 ± 7.0 34.3 ± 14.6

F1 53.0 ± 5.7 41.9 ± 6.7 20.0 ± 8.3 53.8 ± 7.6 48.1 ± 14.5
Precision 86.7 ± 7.0 80.8 ± 5.3 73.2 ± 3.3 89.6 ± 4.2 88.4 ± 3.4

Interview Recall 92.2 ± 2.3 88.4 ± 7.3 94.4 ± 0.0 94.6 ± 0.8 91.4 ± 6.8
F1 89.2 ± 3.6 84.2 ± 3.8 82.4 ± 2.0 92.0 ± 2.2 89.8 ± 4.9

Precision 49.7 ± 3.8 66.5 ± 2.1 65.6 ± 1.5 57.9 ± 2.9 67.9 ± 6.3
Gait Recall 74.7 ± 9.5 64.7 ± 5.7 70.8 ± 2.4 80.5 ± 3.7 66.3 ± 7.5

F1 59.5 ± 5.4 65.3 ± 2.2 68.0 ± 0.7 67.2 ± 0.6 66.3 ± 1.1
Precision 84.3 ± 3.2 82.3 ± 1.8 60.9 ± 6.5 70.8 ± 2.3 87.8 ± 2.9

Shot Recall 88.6 ± 2.1 91.4 ± 1.1 91.9 ± 6.3 95.0 ± 1.1 87.6 ± 3.4
F1 86.6 ± 1.3 86.6 ± 0.5 72.9 ± 3.4 81.1 ± 1.2 87.7 ± 1.0

Precision 24.2 ± 3.4 5.5 ± 0.5 10.0 ± 0.0 24.1 ± 11.2 33.0 ± 4.0
Basketball Recall 51.6 ± 9.0 45.1 ± 4.1 100.0 ± 0.0 33.5 ± 22.8 46.0 ± 7.2

F1 32.9 ± 4.9 9.9 ± 0.8 18.3 ± 0.0 27.6 ± 15.4 38.2 ± 4.1
Table 5: Precision, recall, and F1 numbers for ablations.

User Defined Prior (User): The user defines a class distribution manually, and we provide task specific
details in the Appendix. For Shot, the user-defined prior improves end model performance by 14.8
F1 points compared to uniform prior since shot transitions are rare events. Gait performs the best with
a uniform prior, which is expected since there is no clear pattern in how freezing occurs while walking.
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