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Abstract

Recent works have shown that on sufficiently over-parametrized neural nets, gra-
dient descent with relatively large initialization optimizes a prediction function
in the RKHS of the Neural Tangent Kernel (NTK). This analysis leads to global
convergence results but does not work when there is a standard `2 regularizer,
which is useful to have in practice. We show that sample efficiency can indeed
depend on the presence of the regularizer: we construct a simple distribution in d
dimensions which the optimal regularized neural net learns with O(d) samples but
the NTK requires Ω(d2) samples to learn. To prove this, we establish two analysis
tools: i) for multi-layer feedforward ReLU nets, we show that the global minimizer
of a weakly-regularized cross-entropy loss is the max normalized margin solution
among all neural nets, which generalizes well; ii) we develop a new technique for
proving lower bounds for kernel methods, which relies on showing that the kernel
cannot focus on informative features. Motivated by our generalization results,
we study whether the regularized global optimum is attainable. We prove that
for infinite-width two-layer nets, noisy gradient descent optimizes the regularized
neural net loss to a global minimum in polynomial iterations.

1 Introduction

In deep learning, over-parametrization refers to the widely-adopted technique of using more pa-
rameters than necessary [35, 40]. Over-parametrization is crucial for successful optimization,
and a large body of work has been devoted towards understanding why. One line of recent
works [17, 37, 22, 21, 2, 76, 31, 6, 16, 72] offers an explanation that invites analogy with ker-
nel methods, proving that with sufficient over-parameterization and a certain initialization scale
and learning rate schedule, gradient descent essentially learns a linear classifier on top of the initial
random features. For this same setting, Daniely [17], Du et al. [22, 21], Jacot et al. [31], Arora et al.
[6, 5] make this connection explicit by establishing that the prediction function found by gradient
descent is in the span of the training data in a reproducing kernel Hilbert space (RKHS) induced by
the Neural Tangent Kernel (NTK). The generalization error of the resulting network can be analyzed
via the Rademacher complexity of the kernel method.

These works provide some of the first algorithmic results for the success of gradient descent in
optimizing neural nets; however, the resulting generalization error is only as good as that of fixed
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Figure 1: Datapoints from D have first two coordinates
displayed above, with red and blue denoting labels of -1,
+1, respectively. The remaining coordinates are uniform in
{−1,+1}d−2.

kernels [6]. On the other hand, the equivalence of gradient descent and NTK is broken if the loss has
an explicit regularizer such as weight decay.

In this paper, we study the effect of an explicit regularizer on neural net generalization via the lens of
margin theory. We first construct a simple distribution on which the two-layer network optimizing
explicitly regularized logistic loss will achieve a large margin, and therefore, good generalization. On
the other hand, any prediction function in the span of the training data in the RKHS induced by the
NTK will overfit to noise and therefore achieve poor margin and bad generalization.

Theorem 1.1 (Informal version of Theorem 2.1). Consider the setting of learning the distribution
D defined in Figure 1 using a two-layer network with relu activations with the goal of achieving
small generalization error. Using o(d2) samples, no function in the span of the training data in the
RKHS induced by the NTK can succeed. On the other hand, the global optimizer of the `2-regularized
logistic loss can learn D with O(d) samples.

The full result is stated in Section 2. The intuition is that regularization allows the neural net
to obtain a better margin than the fixed NTK kernel and thus achieve better generalization. Our
sample complexity lower bound for NTK applies to a broad class of losses including standard 0-1
classification loss and squared `2. To the best of our knowledge, the proof techniques for obtaining
this bound are novel and of independent interest (see our proof overview in Section 2). In Section 5,
we confirm empirically that an explicit regularizer can indeed improve the margin and generalization.

Yehudai and Shamir [73] also prove a lower bound on the learnability of neural net kernels. They
show that an approximation result that Ω(exp(d)) random relu features are required to fit a single
neuron in `2 squared loss, which lower bounds the amount of over-parametrization necessary to
approximate a single neuron. In contrast, we prove sample-complexity lower bounds which hold for
both classification and `2 loss even with infinite over-parametrization.

Motivated by the provably better generalization of regularized neural nets for our constructed instance,
in Section 3 we study their optimization, as the previously cited results only apply when the neural
net behaves like a kernel. We show optimization is possible for infinite-width regularized nets.

Theorem 1.2 (Informal, see Theorem 3.3). For infinite-width two layer networks with `2-regularized
loss, noisy gradient descent finds a global optimizer in a polynomial number of iterations.

This improves upon prior works [43, 15, 65, 61] which study optimization in the same infinite-width
limit but do not provide polynomial convergence rates. (See more discussions in Section 3.)

To establish Theorem 1.1, we rely on tools from margin theory. In Section 4, we prove a number
of results of independent interest regarding the margin of a regularized neural net. We show that
the global minimum of weakly-regularized logistic loss of any homogeneous network (regardless of
depth or width) achieves the max normalized margin among all networks with the same architecture
(Theorem 4.1). By “weak” regularizer, we mean that the coefficient of the regularizer in the loss is
very small (approaching 0). By combining with a result of [25], we conclude that the minimizer enjoys
a width-free generalization bound depending on only the inverse normalized margin (normalized by
the norm of the weights) and depth (Corollary 4.2). This explains why optimizing the `2-regularized
loss typically used in practice can lead to parameters with a large margin and good generalization. We
further note that the maximum possible margin is non-decreasing in the width of the architecture, so
the generalization bound of Corollary 4.2 improves as the size of the network grows (see Theorem 4.3).
Thus, even if the dataset is already separable, it could still be useful to further over-parameterize to
achieve better generalization.

Finally, we empirically validate several claims made in this paper in Section 5. First, we confirm
on synthetic data that neural networks do generalize better with an explicit regularizer vs. without.
Second, we show that for two-layer networks, the test error decreases and margin increases as the
hidden layer grows, as predicted by our theory.
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1.1 Additional Related Work

Zhang et al. [74] and Neyshabur et al. [52] show that neural network generalization defies conventional
explanations and requires new ones. Neyshabur et al. [48] initiate the search for the “inductive bias”
of neural networks towards solutions with good generalization. Recent papers [30, 12, 14] study
inductive bias through training time and sharpness of local minima. Neyshabur et al. [49] propose
a steepest descent algorithm in a geometry invariant to weight rescaling and show this improves
generalization. Morcos et al. [45] relate generalization to the number of “directions” in the neurons.
Other papers [26, 68, 46, 28, 38, 27, 38, 32] study implicit regularization towards a specific solution.
Ma et al. [41] show that implicit regularization helps gradient descent avoid overshooting optima.
Rosset et al. [58, 59] study linear logistic regression with weak regularization and show convergence
to the max margin. In Section 4, we adopt their techniques and extend their results.

A line of work initiated by Neyshabur et al. [50] has focused on deriving tighter norm-based
Rademacher complexity bounds for deep neural networks [9, 51, 25] and new compression based
generalization properties [4]. Bartlett et al. [9] highlight the important role of normalized margin in
neural net generalization. Wei and Ma [70] prove generalization bounds depending on additional
data-dependent properties. Dziugaite and Roy [23] compute non-vacuous generalization bounds
from PAC-Bayes bounds. Neyshabur et al. [53] investigate the Rademacher complexity of two-layer
networks and propose a bound that is decreasing with the distance to initialization. Liang and Rakhlin
[39] and Belkin et al. [10] study the generalization of kernel methods.

For optimization, Soudry and Carmon [67] explain why over-parametrization can remove bad local
minima. Safran and Shamir [63] show over-parametrization can improve the quality of a random
initialization. Haeffele and Vidal [29], Nguyen and Hein [55], and Venturi et al. [69] show that for
sufficiently overparametrized networks, all local minima are global, but do not show how to find
these minima via gradient descent. Du and Lee [19] show for two-layer networks with quadratic
activations, all second-order stationary points are global minimizers. Arora et al. [3] interpret
over-parametrization as a means of acceleration. Mei et al. [43], Chizat and Bach [15], Sirignano
and Spiliopoulos [65], Dou and Liang [18], Mei et al. [44] analyze a distributional view of over-
parametrized networks. Chizat and Bach [15] show that Wasserstein gradient flow converges to
global optimizers under structural assumptions. We extend this to a polynomial-time result.

Finally, many papers have shown convergence of gradient descent on neural nets [2, 1, 37, 22, 21, 6,
76, 13, 31, 16] using analyses which prove the weights do not move far from initialization. These
analyses do not apply to the regularized loss, and our experiments in Section F suggest that moving
away from the initialization is important for better test performance.

Another line of work takes a Bayesian perspective on neural nets. Under an appropriate choice of
prior, they show an equivalence between the random neural net and Gaussian processes in the limit of
infinite width or channels [47, 71, 36, 42, 24, 56]. This provides another kernel perspective of neural
nets.

Yehudai and Shamir [73], Chizat and Bach [16] also argue that the kernel perspective of neural
nets is not sufficient for understanding the success of deep learning. Chizat and Bach [16] argue
that the kernel perspective of gradient descent is caused by a large initialization and does not
necessarily explain the empirical successes of over-parametrization. Yehudai and Shamir [73] prove
that Ω(exp(d)) random relu features cannot approximate a single neuron in squared error loss. In
comparison, our lower bounds are for the sample complexity rather than width of the NTK prediction
function and apply even with infinite over-parametrization for both classification and squared loss.

1.2 Notation

Let R denote the set of real numbers. We will use ‖ · ‖ to indicate a general norm, with ‖ · ‖2 denoting
the `2 norm and ‖ · ‖F the Frobenius norm. We use ¯ on top of a symbol to denote a unit vector:
when applicable, ū , u/‖u‖, with the norm ‖ · ‖ clear from context. LetN (0, σ2) denote the normal
distribution with mean 0 and variance σ2. For vectors u1 ∈ Rd1 , u2 ∈ Rd2 , we use the notation
(u1, u2) ∈ Rd1+d2 to denote their concatenation. We also say a function f is a-homogeneous in input
x if f(cx) = caf(x) for any c, and we say f is a-positive-homogeneous if there is the additional
constraint c > 0. We reserve the symbol X = [x1, . . . , xn] to denote the collection of datapoints
(as a matrix), and Y = [y1, . . . , yn] to denote labels. We use d to denote the dimension of our data.
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We will use the notations a . b, a & b to denote less than or greater than up to a universal constant,
respectively, and when used in a condition, to denote the existence of such a constant such that the
condition is true. Unless stated otherwise, O(·),Ω(·) denote some universal constant in upper and
lower bounds. The notation poly denotes a universal constant-degree polynomial in the arguments.

