
A Proof of Hardness of MAXREWARD, Theorem 3.1

Given a dense PINWHEEL SCHEDULING instance {ai : i 2 [K]} we construct a MAXREWARD
instance. For each i 2 [K], we have an arm with delay ai and reward 1. Additionally, we have an
arm (K + 1) which has delay 0 and reward 0.

Case 1: The PINWHEEL SCHEDULING instance is a YES instance, i.e. there exists a valid schedule
with arms i 2 [K]. Furthermore, as the instance is a dense instance we have exact ai period for each
arm i 2 [K]. It also means for all T � 1 there is no empty slot in the schedule. This implies that
pulling the arms according to the above schedule we obtain a valid solution for MAXREWARD with
cumulative reward T in T time slots, for any T � 1.

Case 2: The PINWHEEL SCHEDULING instance is a NO instance, i.e. there does not exist a valid
schedule with arms i 2 [K]. This implies for any schedule, there exists a block of ai time slots
such that arm i is not scheduled in that block, for some i 2 [K]. However, as the instance is dense
it implies that there exists a gap in any schedule. This in turn implies that in the MAXREWARD
problem any valid solution has to (in the afore mentioned gap) play the (K + 1)-th arm at least once.
Coupled with the fact that any schedule for is periodic with period

QK
i=1 ai, this implies that for

T � 1 we can obtain at most
⇣
T � bT/

QK
i=1 aic

⌘
.

For T large enough there is a non-zero gap in the reward obtained in Case 1 and Case 2. Therefore, by
solving the above MAXREWARD instance, we can decide whether the PINWHEEL SCHEDULING
instance is a YES instance or a NO instance.

Remark We note that the T in the above reduction is expressible in polynomial many bits (w.r.t.
number of arms) as taking T = 100

QK
i=1 ai suffices, where ai are themselves expressible in

polynomial many bits. Thus the ”hard" decision problem for MAXREWARD is OPT = T?.

B Proof of (1-1/e)-Approximation of MAXREWARD, Theorem 3.3

For the purpose of the proof assume T is an arbitrary fixed integer.

ILP formulation: The problem of max reward scheduling can be formulated as the following integer
program, with the interpretation that xk,t = 1 if and only if the arm k is chosen at time t, for all
k 2 [K] and t 2 [T ].

max
xk,t

X

t2[T ]

X

k2[K]

xk,tµk

s.t.1) xk,t 2 {0, 1}8k 2 [K], t 2 [T ]; 2)

X

k2[K]

xk,t  1, 8t 2 [T ];

3)

X

t2[Dk]

xk,t+t0  1, 8t0 2 [T + 1 � Dk], 8k 2 [K]

LP Upper Bound:We can obtain an upper bound for the above integer program using the following
linear program (LP), with the interpretation that nk is the number (possibly fractional) of time slots
the arm k is played. This is obtained by relaxing the conditions in 1 to xk,t 2 [0, 1].

max
nk

X

k2[K]

nkµk; s.t.1) nk 2 [0, dT/Dke], 8k 2 [K]; 2)

X

k2[K]

nk = T

The above LP admits the solution, 8k 2 [K], n⇤
k = min

⇢
dT/Dke,

⇣
T �

Pk�1
i=1 dT/Die

⌘+�
. Let

K⇤
 K be the highest arm with non-zero n⇤k.

Lower Bound on Greedy Algorithm: We now lower bound the reward collected by the greedy
algorithm. Let ng

k be the number of times arm k is pulled under the greedy algorithm. Let us
denote the time slots occupied by arm 1 to k under greedy schedule as schk

1 . The time slots,
where the periodic placement of arm i collides with already placed arms 1 to (i � 1) is denoted
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as coli = {t : i  t  T, Di|(t � i), t 2 sch(i�1)
1 }. Then the number of time arm i is played

is d(T � (|coli| + i � 1))/Die. This holds because for arm i we can remove the time-slots with
collisions along with the initial (i � 1) timeslots, and perform periodic placement perfectly with
remaining (T � (|coli| + i � 1)) time slots. We note that (|coli| + i � 1) 

Pi�1
j=1 ng

j .