2 Generalization of Regularized Neural Net vs. NTK Kernel

We will compare neural net solutions found via regularization and methods involving the NTK and
construct a data distribution D in d dimensions which the neural net optimizer of regularized logistic
loss learns with sample complexity O(d). The kernel method will require Ω(d2) samples to learn.

We start by describing the distribution D of examples (x, y). Here ei is the i-th standard basis vector
and we use x>ei to represent the i-coordinate of x (since the subscript is reserved to index training
examples). First, for any k ≥ 3, x>ek ∼ {−1,+1} is a uniform random bit, and for x>e1, x

>e2 and
y, choose

y = +1, x>e1 = +1, x>e2 = 0 w/ prob. 1/4
y = +1, x>e1 = −1, x>e2 = 0 w/ prob. 1/4
y = −1, x>e1 = 0, x>e2 = +1 w/ prob. 1/4
y = −1, x>e1 = 0, x>e2 = −1 w/ prob. 1/4

(2.1)

The distribution D contains all of its signal in the first 2 coordinates, and the remaining d − 2
coordinates are noise. We visualize its first 2 coordinates in Figure 1.

Next, we formally define the two layer neural net with relu activations and its associated NTK.
We parameterize a two-layer network with m units by last layer weights w1, . . . , wm ∈ R and
weight vectors u1, . . . , um ∈ Rd. We denote by Θ the collection of parameters and by θj the unit-j
parameters (uj , wj). The network computes fNN(x; Θ) ,

∑m
j=1 wj [u

>
j x]+, where [·]+ denotes

the relu activation. For binary labels y1, . . . , yn ∈ {−1,+1}, the `2 regularized logistic loss is

Lλ(Θ) ,
1

n

n∑
i=1

log(1 + exp(−yifNN(xi; Θ))) + λ‖Θ‖2F (2.2)

Let Θλ ∈ arg minΘ Lλ(Θ) be its global optimizer. Define the NTK kernel associated with the
architecture (with random weights):

K(x′, x) = Ew∼N (0,r2
w),u∼N (0,r2

uI)

[〈
∇θfNN(x; Θ),∇θfNN(x′; Θ)

〉]
where∇θfNN(x; Θ) = (w1(x>u ≥ 0)x, [x>u]+) is the gradient of the network output with respect
to a generic hidden unit, and rw, ru are relative scaling parameters. Note that the typical NTK is
realized specifically with scales rw = ru = 1, but our bound applies for all choices of rw, ru.

For coefficients β, we can then define the prediction function f kernel(x;β) in the RKHS induced by
K as f kernel(x;β) ,

∑n
i=1 βiK(xi, x). For example, such a classifier would be attained by running

gradient descent on squared loss for a wide network using the appropriate random initialization
(see [31, 22, 21, 6]). We now present our comparison theorem below and fill in its proof in Section B.

Theorem 2.1. Let D be the distribution defined in equation 2.1. With probability 1 − d−5 over
the random draw of n . d2 samples (x1, y1), . . . , (xn, yn) from D, for all choices of β, the kernel
prediction function f kernel(·;β) will have at least Ω(1) error:

Pr
(x,y)∼D

[f kernel(x;β)y ≤ 0] = Ω(1)

Meanwhile, for λ ≤ poly(n)−1, the regularized neural net solution fNN(·; Θλ) with at least 4 hidden
units can have good generalization with O(d2) samples because we have the following generalization
error bound:

Pr
(x,y)∼D

[fNN(x; Θλ)y ≤ 0] .

√
d

n

This implies a Ω(d) sample-complexity gap between the regularized neural net and kernel prediction
function.
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While the above theorem is stated for classification, the same D can be used to straightforwardly
prove a Ω(d) sample complexity gap for the truncated squared loss `(ŷ; y) = min((y − ŷ)2, 1).1 We
provide more details in Section B.3.

Our intuition of this gap is that the regularization allows the neural net to find informative features
(weight vectors), that are adaptive to the data distribution and easier for the last layers’ weights to
separate. For example, the neurons [e1x]+, [−e1x]+, [e2x]+, [−e2x]+ are enough to fit our particular
distribution. In comparison, the NTK method is unable to change the feature space and is only
searching for the coefficients in the kernel space.

Proof techniques for the upper bound: For the upper bound, neural nets with small Euclidean norm
will be able to separate D with large margin (a two-layer net with width 4 can already achieve a large
margin). As we show in Section 4, a solution with a max neural-net margin is attained by the global
optimizer of the regularized logistic loss — in fact, we show this holds for generally homogeneous
networks of any depth and width (Theorem 4.1). Then, by the classical connection between margin
and generalization [34], this optimizer will generalize well.

Proof techniques for the lower bound: On the other hand, the NTK will have a worse margin when
fitting samples from D than the regularized neural networks because NTK operates in a fixed kernel
space.2 However, proving that the NTK has a small margin does not suffice because the generalization
error bounds which depend on margin may not be tight.

We develop a new technique to prove lower bounds for kernel methods, which we believe is of
independent interest, as there are few prior works that prove lower bounds for kernel methods. (One
that does is [54], but their results require constructing an artificial kernel and data distribution, whereas
our lower bounds are for a fixed kernel.) The main intuition is that because NTK uses infinitely many
random features, it is difficult for the NTK to focus on a small number of informative features – doing
so would require a very high RKHS norm. In fact, we show that with a limited number of examples,
any function that in the span of the training examples must heavily use random features rather than
informative features. The random features can collectively fit the training data, but will give worse
generalization.

3 Perturbed Wasserstein Gradient Flow Finds Global Optimizers in
Polynomial Time

In the prior section, we argued that a neural net with `2 regularization can achieve much better
generalization than the NTK. Our result required attaining the global minimum of the regularized
loss; however, existing optimization theory only allows for such convergence to a global minimizer
with a large initialization and no regularizer. Unfortunately, these are the regimes where the neural
net learns a kernel prediction function [31, 22, 6].

In this section, we show that at least for infinite-width two-layer nets, optimization is not an issue:
noisy gradient descent finds global optimizers of the `2 regularized loss in polynomial iterations.

Prior work [43, 15] has shown that as the hidden layer size grows to infinity, gradient descent for
a finite neural network approaches the Wasserstein gradient flow over distributions of hidden units
(defined in equation 3.1). With the assumption that the gradient flow converges, which is non-trivial
since the space of distributions is infinite-dimensional, Chizat and Bach [15] prove that Wasserstein
gradient flow converges to a global optimizer but do not specify a rate. Mei et al. [43] add an entropy
regularizer to form an objective that is the infinite-neuron limit of stochastic Langevin dynamics. They
show global convergence but also do not provide explicit rates. In the worst case, their convergence
can be exponential in dimension. In contrast, we provide explicit polynomial convergence rates for a
slightly different algorithm, perturbed Wasserstein gradient flow.

Infinite-width neural nets are modeled mathematically as a distribution over weights: formally, we
optimize the following functional over distributions ρ on Rd+1: L[ρ] , R(

∫
Φdρ) +

∫
V dρ, where

Φ : Rd+1 → Rk, R : Rk → R, and V : Rd+1 → R. R and V can be thought of as the loss and
regularizer, respectively. In this work, we consider 2-homogeneous Φ and V . We will additionally

1The truncation is required to prove generalization of the regularized neural net using standard tools.
2There could be some variations of the NTK space depending on the scales of the initialization of the two

layers, but our Theorem 2.1 shows that these variations also suffer from a worse sample complexity.
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require that R is convex and nonnegative and V is positive on the unit sphere. Finally, we need
standard regularity assumptions on R,Φ, and V :

Assumption 3.1 (Regularity conditions on Φ, R, V ). Φ and V are differentiable as well as upper
bounded and Lipschitz on the unit sphere. R is Lipschitz and its Hessian has bounded operator norm.

We provide more details on the specific parameters (for boundedness, Lipschitzness, etc.) in Sec-
tion E.1. We note that relu networks satisfy every condition but differentiability of Φ.3 We can fit a
`2 regularized neural network under our framework:

Example 3.2 (Logistic loss for neural networks). We interpret ρ as a distribution over the parameters
of the network. Let k , n and Φi(θ) , wφ(u>xi) for θ = (w, u). In this case,

∫
Φdρ is a

distributional neural network that computes an output for each of the n training examples (like a
standard neural network, it also computes a weighted sum over hidden units). We can compute the
distributional version of the regularized logistic loss in equation 2.2 by setting V (θ) , λ‖θ‖22 and
R(a1, . . . , an) ,

∑n
i=1 log(1 + exp(−yiai)).

We will define L′[ρ] : Rd+1 → R with L′[ρ](θ) , 〈R′(
∫

Φdρ),Φ(θ)〉 + V (θ) and v[ρ](θ) ,
−∇θL′[ρ](θ). Informally, L′[ρ] is the gradient of L with respect to ρ, and v is the induced velocity
field. For the standard Wasserstein gradient flow dynamics, ρt evolves according to

d

dt
ρt = −∇ · (v[ρt]ρt) (3.1)

where ∇· denotes the divergence of a vector field. For neural networks, these dynamics formally
define continuous-time gradient descent when the hidden layer has infinite size (see Theorem 2.6
of [15], for instance). More generally, equation 3.1 is due to the formula for Wasserstein gradient
flow dynamics (see for example [64]), which are derived via continuous-time steepest descent with
respect to Wasserstein distance over the space of probability distributions on the neurons. We propose
the following modified dynamics:

d

dt
ρt = −σρt + σUd −∇ · (v[ρt]ρt) (3.2)

where Ud is the uniform distribution on Sd. In our perturbed dynamics, we add very small uniform
noise over Ud, which ensures that at all time-steps, there is sufficient mass in a descent direction for
the algorithm to decrease the objective. For infinite-size neural networks, one can informally interpret
this as re-initializing a very small fraction of the neurons at every step of gradient descent. We prove
convergence to a global optimizer in time polynomial in 1/ε, d, and the regularity parameters.

Theorem 3.3 (Theorem E.4 with regularity parameters omitted). Suppose that Φ and V are 2-
homogeneous and the regularity conditions of Assumption 3.1 are satisfied. Also assume that from
starting distribution ρ0, a solution to the dynamics in equation 3.2 exists. Define L? , infρ L[ρ].
Let ε > 0 be a desired error threshold and choose σ , exp(−d log(1/ε)poly(k, L[ρ0]− L?)) and
tε , d2

ε4 poly(log(1/ε), k, L[ρ0]− L?), where the regularity parameters for Φ, V , and R are hidden
in the poly(·). Then, perturbed Wasserstein gradient flow converges to an ε-approximate global
minimum in tε time:

min
0≤t≤tε

L[ρt]− L? ≤ ε

We state and prove a version of Theorem 3.3 that includes regularity parameters in Sec-
tions E.1 and E.3. The key idea for the proof is as follows: as R is convex, the optimization
problem will be convex over the space of distributions ρ. This convexity allows us to argue that if ρ
is suboptimal, there either exists a descent direction θ̄ ∈ Sd where L′[ρ](θ̄)� 0, or the gradient flow
dynamics will result in a large decrease in the objective. If such a direction θ̄ exists, the uniform noise
σUd along with the 2-homogeneity of Φ and V will allow the optimization dynamics to increase the
mass in this direction exponentially fast, which causes a polynomial decrease in the loss.

As a technical detail, Theorem 3.3 requires that a solution to the dynamics exists. We can remove this
assumption by analyzing a discrete-time version of equation 3.2: ρt+1 , ρt + η(−σρt + σUd −∇ ·

3The relu activation is non-differentiable at 0 and hence the gradient flow is not well-defined. Chizat and
Bach [15] acknowledge this same difficulty with relu.
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(v[ρt]ρt)), and additionally assuming Φ and V have Lipschitz gradients. In this setting, a polynomial
time convergence result also holds. We state the result in Section E.4.

An implication of our Theorem 3.3 is that for infinite networks, we can optimize the weakly-
regularized logistic loss in time polynomial in the problem parameters and λ−1. In Theorem 2.1 we
only require λ−1 = poly(n); thus, an infinite width neural net can learn the distribution D up to error
Õ(
√
d/n) in polynomial time using noisy gradient descent.

4 Weak Regularizer Guarantees Max Margin Solutions

In this section, we collect a number of results regarding the margin of a regularized neural net.
These results provide the tools for proving generalization of the weakly-regularized NN solution in
Theorem 2.1. The key technique is showing that with small regularizer λ→ 0, the global optimizer
of regularized logistic loss will obtain a maximum margin. It is well-understood that a large neural
net margin implies good generalization performance [9].

In fact, our result applies to a function class much broader than two-layer relu nets: in Theorem 4.1 we
show that when we add a weak regularizer to cross-entropy loss with any positive-homogeneous
prediction function, the normalized margin of the optimum converges to the max margin. For example,
Theorem 4.1 applies to feedforward relu networks of arbitrary depth and width. In Theorem C.2, we
bound the approximation error in the maximum margin when we only obtain an approximate optimizer
of the regularized loss. In Corollary 4.2, we leverage these results and pre-existing Rademacher
complexity bounds to conclude that the optimizer of the weakly-regularized logistic loss will have
width-free generalization bound scaling with the inverse of the max margin and network depth.
Finally, we note that the maximum possible margin can only increase with the width of the network,
which suggests that increasing width can improve generalization of the solution (see Theorem 4.3).

We work with a family F of prediction functions f(·; Θ) : Rd → R that are a-positive-homogeneous
in their parameters for some a > 0: f(x; cΘ) = caf(x; Θ),∀c > 0. We additionally require that f is
continuous when viewed as a function in Θ. For some general norm ‖ · ‖ and λ > 0, we study the
λ-regularized logistic loss Lλ, defined as

Lλ(Θ) ,
1

n

n∑
i=1

log(1 + exp(−yif(xi; Θ))) + λ‖Θ‖r (4.1)

for fixed r > 0. Let Θλ ∈ arg minLλ(Θ).4 Define the normalized margin γλ and max-margin γ? by
γλ , mini yif(xi; Θ̄λ) and γ? , max‖Θ‖≤1 mini yif(xi; Θ). Let Θ? achieve this maximum.

We show that with sufficiently small regularization level λ, the normalized margin γλ approaches
the maximum margin γ?. Our theorem and proof are inspired by the result of Rosset et al. [58, 59],
who analyze the special case when f is a linear function. In contrast, our result can be applied to
non-linear f as long as f is homogeneous.

Theorem 4.1. Assume the training data is separable by a network f(·; Θ?) ∈ F with an optimal nor-
malized margin γ? > 0. Then, the normalized margin of the global optimum of the weakly-regularized
objective (equation 4.1) converges to γ? as the regularization goes to zero. Mathematically,

γλ → γ? as λ→ 0

An intuitive explanation for our result is as follows: because of the homogeneity, the loss L(Θλ)
roughly satisfies the following (for small λ, and ignoring parameters such as n):

Lλ(Θλ) ≈ exp(−‖Θλ‖aγλ) + λ‖Θλ‖r

Thus, the loss selects parameters with larger margin, while the regularization favors smaller norms.
The full proof of the theorem is deferred to Section C.

Though the result in this section is stated for binary classification, it extends to the multi-class setting
with cross-entropy loss. We provide formal definitions and results in Section C. In Theorem C.2, we
also show that an approximate minimizer of Lλ can obtain margin that approximates γ?.

4We formally show that Lλ has a minimizer in Claim C.3 of Section C.
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Although we consider an explicit regularizer, our result is related to recent works on algorithmic
regularization of gradient descent for the unregularized objective. Recent works show that gradient
descent finds the minimum norm or max-margin solution for problems including logistic regression,
linearized neural networks, and matrix factorization [68, 28, 38, 27, 32]. Many of these proofs require
a delicate analysis of the algorithm’s dynamics, and some are not fully rigorous due to assumptions on
the iterates. To the best of our knowledge, it is an open question to prove analogous results for even
two-layer relu networks. In contrast, by adding the explicit `2 regularizer to our objective, we can
prove broader results that apply to multi-layer relu networks. In the following section we leverage our
result and existing generalization bounds [25] to help justify how over-parameterization can improve
generalization.

4.1 Generalization of the Max-Margin Neural Net

We consider depth-q networks with 1-Lipschitz, 1-positive-homogeneous activation φ for q ≥ 2.
Note that the network function is q-positive-homogeneous. Suppose that the collection of parameters
Θ is given by matrices W1, . . . ,Wq . For simplicity we work in the binary class setting, so the q-layer
network computes a real-valued score

fNN(x; Θ) ,Wqφ(Wq−1φ(· · ·φ(W1x) · · · )) (4.2)

where we overload notation to let φ(·) denote the element-wise application of the activation φ. Let
mi denote the size of the i-th hidden layer, so W1 ∈ Rm1×d,W2 ∈ Rm2×m1 , · · · ,Wq ∈ R1×mq−1 .
We will let M , (m1, . . . ,mq−1) denote the sequence of hidden layer sizes. We will focus on
`2-regularized logistic loss (see equation 4.1, using ‖ · ‖F and r = 2) and denote it by Lλ,M.

Following notation established in this section, we denote the optimizer of Lλ,M by Θλ,M, the
normalized margin of Θλ,M by γλ,M, the max-margin solution by Θ?,M, and the max-margin by
γ?,M, assumed to be positive. Our notation emphasizes the architecture of the network.

We can define the population 0-1 loss of the network parameterized by Θ by L(Θ) ,
Pr(x,y)∼pdata

[yfNN(x; Θ) ≤ 0]. We let X denote the data domain and C , supx∈X ‖x‖2 denote the
largest possible norm of a single datapoint.

By combining the neural net complexity bounds of Golowich et al. [25] with our Theorem 4.1, we
can conclude that optimizing weakly-regularized logistic loss gives generalization bounds that depend
on the maximum possible network margin for the given architecture.

Corollary 4.2. Suppose φ is 1-Lipschitz and 1-positive-homogeneous. With probability at least 1− δ
over the draw of (x1, y1), . . . , (xn, yn) i.i.d. from pdata, we can bound the test error of the optimizer
of the regularized loss by

lim sup
λ→0

L(Θλ,M) .
C

γ?,Mq
q−1

2

√
n

+ ε(γ?,M) (4.3)

where ε(γ) ,
√

log log2
4C
γ

n +
√

log(1/δ)
n . Note that ε(γ?,M) is primarily a smaller order term, so

the bound mainly scales with C
γ?,Mq(q−1)/2

√
n

. 5

Finally, we observe that the maximum normalized margin is non-decreasing with the size of the archi-
tecture. Formally, for two depth-q architecturesM = (m1, . . . ,mq−1) andM′ = (m′1, . . . ,m

′
q−1),

we sayM ≤M′ if mi ≤ m′i ∀i = 1, . . . q − 1. Theorem 4.3 states ifM ≤M′, the max-margin
over networks with architectureM′ is at least the max-margin over networks with architectureM.

Theorem 4.3. Recall that γ?,M denotes the maximum normalized margin of a network with archi-
tectureM. IfM≤M′, we have

γ?,M ≤ γ?,M
′

As a important consequence, the generalization error bound of Corollary 4.2 forM′ is at least as
good as that forM.

5Although the 1

q(q−1)/2 factor of equation D.1 decreases with depth q, the margin γ will also tend to decrease
as the constraint ‖Θ̄‖F ≤ 1 becomes more stringent.
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Figure 2: Comparing regularization and no regularization starting from the same initialization. Left:
Normalized margin. Center: Test accuracy. Right: Percentage of activation patterns changed.

This theorem is simple to prove and follows because we can directly implement any network of
architecture M using one of architecture M′, if M ≤ M′. This highlights one of the benefits
of over-parametrization: the margin does not decrease with a larger network size, and therefore
Corollary 4.2 gives a better generalization bound. In Section F, we provide empirical evidence that
the test error decreases with larger network size while the margin is non-decreasing.

The phenomenon in Theorem 4.3 contrasts with standard `2-normalized linear prediction. In this
setting, adding more features increases the norm of the data, and therefore the generalization error
bounds could also increase. On the other hand, Theorem 4.3 shows that adding more neurons (which
can be viewed as learned features) can only improve the generalization of the max-margin solution.

5 Simulations

We empirically validate our theory with several simulations. First, we train a two-layer net on
synthetic data with and without explicit regularization starting from the same initialization in order to
demonstrate the effect of an explicit regularizer on generalization. We confirm that the regularized
network does indeed generalize better and moves further from its initialization. For this experiment,
we use a large initialization scale, so every weight ∼ N (0, 1). We average this experiment over 20
trials and plot the test accuracy, normalized margin, and percentage change in activation patterns
in Figure 2. We compute the percentage of activation patterns changed over every possible pair of
hidden unit and training example. Since a low percentage of activations change when λ = 0, the
unregularized neural net learns in the kernel regime. Our simulations demonstrate that an explicit
regularizer improves generalization error as well as the margin, as predicted by our theory.