We now define for each k 2 [K], n0
k = Tk/Dk, and Tk=

⇣
T �

Pk�1
j=1 n0

j

⌘+
. The interpretation is

that iteratively we remove the timeslots where the previous arms 1 to i are placed and then place
arm i periodically with period Di. Our claim is that for all k,

Pk
i=1 ng

i �
Pk

i=1 n0
i. This claim

immediately implies that
P

k2[K] n
g
kµk �

P
k2[K] n

0
kµk as the rewards are sorted non-decreasingly

with k. We prove the claim using induction on k. We know that ng
1dT/D1e � n0

1. By induction
hypothesis, we suppose

Pk
i=1 ng

i �
Pk

i=1 n0
i for all k  (k0

� 1). We have

ng
k0 = d(T � (|colk0 | + k0

� 1))/Dk0e �
1

Dk0

0

@T �

k0�1X

i=1

ng
i

1

A

�
1

Dk0

0

@T �

k0�1X

i=1

n0
i �

k0�1X

i=1

(ng
i � n0

i)

1

A = n0
k0 �

1
Dk0

k0�1X

i=1

(ng
i � n0

i).

Therefore,
Pk0

i=1(n
g
i � n0

i) � (1 � 1/Dk0)
Pk0�1

i=1 (ng
i � n0

i), which means
Pk0

i=1 ng
i �

Pk0

i=1 n0
i.

The induction hypothesis is proved.

Finally, we note that for each k 2 [K], n0
k =

T
Dk

k�1Q
i=1

⇣
1 �

1
Di

⌘
which can be shown easily using

induction over k.

Greedy Lower Bound vs LP Upper Bound: Finally, we note that the approximation guarantee of

the greedy algorithm is given as follows, where 1
D̃K⇤

=

 
1 �

K⇤�1P
i=1

1
Di

!
.

P
k2[K] n

g
kµkP

k2[K] n
⇤
kµk

�

P
k2[K]

µk

Dk

k�1Q
i=1

⇣
1 �

1
Di

⌘

K⇤�1P
k=1

µk

Dk
+

µK⇤

D̃K⇤

⇣
1 +

D1K
Tµ1

⌘�1
.

We want to lower bound the following uniformly over all feasible Dk and µk to prove our approxima-
tion guarantee.

min

0

@
X

k2[K]

µk

Dk

k�1Y

i=1

⇣
1 �

1
Di

⌘
1

A
 

K⇤�1X

k=1

µk

Dk
+

µK⇤

D̃K⇤

!�1

, (6)

s.t. 8i, j 2 [K], i < j; (1) µj  µi, (2) µi 2 [0, 1], (3) Di � 1.

We break the minimization into two steps, where we first minimize over µi as a function of Di. Next
we minimize over Di.

Part I: In the first minimization, any optimal solution will have µk = 0 for all k � (K⇤
+ 1).

Otherwise, we can strictly decrease the objective. Next, to eliminate the inequalities among µis
we make the substitution, µi = µ(i�1) � ziµ1 = (1 �

Pi
j=2 zi)µ1, for all i = 2 to K⇤. Also, for

notational convenience denote Pi =
Qi

j=1(1 � 1/Di) and Si =
Pi

j=1 1/Dj , for i = 1 to K⇤. In
the denominator we have,

µ1/D1 +

K⇤�1X

k=2

µ1(1�
Pk

j=2 zj)

Dk
+

µ1(1�
PK⇤

j=1 zj)

D̃K⇤

= µ1 � µ1

K⇤X

j=2

zj

0

@
K⇤�1X

k=j

1/DK + 1/D̃K⇤

1

A = µ1 � µ1

K⇤X

j=2

zj(1 � Sj�1).
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Similarly, in the numerator we have (after setting µk = 0 for all k � (K⇤
+ 1)),

K⇤X

k=1

µ1(1�
Pk

j=2 zj)

Dk

k�1Y

i=1

⇣
1 �

1
Di

⌘
= µ1

K⇤X

k=1

1
Dk

k�1Y

i=1

⇣
1 �

1
Di

⌘
� µ1

K⇤X

j=2

zj

K⇤X

k=j

1
Dk

k�1Y

i=1

⇣
1 �

1
Di

⌘

= µ1(1 � PK⇤) � µ1

K⇤X

j=2

zj(1 � PK⇤ � 1 + Pj�1) = µ1(1 � PK⇤) � µ1

KX

j=2

zj(Pj�1 � PK⇤).

With the substitution, in the first stage we require to solve the following linear fractional optimization,

min
(1 � PK⇤) �

PK⇤

i=2 zi
�
P(i�1) � PK

�

1 �
PK⇤

i=2 zi(1 � S(i�1))
, s.t. (1) 8i � 2, zi � 0, (2)

K⇤X

i=1

zi  1.