The data comes from a ground truth network with 10 hidden networks, input dimension 20, and a
ground truth unnormalized margin of at least 0.01. We use a training set of size 200 and train for
20000 steps with learning rate 0.1, once using regularizer λ = 5×10−4 and once using regularization
λ = 0. We note that the training error hits 0 extremely quickly (within 50 training iterations). The
initial normalized margin is negative because the training error has not yet hit zero.

We also compare the generalization of a regularized neural net and kernel method as the sample size
increases. Furthermore, we demonstrate that for two-layer nets, the test error decreases and margin
increases as the width of the hidden layer grows, as predicted by our theory. We provide figures and
full details in Section F.

6 Conclusion

We have shown theoretically and empirically that explicitly `2 regularized neural nets can generalize
better than the corresponding kernel method. We also argue that maximizing margin is one of the
inductive biases of relu networks obtained from optimizing weakly-regularized cross-entropy loss.
To complement these generalization results, we study optimization and prove that it is possible to
find a global minimizer of the regularized loss in polynomial time when the network width is infinite.
A natural direction for future work is to apply our theory to optimize the margin of finite-sized neural
networks.
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A Additional Notation

In this section we collect additional notations that will be useful for our proofs.

Let Sd−1 , {ū ∈ Rd : ‖ū‖2 = 1} be the unit sphere in d dimensions. Let L2
k(Sd−1) be the space of

functions on Sd−1 → Rk for which the squared `2 norm of the function value is Lebesgue integrable.
For ϕ1, ϕ2 ∈ L2

k(Sd−1), we can define 〈ϕ1, ϕ2〉 ,
∫
Sd−1 ϕ1(ū)>ϕ2(ū)dū <∞.

For general p, will also define Lp1(Sd−1) be the space of functions on Sd−1 for which the p-th power
of the absolute value is Lebesgue integrable. For ϕ ∈ Lp1(Sd−1), we overload notation and write
‖ϕ‖p ,

(∫
Sd−1 |ϕ(ū)|pdū

)1/p
. Additionally, for ϕ1 ∈ L1

1(Sd−1) and ϕ2 ∈ L∞1 (Sd−1), we can
define 〈ϕ1, ϕ2〉 ,

∫
Sd−1 ϕ1(ū)ϕ2(ū)dū <∞.

B Missing Material from Section 2

B.1 Lower Bound on NTK Kernel Generalization

In this section we will lower bound the test error of the kernel prediction function for our distribution
D in the setting of Theorem 2.1. We will first introduce some additional notation to facilitate the
proofs in this section. Let Dx be the marginal distribution of D over datapoints x. We use zi to refer
to the last d− 2 coordinates of xi. For a given vector x, x−2 will index the last d− 2 coordinates of a
vector x and for z ∈ Rd−2, use (a, b, z) to denote the vector in Rd with first two coordinates a, b, and
last d− 2 coordinates z. For a vector x ∈ Rd, let x⊗2 ∈ Rd2

denote the vector with (i− 1)d+ j-th
entry e>i xe

>
j x.

Furthermore, we define the following lifting functions ϕgrad, ϕrelu mapping data x ∈ Rd to an infinite
feature vector:

ϕgrad(x) ∈ L2
d(Sd−1) satisfies ϕgrad(x)[ū] = 1(x>ū ≥ 0)x

ϕrelu(x) ∈ L∞1 (Sd−1) satisfies ϕrelu(x)[ū] = [x>ū]+

Note that the kernel K(x′, x) can be written as a sum of positive scalings of 〈ϕgrad(x), ϕgrad(x′)〉 and
〈ϕrelu(x), ϕrelu(x′)〉. We now define the following functions K1,K2 : Rd × Rd 7→ R:

K1(x′, x) = x>x′
(

1− π−1 arccos

(
x>x′

‖x‖2‖x′‖2

))

K2(x′, x) =
‖x‖2‖x′‖2

π

√
1−

(
x>x′

‖x‖2‖x′‖2

)2

We have
〈ϕgrad(x), ϕgrad(x′)〉 = K1(x′, x)

〈ϕrelu(x), ϕrelu(x′)〉 = crelu(K1(x′, x) +K2(x′, x))

for some crelu > 0. The second equation follows from Lemma A.1 of [20]. To see the first one, we note
that the indicator 1(x′

>
ū ≥ 0)1(x>ū ≥ 0) is only 1 in a arc of degree π−arccos(x>x′/‖x‖2‖x′‖2)

between x and x′. As all directions are equally likely, the expectation Eū[1(x′
>
ū ≥ 0)1(x>ū ≥

0)] = 1− π−1 arccos
(

x>x′

‖x‖2‖x′‖2

)
.

Then as the kernel K(x′, x) is the sum of positive scalings of 〈ϕgrad(x), ϕgrad(x′)〉 and
〈ϕrelu(x), ϕrelu(x′)〉, we can express

K(x′, x) = τ1K1(x′, x) + τ2(K1(x′, x) +K2(x′, x)) (B.1)
for τ1, τ2 > 0. This decomposition will be useful in our analysis of the lower bound. The following
theorem restates our lower bound on the test error of any `2-regularized kernel method.
Theorem B.1. For the distribution D defined in Section 2, if n . d2, with probability 1 −
exp(−Ω(

√
n)) over (x1, y1), . . . , (xn, yn) drawn i.i.d. from D, for all choices of β, in test time

the kernel prediction function f kernel(·;β) will predict the sign of y wrong Ω(1) fraction of the time:

Pr
(x,y)∼D

[f kernel(x;β)y ≤ 0] = Ω(1)
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As it will be clear from context, we drop the kernel superscript. The first step of our proof will be
demonstrating that the first two coordinates do not affect the value of the prediction function f(x;β)
by very much. This is where we formalize the importance of having the sign of the positive label be
unaffected by the sign of the first coordinate, and likewise for the second coordinate and negative
labels. We utilize the sign symmetry to induce further cancellations in the prediction function output.
Formally, we will first define the functions K̃1, K̃2 : Rd−2 × Rd−2 7→ R with

K̃1(z′, z) = K1((0, 1, z′), (1, 0, z))

K̃2(z′, z) = K2((0, 1, z′), (1, 0, z))

Next, we will define the function f̃ : Rd−2 7→ R with

f̃(z;β) = τ1

n∑
i=1

βiK̃1(zi, z) + τ2

n∑
i=1

βi(K̃1(zi, z) + K̃2(zi, z))

The following lemma states that 2f̃(z;β) will approximate both f((1, 0, z);β) + f((−1, 0, z);β)
and f((0, 1, z);β) + f((0,−1, z);β). This allows us to immediately lower bound the test error of f
by the probability that f̃(z;β) is sufficiently large.
Lemma B.2. Define the functions

f+(z;β) , f((1, 0, z);β) + f((−1, 0, z);β)

f−(z;β) , f((0, 1, z);β) + f((0,−1, z);β)

Then with probability 1− exp(−Ω(d)), there is some universal constant c such that

|f+(z;β)− 2f̃(z;β)| ≤ c(τ1 + τ2)

d

n∑
i=1

|βi|

|f−(z;β)− 2f̃(z;β)| ≤ c(τ1 + τ2)

d

n∑
i=1

|βi|
(B.2)

As a result, for all choices of β1, . . . , βn, we can lower bound the test error of the kernel prediction
function by

Pr
(x,y)∼D

[f(x;β)y ≤ 0] ≥ 1

4
Pr

z∼{−1,+1}d−2

(
|f̃(z;β)| ≥ 3c(τ1 + τ2)

2d

n∑
i=1

|βi|

)
− exp(−Ω(d))

Now we argue that |f̃(z;β)| will be large with constant probability over z, leading to constant test
error of f . Formally we first show that with constant probability over the choice of z ∼ {−1,+1}d−2,
we have |f̃(z;β)| ≥ 3c(τ1+τ2)

2d

∑n
i=1 |βi|.

Lemma B.3. For sufficiently small n . d2, with probability 1 − exp(−Ω(
√
n)) over the random

draws of z1, . . . , zn, the following holds: for all β1, . . . , βn, we will have

Pr
z∼{−1,+1}d−2

(
|f̃(z;β)| ≥ 3c(τ1 + τ2)

2d

n∑
i=1

|βi|

)
≥ Ω(1)

where c is the constant defined in Lemma B.2.

This will allow us to complete the proof of Theorem B.1.

Proof of Theorem B.1. By plugging Lemma B.3 into the statement of Lemma B.2, we can conclude
that for sufficiently small n . d2, with probability 1 − exp(−Ω(

√
n)) over the random draws of

z1, . . . , zn, we have

Pr
(x,y)∼D

[f(x;β)y ≤ 0] ≥ Ω(1)

for all choices of β. This gives precisely Theorem B.1.
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It now suffices to prove Lemmas B.2 and B.3.

To prove Lemma B.2, we will rely on the following two lemmas relating K1,K2 with K̃1, K̃2, stated
and proved below:

Lemma B.4. Let z ∈ {−1,+1}d−2 be a uniform random point from the d−2-dimensional hypercube
and x ∈ supp(Dx) be given. With probability 1− exp(−Ω(d)) over the choice of z, we have

|K1(x, (1, 0, z)) +K1(x, (−1, 0, z))− 2K̃1(x−2, z)| .
1

d

|K1(x, (0, 1, z)) +K1(x, (0,−1, z))− 2K̃1(x−2, z)| .
1

d

Lemma B.5. In the same setting as Lemma B.4, with probability 1− exp(−Ω(d)) over the choice of
z, we have

|K2(x, (1, 0, z)) +K2(x, (−1, 0, z))− 2K̃2(x−2, z)| .
1

d

|K2(x, (0, 1, z)) +K2(x, (0,−1, z))− 2K̃2(x−2, z)| .
1

d

Proof of Lemma B.4. As it will be clear in the context of this proof, we use x1 to denote the first
coordinate of x and x2 to denote the second coordinate of x. We prove the first inequality, as the
proof for the second is identical. First, note that if x1 = 0,|x2| = 1, then we have K1(x, (1, 0, z)) +
K1(x, (−1, 0, z)) = 2K1((0, 1, x−2), (1, 0, z)) so the inequality holds trivially. Thus, we work in
the case that |x1| = 1, x2 = 0.

Note that ‖(1, 0, z)‖2 = ‖(−1, 0, z)‖2 = ‖x‖2 =
√
d− 1. We have:

K1(x, (1, 0, z)) +K1(x, (−1, 0, z)) (B.3)

=

(
1− π−1 arccos

(
1 + x>−2z

d− 1

))
(1 + x>−2z)

+

(
1− π−1 arccos

(
−1 + x>−2z

d− 1

))
(−1 + x>−2z)

= π−1

(
arccos

(
−1 + x>−2z

d− 1

)
− arccos

(
1 + x>−2z

d− 1

))
(B.4)

+ x>−2z

(
2− π−1 arccos

(
−1 + x>−2z

d− 1

)
− π−1 arccos

(
1 + x>−2z

d− 1

))
(B.5)

Now we perform a Taylor expansion of arccos around ν , x>−2z/(d− 1) to get

arccos(ν + ε) = arccos(ν) + arccos′(ν)ε+O(ε2)

for any |ν|, |ν + ε| ≤ 3/4. Note that this happens with probability 1− exp(−Ω(d)) by Hoeffding’s
inequality. Furthermore, for |ν| ≤ 3/4, arccos′(ν) = O(1), so we get that equation B.4 can be
bounded by O( 1

d ). Next, we claim the following:∣∣∣∣arccos

(
−1 + x>−2z

d− 1

)
+ arccos

(
1 + x>−2z

d− 1

)
− 2 arccos

(
x>−2z

d− 1

)∣∣∣∣ = O

(
1

d2

)
This follows simply from Taylor expansion around ν setting ε to ± 1

d−1 . Substituting this into equa-
tion B.5 and using our bound on equation B.4, we get∣∣∣∣K1(x, (1, 0, z)) +K1(x, (−1, 0, z))− 2x>−2z

(
1− π−1 arccos

(
x>−2z

d− 1

))∣∣∣∣ ≤ O(1

d

)
Now we use the fact that x>−2z

(
1− π−1 arccos

(
x>−2z

d−1

))
= K1((0, 1, x−2), (1, 0, z)) to complete

the proof.
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Proof of Lemma B.5. As before, it suffices to prove the first inequality in the case that |x1| = 1,
x2 = 0. We can compute

(K2(x, (1, 0, z)) +K2(x, (−1, 0, z)) =

1

π

(d− 1)

√
1−

(
1 + x>−2z

d− 1

)2

+ (d− 1)

√
1−

(−1 + x>−2z

d− 1

)2
 (B.6)

Now we again perform a Taylor expansion, this time of g(v) =
√

1− v2 around ν ,
x>−2z

d−1 . We get

g(ν + ε) = g(ν) + g′(ν)ε+O(ε2)

for any |ν|, |ν + ε| ≤ 3/4. Note that |ν|, |ν + ε| ≤ 3/4 with probability 1 − exp(−Ω(d)) via
straightforward concentration. It follows that∣∣∣∣∣∣

√
1−

(
1 + x>−2z

d− 1

)2

+

√
1−

(−1 + x>−2z

d− 1

)2

− 2

√
1−

(
x>−2z

d− 1

)2
∣∣∣∣∣∣ . 1

d2

Now plugging this into equation B.6 and using the fact that 1
π (d − 1)

√
1−

(
x>−2z

d−1

)2

=

K2((0, 1, x−2), (1, 0, z)) gives the desired result.

Now we can complete the proof of Lemma B.2.

Proof of Lemma B.2. We note that

|f+(z;β)− 2f̃(z;β)| =
∣∣∣∣(τ1 + τ2)

n∑
i=1

βi[K1((1, 0, z), xi) +K1((−1, 0, z), xi)− 2K̃1(zi, z)]

+ τ2

n∑
i=1

βi[K2((1, 0, z), xi) +K2((−1, 0, z), xi)− 2K̃2(zi, z)]

∣∣∣∣
(B.7)

Now with applying Lemmas B.4 and B.5 with a union bound over all i, we get with probability
1− exp(−Ω(d)) over the choice of z uniform from {−1,+1}d−2, for all i

|K1((1, 0, z), xi) +K1((−1, 0, z), xi)− 2K̃1(zi, z)| .
1

d

|K2((1, 0, z), xi) +K2((−1, 0, z), xi)− 2K̃2(zi, z)| .
1

d

Now plugging into equation B.7 and applying triangle inequality gives us

|f+(z;β)− 2f̃(z;β)| ≤ c(τ1 + τ2)

d

n∑
i=1

|βi| (B.8)

with probablity 1− exp(−Ω(d)) over z for some universal constant c. An identical argument also
gives us

|f−(z;β)− 2f̃(z;β)| ≤ c(τ1 + τ2)

d

n∑
i=1

|βi| (B.9)

Finally, to lower bound the quantity Pr(x,y)∼D[f(x;β)y ≤ 0], we note that if

|f̃(z;β)| ≥ 3c(τ1 + τ2)

2d

n∑
i=1

|βi|
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and equation B.2 hold, then f+(z;β) and f−(z;β) will have the same sign. However, this in turn
means that one of the following must hold:

f((1, 0, z);β) < 0

f((−1, 0, z);β) < 0

f((0, 1, z);β) > 0

f((0,−1, z);β) > 0

which implies an incorrect predicted sign. As (1, 0, z), (−1, 0, z), (0, 1, z), (0,−1, z) are all equally
likely under distribution Dx, the probability of drawing one of these examples under Dx is at least

1

4
Pr

z∼{−1,+1}d−2

(
|f̃(z;β)| ≥ 3c(τ1 + τ2)

2d

n∑
i=1

|βi|

)
− exp(−Ω(d))

This gives the desired lower bound on Pr(x,y)∼D[f(x;β)y ≤ 0].

Now we will prove Lemma B.3. We will first construct a polynomial approximation f̂(z;β) of
f̃(z;β), and then lower bound the expectation Ez[f̂(z;β)2]. We use the following two lemmas:
Lemma B.6. Define the polynomial g : R 7→ R as follows:

g(x) , τ1(d− 1)

(
1

2
x+

1

π
x2 +

1

6π
x4

)
+ τ2(d− 1)

(
1

π
+

1

2
x+

1

2π
x2 +

1

24π
x4

)
Then for z ∈ {−1,+1}d−2 distributed uniformly over the hypercube and some given z′ ∈
{−1,+1}d−2,

Pr
z

[∣∣∣∣g( z>z′d− 1

)
− (τ1 + τ2)K̃1(z, z′)− τ2K̃2(z, z′)

∣∣∣∣ ≤ c1(τ1 + τ2)
log2.5

d1.5

]
≥ 1− d−10

for some universal constant c1.
Lemma B.7. Let g : R 7→ R be any degree-k polynomial with nonnegative coefficients, i.e. g(x) =∑k
j=1 ajx

j with aj ≥ 0 for all j. For n . d2, with probability 1− exp(−Ω(
√
n)) over the random

draws of z1, . . . , zn i.i.d. uniform from {−1,+1}d, the following holds: for all β1, . . . , βn, we will
have

Ez

( n∑
i=1

βig(z>zi)

)2
 & a2

2d
2

n∑
i=1

βi
2

where z ∈ {−1,+1}d is a uniform vector from the hypercube.

Now we provide the proof of Lemma B.3.

Proof of Lemma B.3. For the degree-4 polynomial g defined in Lemma B.6, we define

f̂(z;β) =

n∑
i=1

βig

(
z>zi
d− 1

)
Note that with probability 1 − d−8 over the choice of z, |f̂(z;β) − f̃(z;β)| . log2.5 d

d1.5 (τ1 +
τ2)
∑n
i=1 |βi|.

With the purpose of applying Lemma B.7, we can first compute the coefficent of x2 in g(x/(d− 1))
to be 1

π(d−1) (τ1 + τ2/2). As g has positive coefficients, we can thus apply Lemma B.7 to conclude
that with high probability over z1, . . . , zn, the following event E holds: for all choices of β1, . . . , βn,
Ez[f̂(z;β)2] ≥ c2(τ1 + τ2)2

∑n
i=1 βi

2 for some universal constant c2. We now condition on the
event that E holds.

Note that by Cauchy-Schartz,
∑n
i=1 βi

2 ≥ 1
n (
∑n
i=1 |βi|)2. It follows that if n ≤ c2

4c2 d
2, we have

Ez[f̂(z;β)2] ≥ c2(τ1 + τ2)2
n∑
i=1

β2
i ≥

c2(τ1 + τ2)2

n
(

n∑
i=1

|βi|)2 ≥ 4c2(τ1 + τ2)2

d2
(

n∑
i=1

|βi|)2

18



Now we can apply Bonami’s Lemma (see Chapter 9 of O’Donnell [57]) along with the fact that f̂ is
a degree-4 polynomial in i.i.d. ±1 variables z1, . . . , zd−2 to obtain

Ez[f̂(z;β)4] ≤ 94(Ez[f̂(z;β)2])2

Combining this with Proposition 9.4 of O’Donnell [57] lets us conclude that if E holds, with
probability Ω(1) over the random draw of z,

|f̂(z;β)| ≥ 3

4

√
Ez[f̂(z;β)2] ≥ 3c(τ1 + τ2)

2d

n∑
i=1

|βi|

Since |f̂(z;β)− f̃(z;β)| . (τ1+τ2) log2.5(d)
d1.5

∑n
i=1 |βi| w.h.p over z, we can conclude that

|f̃(z;β)| ≥ 3c(τ1 + τ2)

2d

n∑
i=1

|βi|

holds with probability Ω(1) over z. This gives the desired result.

Proof of Lemma B.6. Define functions h1, h2 : (−1, 1) 7→ R with

h1(x) = x(1− π−1 arccosx)

h2(x) =
1

π

√
1− x2

Recalling our definitions of K̃1, K̃2, it follows that K̃1(z, z′) = (d− 1)h1

(
z>z′

d−1

)
and K̃2(z, z′) =

(d − 1)h2

(
z>z′

d−1

)
. Letting g1, g2 denote the 4-th order Taylor expansions around 0 of h1, h2,

respectively, it follows from straightforward calculation that

g1(x) =
1

2
x+

1

π
x2 +

1

6π
x4

g2(x) =
1

π
− 1

2π
x2 − 1

8π
x4

with |h1(x)−g1(x)| ≤ O(|x|5) and |h2(x)−g2(x)| ≤ O(|x|5) for |x| ≤ 3/4. )Now we can observe
that g(x) = (τ1 + τ2)(d− 1)g1(x) + τ2(d− 1)g2(x). Thus,

g

(
z>z′

d− 1

)
− (τ1 + τ2)K̃1(z, z′)− τ2K̃2(z, z′)

= (d− 1)

[
(τ1 + τ2)

(
g1

(
z>z′

d− 1

)
− h1

(
z>z′

d− 1

))
+ τ2

(
g2

(
z>z′

d− 1

)
− h2

(
z>z′

d− 1

))]
As |z>z′|/(d− 1) ≤ 3/4 with probability 1− exp(−Ω(d)), the above is bounded in absolute value

by (d − 1)(τ1 + τ2)O

((
|z>z′|
d−1

)5
)

. Finally, by Hoeffding’s inequality |z>z′| ≤ c
√
d log d with

probability 1− d−10 for some universal constant c. This gives the desired bound.