Through standard transformation to linear program we obtain an equivalent formulation of

min (1 � PK⇤) +

K⇤X

i=2

yi(1 � P(i�1) � (1 � PK)S(i�1)), s.t. (1) 8i � 2, yi � 0, (2)
K⇤X

i=1

yi  1.

The above optimization admits a closed form solution with the value

(1 � PK⇤) + min

✓
0, min

i=1 to K⇤
(1 � P(i�1) � (1 � PK⇤)S(i�1))

◆
.

We now prove that min
i=1 to K⇤

(1 � P(i�1) � (1 � PK⇤)S(i�1)) � 0. We fix an 2  i  (K⇤
� 1).

PK⇤ = Pi

K⇤Y

j=i+1

(1 � 1/Di)
i
� Pi(1 �

K⇤X

j=i+1

1/Di) = PiSi

=) (1 � Pi � (1 � PK⇤)Si)

� (1 � Pi � (1 � PiSi)Si) = (1 � Si)(1 � Pi(1 + Si))

(ii)
� (1 � Si)

0

@1 � Pi

iY

j=1

(1 + 1/Di)

1

A = (1 � Si)

0

@1 �

iY

j=1

(1 � 1/D2
i )

1

A � 0.

In the above we use Weierstrass’ Inequality3 in (i) and (ii). This concludes that first part of the
optimization function results in (1 � PK⇤).

Part II: In the second part, we need to solve the following optimization problem.

min

 
1 �

K⇤Y

i=1

(1 � 1/Di)

!
, s.t.

K⇤X

i=1

1/Di � 1, 8i, Di � 1.

From the first order KKT conditions of the above optimization we have,
(1) For all i, � �

QK⇤

j=1,j 6=i(1 � 1/Dj) = 0, and (2) � � 0 =)
PK⇤

i=1 1/Di = 1.
As for all i,

QK⇤

j=1,j 6=i(1 � 1/Dj) � 0 we must have Di = K⇤ in the optimum solution. Therefore,
the previous optimization problem admits the optimal value

�
1 � (1 � 1/K⇤

)
K⇤�

. This further
implies that universally we have the lower bound (1 � 1/e � KD1µ

�1
1 /T ) for the optimization

problem (6). We conclude that the Greedy algorithm is an asymptotically (1 � 1/e) approximation
of the MAXREWARD problem.

C Proof of Regret Upper Bound, Theorem 4.1

In this section we first prove a theorem which is a slightly different from Theorem 4.1, and then show
how to obtain Theorem 4.1.

3For any real numbers ai 2 (0, 1),
Qn

i=1(1 + ai) � 1 +
Pn

i=1 ai and
Qn

i=1(1 + ai) � 1 +
Pn

i=1 ai.
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Theorem C.1. The regret of UCB Greedy algorithm to Greedy algorithm in time horizon T is
bounded from above by

KgX

i=1

0

@2H(4)
µi�µK

D4
i

+ H(3)K µi�µK⇤
D3

i
+

K⇤X

j=(i+1)

�ij⌧ij
Di

1

A+

KgX

i=1

KX

j=(K⇤+1)

32 log t
�ij

,

where for all (i, j), j  K⇤, and i < j, ⌧ij  ⌧(ij,0)(1 + log ⌧(ij,0)) + ⌧(ij,1),

⌧(ij,0) = 32

0

@1 �

(j�1)X

l=1

1
Dl

1

A
�10

@ Dj

�2
ij
+

KX

l=(j+1)

1
�2

jl

1

A , ⌧(ij,1) =

0

@1 �

(j�1)X

l=1

1
Dl

1

A
�1

(j � 1).

Proof. While computing the regret, we consider each arm i = 1 to Kg separately. For each arm i = 1

to Kg, let Ti be the instances where greedy with full information, henceforth a.k.a. oracle Greedy
(OG), plays arm i. Also, let ng(i) = |Ti| be the number of time the greedy algorithm plays arm i. Let
Xg

(t) be the mean reward obtained by OG in time slot t, which is a deterministic quantity. Recall,
we denote the award obtained by UCBG in time slot t as Xit(t), which is a random variable.

In the blocking bandit model, we end up with forced exploration as each arm becomes unavailable
for certain amount of time once it is played. This presents us with opportunity to learn more about
the subsequent arms. However, when the delays, i.e. the Dis, are arbitrary the OG algorithm itself
follows a complicated repeating pattern, which is periodic but with period lcm(Di, i = 1toKg). We
do not analyze the regret in a period directly, but consider the regret from each arm separately.