Proof of Lemma B.7. We first compute

Ez

( n∑
i=1

βig(z>zi)

)2
 = Ez


 n∑
i=1

βi

k∑
j=1

aj(z
>zi)

j

2


= Ez


 k∑
j=1

aj

n∑
i=1

βi(z
>zi)

j

2


=
∑
j1,j2

aj1aj2Ez

[(
n∑
i=1

βi(z
>zi)

j1

)(
n∑
i=1

βi(z
>zi)

j2

)]
(expanding the square and using linearity of expectation)
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Now note that all terms in the above sum are nonnegative by Lemma B.9 and the fact that aj1 , aj2 ≥ 0.
Thus, we can lower bound the above by the term corresponding to j1 = j2 = 2:

Ez

( n∑
i=1

βig(z>zi)

)2
 ≥ a2

2Ez

[(
n∑
i=1

βi(z
>zi)

2

)(
n∑
i=1

βi(z
>zi)

2

)]

Now we can express

Ez

[(
n∑
i=1

βi(z
>zi)

2

)(
n∑
i=1

βi(z
>zi)

2

)]
= β>M⊗2>Ez[z⊗2z⊗2>]M⊗2β (B.10)

where M ∈ Rd×n is the matrix with zi as its columns, and M⊗2 has z⊗2
i as its columns.

We first compute Ez[z⊗2z⊗2>]. Note that the entry in the d(i1−1) + j1-th row and d(i2−1) + j2-th
column of z⊗2z⊗2> is given by (e>i1z)(e

>
j1
z)(e>i2z)(e

>
j2
z). Note that unless i1 = i2, j1 = j2 or

i1 = j1, i2 = j2, this value has expectation 0. Thus, Ez[z⊗2z⊗2>] is a matrix with 1 on its diagonals
and entries in the (i− 1)d+ i-th row and (j − 1)d+ j-th column, and 0 everywhere else. Letting S
denote the set of indices {(i− 1)d+ i : i ∈ [d]} and ~1S denote the vector in Rd2

with ones on S and
0 everywhere else, we thus have

Ez[z⊗2z⊗2>] = ~1S~1
>
S + I[d2]\S×[d2]\S

Now letting M⊗2
S denote M⊗2 with rows whose indices are not in S zero’ed out, it follows that

M⊗2>Ez[z⊗2z⊗2>]M⊗2 = M⊗2
S

>~1S~1
>
SM

⊗2
S +M⊗2

[d2]\S
>
I[d2]\S×[d2]\SM

⊗2
[d2]\S

�M⊗2
[d2]\S

>
M⊗2

[d2]\S (B.11)

Therefore, it suffices to show σmin(M⊗2
[d2]\S

>
M⊗2

[d2]\S) & d2 with high probability. To do this, we

can simply invoke Proposition 7.9 of Soltanolkotabi et al. [66] using ηmin = ηmax =
√
d2 − d and

the fact that the columns of M⊗2
[d2]\S are O(1)-sub-exponential (Claim B.8 to get that if n ≤ cd2 for

some universal constant c, then σ2
min(M⊗2

[d2]\S) & d2 with probability 1− exp(O(
√
n)).

Finally, combining this with equation B.11 and equation B.10 gives the desired result.

Claim B.8. Say that a random vector x ∈ Rd is B-sub-exponential if the following holds:

sup
y∈Sd−1

inf{C > 0 : E exp(|x>y|/C) ≤ 2} ≤ B

Suppose that z ∼ {−1,+1}d is a uniform vector on the hypercube. Then there is a universal constant
c such that z⊗2 −~1S is c-sub-exponential, where S , {(i− 1)d+ i : i ∈ [d]} is the set of indices
corresponding to squared entries of z⊗2.

Proof. Let z̃⊗2 denote the d2 − d dimensional vector which removes coordinates in S from z⊗2.
As z⊗2 has value 1 with probability 1 on coordinates in S, it suffices to show that z̃⊗2 is c-sub-
exponential. We first note that for any y ∈ Rd2−d, y>z̃⊗2 can be written as z>Y z, where Y is a
d× d matrix with 0 on its diagonals and ij-th entry matching the corresponding entry of y.

Now we can apply Theorem 1.1 of Rudelson et al. [62], using the fact that e>i z have sub-Gaussian
norm 2 to get

Pr[|z>Y z| > t] ≤ 2 exp(−c′t2/16‖y‖22)

for some universal constant c′. Since this holds for all y, we can conclude the claim statement using
Lemma 5.5 of Soltanolkotabi et al. [66].

The following lemma is useful for proving the lower bound in Lemma B.7.
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Lemma B.9. Let zi ∈ {−1,+1}d for i ∈ [n], and let z ∈ {−1,+1}d be a vector sampled uniformly
from the hypercube. Then for any integers p, q ≥ 0,

Ez

[(∑
i

βi(z
>zi)

q

)(∑
i

βi(z
>zi)

p

)]
≥ 0

Furthermore, equality holds if exactly one of p or q is odd.

In order to prove Lemma B.9, we will require some tools and notation from boolean function analysis
(see O’Donnell [57] for a more in-depth coverage). We first introduce the following notation: for
x ∈ {−1,+1}d and S ⊆ [d], we use xS to denote

∏
s∈S xs. Then by Theorem 1.1 of [57], we can

expand a function f : {−1,+1}d 7→ R with respect to the values xS :

f(x) =
∑
S⊆[d]

f̂(S)xS

where f̂(S) is called the Fourier coefficient of f on S and f̂(S) = Ex[f(x)xS ] for x uniform on
{−1,+1}d. For functions f1, f2 : {−1,+1}d 7→ R, the following identity holds:

Ex[f1(x)f2(x)] =
∑
S⊆[d]

f̂1(S)f̂2(S) (B.12)

Proof of Lemma B.9. For this proof we will use double indices on the zi vectors, so that zi,j will
denote the j-th coordinate of zi. We will only use the symbols j to index the vectors z, z1, . . . , zn.
We define the functions g(z) ,

∑
i βi(z

>zi)
q and h(z) ,

∑
i βi(z

>zi)
p, with Fourier coefficients

ĝ, ĥ, respectively, and gi(z) = (z>zi)
q , hi(z) = (z>zi)

p with Fourier coefficients ĝi, ĥi. We claim
that for any S ⊆ [d], ĝ(S)ĥ(S) ≥ 0.

To see this, we will first compute ĝi(S) as follows: ĝi(S) = Ez[(z>zi)qzS ]. Now note that if we
expand (z>zi)

q and compute this expectation, only terms of the form zSzSi z
a1
j1
· · · zakjk z

a1
i,j1
· · · zaki,jk

with a1, . . . , ak even and a1 + · · ·+ ak = q − |S| are nonzero. Note that we have allowed k to vary.
Thus,

Ez[(z>zi)qzS ] =
∑

j1,...jk,a1,...,ak

(zS)2zSi z
a1
j1
· · · zakjk z

a1
i,j1
· · · zaki,jk

= cq,|S|z
S
i (B.13)

for some positive integer cq,|S| depending only on q, |S|. We obtained equation B.13 via symmetry
and the fact that (zS)2 = 1, za1

j1
· · · zakjk z

a1
i,j1
· · · zaki,jk = 1, as they are squares of values in {−1,+1}.

Note that cq,|S| = 0 for |S| > q. It follows that ĝ(S) = cq,|S|
∑
i βiz

S
i , and ĥ(S) = cp,|S|

∑
i βiz

S
i .

Thus, ĝ(S)ĥ(S) ≥ 0∀S, which means by equation B.12, we get

Ez[g(z)h(z)] =
∑
S

ĝ(S)ĥ(S) ≥ 0

as desired.

Now to see that Ez[g(z)h(z)] = 0 if exactly one of p or q is odd, note that every monomial in the
expansion of g(z)h(z) will have odd degree. However, the expectation of such monomials is always
0 as z ∈ {−1,+1}d.

B.2 Proof of Theorem 2.1

We now complete the proof of Theorem 2.1. Note that the kernel lower bound follows from B.1, so it
suffices to upper bound the generalization error of the neural net solution.

Proof of Theorem 2.1. We first invoke Theorem C.2 to conclude that with λ = poly(n)−1, the
network fNN(·; Θλ) will have margin that is a constant factor approximation to the max-margin.
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For neural nets with at least 4 hidden units, we now construct a neural net with a good normalized
margin:

fNN(x) = [x>e1]+ + [−x>e1]+ − [x>e2]+ − [−x>e2]+

As this network has constant norm and margin 1, it has normalized margin Θ(1), and therefore the
max neural net margin is Ω(1). Now we apply the generalization bound of Proposition D.1 to obtain

Pr
x,y∼D

[fNN(x; Θλ)y ≤ 0] .

√
d

n
+

√
log log(16d)

n
+

√
log(1/δ)

n

as desired. Choosing δ = n−5 gives the desired result. Combined with the Theorem B.1 lower bound
on the kernel method, this completes the proof.

B.3 Regression Setting

In this section we argue that a analogue to Theorem 2.1 holds in the regression setting where we test
on a truncated squared loss `(ŷ; y) = min((y− ŷ)2, 1). As the gap exists for the same distribution D,
the theorem statement is essentially identical to the classification setting, and the kernel lower bound
carries over. For the regularized neural net upper bound, we will only highlight the differences here.
Theorem B.10. Let fNN(·; Θ) be some two-layer neural network with m hidden units parametrized
by Θ, as in Section 2. Define the λ-regularized squared error loss

Lλ,m(Θ) ,
1

n

n∑
i=1

(fNN(xi; Θ)− yi)2 + λ‖Θ‖22

with Θλ,m ∈ arg minΘ Lλ,m(Θ). Suppose there exists a width-m network that fits the data (xi, yi)
perfectly. Then as λ→ 0, Lλ,m(Θλ,m)→ 0 and ‖Θλ,m‖2 → ‖Θ?,m‖22, where Θ?,m is an optimizer
of the following problem:

min
Θ
‖Θ‖22

such that fNN(xi; Θ) = yi ∀i
(B.14)

Proof. We note that λ‖Θλ,m‖22 ≤ Lλ,m(Θλ,m) ≤ Lλ,m(Θ?,m) = λ‖Θ?,m‖22, so as λ → 0, and
also ‖Θλ,m‖2 ≤ ‖Θ?,m‖2. Now assume for the sake of contradiction that ∃B with ‖Θλ,m‖2 ≤ B <
‖Θ?,m‖2 for arbitrarily small λ. We define

r? ,min
Θ

1

n

n∑
i=1

(fNN(xi; Θ)− yi)2

subject to ‖Θ‖2 ≤ B

Note that r? > 0 since Θ?,m is optimal for equation B.14. However, Lλ,m ≥ r? for arbitrarily small
λ, a contradiction. Thus, limλ→0 ‖Θλ,m‖22 = ‖Θ?,m‖22.