To understand our approach to regret bound, let us fix an arm i  Kg. We consider the time slots
divided into blocks of length Di, where each block begins at an instance where OG plays arm i.
In each block, the arm i becomes available at least once for any algorithm, including UCB Greedy
(UCBG); but not necessarily at the beginning as OG. In each such block, if we play arm i when it
becomes first available we don’t accumulate any regret when the reward from arm i is considered
in isolation. Instead, if we play arm j � (i + 1) when arm i becomes first available we may upper
bound the regret as �ij in that block. Let us denote by Pij(t) the probability that arm j � (i + 1) is
played in the block starting at time t 2 Ti where arm i becomes available first.

Using the previous logic, separately for each arm and using linearity of expectation we arrive at the
following regret bound.

TX

i=1

Xg
(t) � E

"
TX

i=1

Xit(t)

#


KgX

i=1

X

t2Ti

KX

j=(i+1)

Pij(t)�ij . (7)

For our analysis, we require the following standard guarantee about the confidence intervals under
UCB algorithm as given in[23], which follows from the application of Chernoff-Hoefding bound.

Lemma C.2 ([23]). For the random variables ni(t) and µ̂i in Algorithm 1, the following holds for
all arms 1  i  K and for all time slots 1  t  T ,

P
h
µi /2

h
µ̂i �

q
8 ln t
ni(t)

, µ̂i +

q
8 ln t
ni(t)

ii


1
t4 . (8)

While bounding the regret in equation 7, in order to account for the combinatorial constraints due to
the unavailability of arms, we phrase it as the following optimization problem (9).

max

KgX

i=1

X

t2Ti

KX

j=(i+1)

Pij(t)�ij (9)

s.t. Pij(t) 
2
t4 + P

⇣
nj(t) 

32 log t
�2

ij
; at = j

⌘ �
1 �

2
t4

�
, 8i, j 2 [K], 8t 2 Ti, , (10)

nj(t) � cjt � c0j log t, w.p. � (1 � K/t3), cj , c
0
j > 0 8j  K⇤, (11)

Correctness of Optimization (9).
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• Eq. (10) holds due to Lemma C.2. We prove it as follows.

Pij(t)  P
h
µ̂i +

q
8 log t
ni(t)

 µ̂j +

q
8 log t
nj(t)

; at = j
i


2
t4 + (1 �

2
t4 )P

h
µi  µj + 2

q
8 log t
nj(t)

; at = j
i
, [Due to Eq. (8)]


2
t4 + (1 �

2
t4 )P

h
nj(t) 

32 log t
�2

ij
; at = j

i
+ P

h
µi  µj + 2

q
8 log t
nj(t)

;nj(t) > 32 log t
�2

ij

i

=
2
t4 + (1 �

2
t4 )P

h
nj(t) 

32 log t
�2

ij
; at = j

i
, [Due to µi � µj +�ij ].

The above approach is standard in the analysis of the UCB based algorithms.

• If any arm i is played ni(t) times upto time t then it is available for (t � ni(t)Di) time slots.
Among these time slots where arm i is available, UCBG can play

1) arms 1  j  (i�1), at most
(i�1)P
j=1

⇣
t

Dj
+ 1

⌘
times in total, w.p. 1, due to the blocking constraints;

and

2) the arms (i + 1)  j  K, can be played at most
KP

j=(i+1)

32 log t
�2

ij
many times in total, w.p. at least

(1 � K/t3), due to the UCB property and union bound over all arms and time slots upto t.

Therefore, for all i  K we have, w.p. at least (1 � K/t3),

ni(t) �
t
Di

0

@1 �

(i�1)X

j=1

1
Dj

1

A�
1
Di

0

@
KX

j=(i+1)

32 log t
�2

ij
+ (i � 1)

1

A . (12)

More importantly, w.h.p. for all i  K⇤ we see ni(t) grows linearly with time t. The above property
quantifies the forced exploration in the system.

Upper Bound on Optimization (9).

From equation (12) we can infer that for each pair of arms (i, j), j  K⇤, and i < j, there exists an
appropriate constant ⌧ij such that after ⌧ij timeslots we have nj(t) > 32 log t

�2
ij

w.p. at least (1�K/t3).
More specifically, we have for all (i, j), j  K⇤, and i < j, ⌧ij  ⌧(ij,0)(1 + log ⌧(ij,0)) + ⌧(ij,1),

⌧(ij,0) = 32

0

@1 �

(j�1)X

l=1

1
Dl

1

A
�10

@ Dj

�2
ij
+

KX

l=(j+1)

1
�2

jl

1

A , ⌧(ij,1) =

0

@1 �

(j�1)X

l=1

1
Dl

1

A
�1

(j � 1).