For the distribution D, the neural net from the proof of Theorem 2.1 also fits the data perfectly in
the regression setting. As this network has norm O(1), we can apply the norm-based Rademacher
complexity bounds of Golowich et al. [25] in the same manner as in Section D (using standard tools for

Lipschitz and bounded functions) to conclude a generalization error bound of Õ
(√

d logn+log(1/δ)
n

)
,

same as the classification upper bound.

B.4 Connection to the `1-SVM

In this section, we state a known connection between a `2 regularized two-layer neural net and the
`1-SVM over relu features [48]. Following our notation from Section 4, we will use γ?,m to denote
the maximum possible normalized margin of a two-layer network with hidden layer size m (note the
emphasis on the size of the single hidden layer).

The depth q = 2 case of Corollary 4.2 implies that optimizing weakly-regularized `2 loss over
width-m two-layer networks gives parameters whose generalization bounds depend on the hidden
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layer size only through 1/γ?,m. Furthermore, from Theorem 4.3 it immediately follows that γ?,1 ≤
γ?,2 ≤ · · · ≤ γ?,∞. The work of Neyshabur et al. [48] links γ?,m to the `1 SVM over the lifted
features ϕrelu. We look at the margin of linear functionals corresponding to µ ∈ L1

1(Sd−1). The
1-norm SVM [75] over the lifted feature ϕrelu(x) solves for the maximum margin:

γ`1 ,max
µ

min
i∈[n]

yi〈µ, ϕrelu(xi)〉

subject to ‖µ‖1 ≤ 1
(B.15)

This formulation is equivalent to a hard-margin optimization on “convex neural networks” [11].
Bach [7] also study optimization and generalization of convex neural networks. Using results
from [60, 48, 11], our Theorem C.1 implies that optimizing weakly-regularized logistic loss over
two-layer networks is equivalent to solving equation B.15 when the size of the hidden layer is at least
n+ 1. Proposition B.11 states this deduction.6

Proposition B.11. Let γ`1 be defined in equation B.15. If margin γ`1 is attainable by some solution
µ ∈ L1

1(Sd−1), then γ`1
2 = γ?,n+1 = · · · = γ?,∞.

C Missing Material for Section 4

C.1 Multi-class Setting

We will first state our analogue of Theorem 4.1 in the multi-class setting, as the proofs for the binary
case will follow by reduction to the multi-class case.

In the same setting as Section 4, let l be the number of multi-class labels, so the i-th example has
label yi ∈ [l]. Our family F of prediction functions f now takes outputs in Rl, and we now study the
λ-regularized cross entropy loss, defined as

Lλ(Θ) , − 1

n

n∑
i=1

log
exp(fyi(xi; Θ))∑l
j=1 exp(fj(xi; Θ))

+ λ‖Θ‖r (C.1)

We redefine the normalized margin of Θλ as:

γλ , min
i

(fyi(xi; Θ̄λ)−max
j 6=yi

fj(xi; Θ̄λ)) (C.2)

Define the ‖ · ‖-max normalized margin as

γ? , max
‖Θ‖≤1

[min
i

(fyi(xi; Θ)−max
j 6=yi

fj(xi; Θ))]

and let Θ? be a parameter achieving this maximum. With these new definitions, our theorem statement
for the multi-class setting is identical as the binary setting:
Theorem C.1. Assume γ? > 0 in the multi-class setting with cross entropy loss. Then as λ → 0,
γλ → γ?.

Since Lλ is typically hard to optimize exactly for neural nets, we study how accurately we need to
optimize Lλ to obtain a margin that approximates γ? up to a constant. We show that for λ polynomial
in n, γ?, and l, it suffices to find Θ′ achieving a constant factor α multiplicative approximation of
Lλ(Θλ) in order to have margin γ′ satisfying γ′ ≥ γ?

αa/r
.

Theorem C.2. In the setting of Theorem C.1, suppose that we choose λ = exp(−(2r/a −
1)−a/r) (γ?)r/a

nc(l−1)c for sufficiently large c (that only depends on r/a). For α ≤ 2, let Θ′ denote a
α-approximate minimizer of Lλ, so Lλ(Θ′) ≤ αLλ(Θλ). Denote the normalized margin of Θ′ by γ′.
Then γ′ ≥ γ?

10·αa/r .

Towards proving Theorem C.1, we first prove that Lλ does indeed have a global minimizer.
Claim C.3. In the setting of Theorems C.1 and 4.1, arg minΘ Lλ(Θ) exists.

6The factor of 1
2

is due the the relation that every unit-norm parameter Θ corresponds to an µ in the lifted
space with ‖µ‖ = 2.
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Proof. We will argue in the setting of Theorem C.1 where Lλ is the multi-class cross entropy
loss, because the logistic loss case is analogous. We first note that Lλ is continuous in Θ be-
cause f is continuous in Θ and the term inside the logarithm is always positive. Next, define
b , infΘ Lλ(Θ) > 0. Then we note that for ‖Θ‖ > (b/λ)1/r , M , we must have Lλ(Θ) > b.
It follows that inf‖Θ‖≤M Lλ(Θ) = infΘ Lλ(Θ). However, there must be a value Θλ which at-
tains inf‖Θ‖≤M Lλ(Θ), because {Θ : ‖Θ‖ ≤ M} is a compact set and Lλ is continuous. Thus,
infΘ Lλ(Θ) is attained by some Θλ.

Next we present the following lemma, which says that as we decrease λ, the norm of the solution
‖Θλ‖ grows.
Lemma C.4. In the setting of Theorem C.1, as λ→ 0, we have ‖Θλ‖ → ∞.

To prove Theorem C.1, we rely on the exponential scaling of the cross entropy: Lλ can be lower
bounded roughly by exp(−‖Θλ‖γλ), but also has an upper bound that scales with exp(−‖Θλ‖γ?).
By Lemma C.4, we can take large ‖Θλ‖ so the gap γ?−γλ vanishes. This proof technique is inspired
by that of Rosset et al. [58].

Proof of Theorem C.1. For any M > 0 and Θ with γΘ , mini
(
f(xi; Θ̄)−maxj 6=yi f(xi; Θ̄)

)
,

Lλ(MΘ) =
1

n

n∑
i=1

− log
exp(Mafyi(xi; Θ))∑l
j=1 exp(Mafj(xi; Θ))

+ λMr‖Θ‖r (by the homogeneity of f )

=
1

n

n∑
i=1

− log
1

1 +
∑
j 6=yi exp(Ma(fj(xi; Θ)− fyi(xi; Θ)))

+ λMr‖Θ‖r (C.3)

≤ log(1 + (l − 1) exp(−MaγΘ)) + λMr‖Θ‖r (C.4)

We can also apply
∑
j 6=yi exp(Ma(fj(xi; Θ) − fyi(xi; Θ))) ≥ max exp(Ma(fj(xi; Θ) −

fyi(xi; Θ))) = exp γΘ in order to lower bound equation C.3 and obtain

Lλ(MΘ) ≥ 1

n
log(1 + exp(−MaγΘ)) + λMr‖Θ‖r (C.5)

Applying equation C.4 with M = ‖Θλ‖ and Θ = Θ?, noting that ‖Θ?‖ ≤ 1, we have:

Lλ(Θ?‖Θλ‖) ≤ log(1 + (l − 1) exp(−‖Θλ‖aγ?)) + λ‖Θλ‖r (C.6)

Next we lower bound Lλ(Θλ) by applying equation C.5,

Lλ(Θλ) ≥ 1

n
log(1 + exp(−‖Θλ‖aγλ)) + λ‖Θλ‖r (C.7)

Combining equation C.6 and equation C.7 with the fact that Lλ(Θλ) ≤ Lλ(Θ?‖Θλ‖) (by the global
optimality of Θλ), we have

∀λ > 0, n log(1 + (l − 1) exp(−‖Θλ‖aγ?)) ≥ log(1 + exp(−‖Θλ‖aγλ))

Recall that by Lemma C.4, as λ → 0, we have ‖Θλ‖ → ∞. There-
fore, exp(−‖Θλ‖aγ?), exp(−‖Θλ‖aγλ) → 0. Thus, we can apply Taylor expan-
sion to the equation above with respect to exp(−‖Θλ‖aγ?) and exp(−‖Θλ‖aγλ). If
max{exp(−‖Θλ‖aγ?), exp(−‖Θλ‖aγλ)} < 1, then we obtain

n(l − 1) exp(−‖Θλ‖aγ?) ≥ exp(−‖Θλ‖aγλ)−O(max{exp(−‖Θλ‖aγ?)2, exp(−‖Θλ‖aγλ)2})

We claim this implies that γ? ≤ lim infλ→0 γλ. If not, we have lim infλ→0 γλ < γ? , which implies
that the equation above is violated with sufficiently large ‖Θλ‖ (‖Θλ‖ � log(2(`− 1)n)1/a would
suffice). By Lemma C.4, ‖Θλ‖ → ∞ as λ→ 0 and therefore we get a contradiction.

Finally, we have γλ ≤ γ? by definition of γ?. Hence, limλ→0 γλ exists and equals γ?.

Now we fill in the proof of Lemma C.4.
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Proof of Lemma C.4. For the sake of contradiction, we assume that ∃C > 0 such that for any λ0 > 0,
there exists 0 < λ < λ0 with ‖Θλ‖ ≤ C. We will determine the choice of λ0 later and pick λ such that
‖Θλ‖ ≤ C. Then the logits (the prediction fj(xi; Θ) before softmax) are bounded in absolute value
by some constant (that depends on C), and therefore the loss function − log

exp(fyi (xi;Θ))∑l
j=1 exp(fj(xi;Θ))

for

every example is bounded from below by some constant D > 0 (depending on C but not λ.)

Let M = λ−1/(r+1), we have that

0 < D ≤ Lλ(Θλ) ≤ Lλ(MΘ?) (by the optimality of Θλ)

≤ − log
1

1 + (l − 1) exp(−Maγ?)
+ λMr (by equation C.4)

= log(1 + (l − 1) exp(−λ−a/(r+1)γ?)) + λ1/(r+1)

≤ log(1 + (l − 1) exp(−λ−a/(r+1)
0 γ?)) + λ

1/(r+1)
0

Taking a sufficiently small λ0, we obtain a contradiction and complete the proof.