The above follows using the relation x > a log x + b, for all x � (a log a + a + b) given a > e(e�1).
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Therefore, we can upper bound the regret as

KgX

i=1

X

t2Ti

KX

j=(i+1)

Pij(t)�ij <

KgX

i=1

X

t2Ti

KX

j=(i+1)

�ij

⇣
2
t4 + P(nj(t) 

32 log t
�2

ij
; at = j)

⌘



KgX

i=1

X

t2Ti

KX

j=(i+1)

2�ij

t4 +

KgX

i=1

K⇤X

j=(i+1)

�ij

X

t2Ti

P(nj(t) 
32 log t
�2

ij
; at = j)

+

KgX

i=1

KX

j=(K⇤+1)

�ij

X

t2Ti

P(nj(t) 
32 log t
�2

ij
; at = j)

(i)


KgX

i=1

X

t2Ti

KX

j=(i+1)

2�ij

t4 +

KgX

i=1

KX

j=(K⇤+1)

32 log T
�ij

+

KgX

i=1

K⇤X

j=(i+1)

�ij

X

t2Ti

P(nj(t) 
32 log t
�2

ij
; at = j)

(ii)


KgX

i=1

X

t2Ti

KX

j=(i+1)

2�ij

t4 +

KgX

i=1

KX

j=(K⇤+1)

32 log T
�ij

+

KgX

i=1

K⇤X

j=(i+1)

�ij

X

t2Ti

�
K
t3 + (t  ⌧ij)

�

(iii)


KgX

i=1

0

@2H(4)
µi�µK

D4
i

+ H(3)K µi�µK⇤
D3

i
+

K⇤X

j=(i+1)

�ij⌧ij
Di

1

A+

KgX

i=1

KX

j=(K⇤+1)

32 log T
�ij

.

Here, the inequality (i) is true by noting
P

tT (nj(t) 
32 log t
�2

ij
; at = j) 

32 log T
�2

ij
. the inequality

(ii), similarly follows with the additional use of the lower bound on nj(t) in Eq. (12). The inequality
(iii) follows by expressing t 2 Ti as lDi for integers l � 1, and then performing the summations.

Remark. Focusing on the
PK⇤

j=(i+1)
�ij⌧ij
Di

, we observe that ⌧ij = ⇥̃

⇣
(1 �

Pj�1
l=1

1
Dl

)
�1
⌘

. There-

fore, the constant term can become very large if (1 �
PK⇤�1

l=1
1
Dl

) is very small (even O(2
�K⇤

) is
possible).4

To avoid such large constants, alternatively we can substitute K⇤ in the regret bound with the set
K⇤

✏ := argmax

n
k :
P(k�1)

i=1
1
Di

< 1 � ✏
o

. This will make the constant term in the regret bound

Õ(
K

�min✏
+

K2�min
✏ ), while worsening the log T dependence to

PKg

i=1

PK
j=(K⇤

✏ +1)
32 log T
�ij

.

Proof of Theorem 4.1. By substituting K⇤ in the regret bound with the set K⇤
✏ :=

argmax

n
k :
Pk

i=1
1
Di

< 1 � ✏
o

in the above proof we get back Theorem 4.1.

Gap-Independent Bound. Using standard approach [4] we obtain a gap-independent bound.

KgX

i=1

X

t2Ti

KX

j=(i+1)

Pij(t)�ij <

KgX

i=1

X

t2Ti

KX

j=(i+1)

�ij

⇣
2
t4 + P(nj(t) 

32 log t
�2

ij
; at = j)

⌘

 T�+

KgX

i=1

X

t2Ti

KX

j:�ij>�

�ij

⇣
2
t4 + P(nj(t) 

32 log t
�2

ij
; at = j)

⌘

 T�+

KgX

i=1

2H(4)
D4

i
+

KgX

i=1

KX

j=i

32 log T
�

Substituting, � =
log T
KgKT we obtain the gap independent bound of O(

p
KgKT log T ).

4⇥̃(·) and Õ(·) hides the logarithmic terms.
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D Proof of Regret Lower Bound

We make two key observations regarding the behavior of the two algorithms in the special case when
all the delays are equal, say D < K. Firstly, in this setting, the optimal algorithm plays the D best
arms in a round robin manner following the cycle {1, 2, . . . , D}. Furthermore, it is easy to see that
the Oracle Greedy coincides with the optimal algorithm.

Secondly, for equal delay system the feedback received by any online algorithm is identical to the so
called semi-bandit feedback [17, 11]. Specifically, consider the alternative system where the time
horizon is partitioned into contiguous blocks of length D each block acting as a new time slot. In each
new time slot/block, D distinct arms are played and the instantiation of the individual rewards of these
D arms become visible. This is a well studied problem known as combinatorial semi-bandit [24]. The
rest of the proof first makes the connection to combinatorial semi-bandit rigorous and then follows an
mapping to Bernoulli bandits (the latter is similar to the lower bound in [24].)
Lemma D.1. For any Blocking Bandit instance where Di = D  K for all arms i 2 [K], time
horizon T , and any online algorithm AO, there exists an online algorithm AB which chooses arms
for blocks of D time slots and obtain the same distribution of the cumulative reward as AO.

Proof of Lemma D.1. We prove the above by induction for each sample path separately. We fix an
arbitrary online algorithm AO. We construct an online algorithm which is forced to choose arms for
blocks of D time slots each, namely AB to simulate AO in the semi-bandit feedback. Specifically, let
It be the arm played at time t by AO. The belief on the reward of arm i at the beginning of time t � 1,
namely Pi(t), is a function of the instantiations of the arm seen so far, {Xi(t0) : t0  (t�1), It0 = i}.
As our objective is to prove equality of cumulative reward distribution, due to the i.i.d. nature of the
rewards we can restrict ourselves to AO given by the sequence It : {Pi(t) : i 2 At} ! At (At are
the available arms in time slot t).

We observe that for all i 2 At, we gain no information in time (t � D) to t, as it can not be played
due to blocking constraint, i.e. {Xi(t0) : t0  (t � 1), It0 = i} = {Xi(t0) : t0  (t � D), It0 = i}.
This implies for all i 2 At, Pi(t) = Pi(t0), 8(t � D)  t0  t (same distribution). Therefore, if we
divide the time slots into blocks of length D, we have

8j � 0, 8(jD + 1)  t  (j + 1)D; {Pi(t) : i 2 At} ✓ {Pi(jD + 1) : i 2 [K]}.

The above argument shows that it is sufficient to consider AO which is given by the sequence
It : {Pi(jD + 1) : i 2 [K]} ! At, 8j � 0, 8(jD + 1)  t  (j + 1)D. However, this is indeed an
online algorithm AB which chooses arms {It : (jD + 1)  t  (j + 1)D} in the beginning of the
j-th block (i.e. on jD-th time slot). This proves our claim.

Proof of Theorem 4.3. Let us now consider the instance with K arms each with delay K⇤ < K.
Let the reward of the arms i = 1 to K⇤ be distributed as Bernoulli distribution with mean 0.5.
For the arms i = (K⇤

+ 1) to K the rewards are distributed as Bernoulli distribution with mean
(0.5 � �). Due to Lemma D.1, we can reduce this problem to the bandits with multiple play
problem [1], where in each block we can play K⇤ distinct arms. The regret is lower bounded for
this problem by

PK
i=(K⇤+1)

�
DKL(0.5||0.5��) , where DKL(p||q) is the Kullback-Leibler divergence

between Bernoulli distributions. We can bound �
DKL(0.5||0.5��) 

1
4� , which completes the proof.

Oracle Greedy for Exact Covering System. Recall for the exact covering system under considera-
tion,we know for any i, j 2 [Kg], i 6= j seqi \ seqj = ; and [T ] = [

Kg

i=1seqi.

In this exact covering system the oracle greedy (with appropriate tie breaking) places arm i (recall µi

are non-decreasing w.r.t. i) at the positions seqi = {i + nDi : n 2 N} for all i 2 [Kg]. This can be
proved inductively on i. Oracle greedy places arm 1 in the positions seq1, as arm 1 is available. For
[T ] \ [

k
i=1seqk the best available arms are arm k + 1. Also [

k
i=1seqk \ seq(k+1) = ;. Therefore,

oracle greedy will place arm k + 1 in positions seq(k+1).

It is easy to see, for any T � 1, the Oracle greedy achieves reward
PK⇤

i=1 T µi

Di
� O(1). Indeed, this

is the asymptotically optimal reward.
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