C.2 Missing Proof for Optimization Accuracy

Proof of Theorem C.2. Choose B ,
(

1
γ? log (l−1)(γ?)r/a

λ

)1/a

. We can upper bound Lλ(Θ′) by
computing

Lλ(Θ′) ≤ αLλ(Θλ) ≤ αLλ(BΘ?)

≤ α log(1 + (l − 1) exp(−Baγ?)) + αλBr (by equation C.4)
≤ α(l − 1) exp(−Baγ?) + αλBr (using log(1 + x) ≤ x)

≤ α λ

(γ?)r/a
+ αλ

(
1

γ?
log

(l − 1)(γ?)r/a

λ

)r/a
≤ α λ

(γ?)r/a

(
1 +

(
log

(l − 1)(γ?)r/a

λ

)r/a)
, L(UB)

Furthermore, it holds that ‖Θ′‖r ≤ L(UB)

λ . Now we note that

Lλ(Θ′) ≤ L(UB) ≤ 2α
λ

(γ?)r/a

(
log

(l − 1)(γ?)r/a

λ

)r/a
≤ 1

2n

for sufficiently large c depending only on a/r. Now using the fact that log(x) ≥ x
1+x ∀x ≥ −1,

we additionally have the lower bound Lλ(Θ′) ≥ 1
n log(1 + exp(−γ′‖Θ′‖a)) ≥ 1

n
exp(−γ′‖Θ′‖a)

1+exp(−γ′‖Θ′‖a) .

Since L(UB) ≤ 1, we can rearrange to get

γ′ ≥
− log nLλ(Θ′)

1−nLλ(Θ′)

‖Θ′‖a
≥
− log nL(UB)

1−nL(UB)

‖Θ′‖a
≥ − log(2nL(UB))

‖Θ′‖a
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The middle inequality followed because x
1−x is increasing in x for 0 ≤ x < 1, and the last because

L(UB) ≤ 1
2n . Since − log 2nL(UB) > 0 we can also apply the bound ‖Θ′‖r ≤ L(UB)

λ to get

γ′ ≥ −λ
a/r log 2nL(UB)

(L(UB))a/r

=

− log

(
2nα λ

(γ?)r/a

(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a))
αa/r

γ?

(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a)a/r (by definition of L(UB))

≥ γ?

αa/r


log( (γ?)r/a

2αnλ )(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a)a/r
︸ ︷︷ ︸

♣

−
log

(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a)
(

1 +
(

log (l−1)(γ?)r/a

λ

)r/a)a/r
︸ ︷︷ ︸

♥


We will first bound ♣. First note that

log( (γ?)r/a

2αnλ )

log (l−1)(γ?)r/a

λ

=
log (γ?)r/a

λ − log 2αn

log (γ?)r/a

λ + log(l − 1)
≥

log (γ?)r/a

λ − log 2αn(l − 1)

log (γ?)r/a

λ

≥ c− 3

c
(C.8)

where the last inequality follows from the fact that (γ?)r/a

λ ≥ nc(l − 1)c and α ≤ 2. Next, using the

fact that log (γ?)r/a

λ ≥ 1
(2r/a−1)a/r

, we note that

(
1 +

(
log

(l − 1)(γ?)r/a

λ

)−r/a)a/r
≤

(
1 +

(
1

(2r/a − 1)a/r

)−r/a)a/r
≤ 2 (C.9)

Combining equation C.8 and equation C.9, we can conclude that

♣ =
log( (γ?)r/a

2αnλ )

log (l−1)(γ?)r/a

λ

(
1 +

(
log

(l − 1)(γ?)r/a

λ

)−r/a)−a/r
≥ c− 3

2c

Finally, we note that if 1 +
(

log (l−1)(γ?)r/a

λ

)r/a
is a sufficiently large constant that depends only on

a/r (which can be achieved by choosing c sufficiently large) it will follow that ♥ ≤ 1
10 . Thus, for

sufficiently large c ≥ 5, we can combine our bounds on ♣ and ♥ to get that

γ′ ≥ γ?

10αa/r

C.3 Proofs of Theorem 4.1

For completeness, we will now prove Theorem 4.1 via reduction to the multi-class cases. Recall that
we now fit binary labels yi ∈ {−1,+1} (as opposed to indices in [l]) and redefine f(·; Θ) to assign a
single real-valued score (as opposed to a score for each label). We also work with the simpler logistic
loss in equation 4.1.

Proof of Theorem 4.1. We prove this theorem via reduction to the multi-class case with l = 2.
Construct f̃ : Rd → R2 with f̃1(xi; Θ) = − 1

2f(xi; Θ) and f̃2(xi; Θ) = 1
2f(xi; Θ). Define new

labels ỹi = 1 if yi = −1 and ỹi = 2 if yi = 1. Now note that f̃ỹi(xi; Θ)−f̃j 6=ỹi(xi; Θ) = yif(xi; Θ),
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so the multi-class margin for Θ under f̃ is the same as binary margin for Θ under f . Furthermore,
defining

L̃λ(Θ) ,
1

n

n∑
i=1

− log
exp(f̃ỹi(xi; Θ))∑2
j=1 exp(f̃j(xi; Θ))

+ λ‖Θ‖r

we get that L̃λ(Θ) = Lλ(Θ), and in particular, L̃λ and Lλ have the same set of minimizers.
Therefore we can apply Theorem C.1 for the multi-class setting and conclude γλ → γ? in the binary
classification setting.

D Generalization Bounds for Neural Nets

In this section we present generalization bounds in terms of the normalized margin and complete
the proof of Corollary 4.2. We first state the following Proposition D.1, which shows that the
generalization error only depends on the parameters through the inverse of the margin on the training
data. We obtain Proposition D.1 by applying Theorem 1 of Golowich et al. [25] with the standard
technique of using margin loss to bound classification error. There exist other generalization bounds
which depend on the margin and some normalization [50, 51, 9, 53]; we choose the bounds of
Golowich et al. [25] because they fit well with `2 normalization.
Proposition D.1. [Straightforward consequence of Golowich et al. [25, Theorem 1]] Suppose
φ is 1-Lipschitz and 1-positive-homogeneous. With probability at least 1 − δ over the draw
of X,Y , for all depth-q networks fNN(·; Θ) separating the data with normalized margin γ ,
mini yif

NN(xi; Θ/‖Θ‖F ) > 0,

L(Θ) .
C

γq(q−1)/2
√
n

+ ε(γ) (D.1)

where ε(γ) ,
√

log log2
4C
γ

n +
√

log(1/δ)
n and C = maxx∈X ‖x‖2 is the max norm of the data. Note

that ε(γ) is typically small, and thus the above bound mainly scales with C
γq(q−1)/2

√
n

. 7

We note that Proposition D.1 is stated directly in terms of the normalized margin in order to maintain
consistency in our notation, whereas prior works state their results using a ratio between unnormalized
margin and norms of the weight matrices [9]. We provide the proof in the following section.

D.1 Proof of Proposition D.1

We prove the generalization error bounds stated in Proposition D.1 via Rademacher complexity and
margin theory.

Assume that our data X,Y are drawn i.i.d. from ground truth distribution pdata supported on X × Y .
For some hypothesis classF of real-valued functions, we define the empirical Rademacher complexity
R̂(F) as follows:

R̂(F) ,
1

n
Eεi

[
sup
f∈F

n∑
i=1

εif(xi)

]
where εi are independent Rademacher random variables. For a classifier f , following the notation of
Section 4.1 we will use L(f) , Pr(x,y)∼pdata

(yf(x) ≤ 0) to denote the population 0-1 loss of the
classifier f . The following classical theorem [34], [33] bounds generalization error in terms of the
Rademacher complexity and margin loss.
Theorem D.2 (Theorem 2 of Kakade et al. [33]). Let (xi, yi)

n
i=1 be drawn iid from pdata. We

work in the binary classification setting, so Y = {−1, 1}. Assume that for all f ∈ F , we have
supx∈X |f(x)| ≤ C. Then with probability at least 1 − δ over the random draws of the data, for
every γ > 0 and f ∈ F ,

L(f) ≤ 1

n

n∑
i=1

1(yif(xi) < γ) +
4R̂(F)

γ
+

√
log log2

4C
γ

n
+

√
log(1/δ)

2n
7Although the 1

K(K−1)/2 factor of equation D.1 decreases with depth K, the margin γ will also tend to
decrease as the constraint ‖Θ̄‖F ≤ 1 becomes more stringent.
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We will prove Proposition D.1 by applying the Rademacher complexity bounds of Golowich et al.
[25] with Theorem D.2.

First, we show the following lemma bounding the generalization of neural networks whose weight
matrices have bounded Frobenius norms. For this proof we drop the superscript NN as it is clear from
context.
Lemma D.3. Define the hypothesis class Fq over depth-q neural networks by

Fq =

{
f(·; Θ) : ‖Wj‖F ≤

1
√
q
∀j
}

Let C , supx∈X ‖x‖2. Recall that L(Θ) denotes the 0-1 population loss L(f(·; Θ)). Then
for any f(·; Θ) ∈ Fq classifying the training data correctly with unnormalized margin γΘ ,
mini yif(xi; Θ) > 0, with probability at least 1− δ,

L(Θ) .
C

γΘq(q−1)/2
√
n

+

√
log log2

4C
γΘ

n
+

√
log(1/δ)

n
(D.2)

Note the dependence on the unnormalized margin rather than the normalized margin.

Proof. We first claim that supf(·;Θ)∈Fq supx∈X f(x; Θ) ≤ C. To see this, for any f(·; Θ) ∈ Fq ,

f(x; Θ) = Wqφ(· · ·φ(W1x) · · · )
≤ ‖Wq‖F ‖φ(Wq−1φ(· · ·φ(W1x) · · · )‖2
≤ ‖Wq‖F ‖Wq−1φ(· · ·φ(W1x) · · · )‖2

(since φ is 1-Lipschitz and φ(0) = 0, so φ performs a contraction)
< ‖x‖2 ≤ C (repeatedly applying this argument and using ‖Wj‖F < 1)

Furthermore, by Theorem 1 of Golowich et al. [25], R̂(Fq) has upper bound

R̂(Fq) .
C

q(q−1)/2
√
n

Thus, we can apply Theorem D.2 to conclude that for all f(·; Θ) ∈ Fq and all γ > 0, with probability
1− δ,

L(Θ) .
1

n

n∑
i=1

1(yif(xi; Θ) < γ) +
C

γq(q−1)/2
√
n

+

√
log log2

4C
γ

n
+

√
log(1/δ)

n

In particular, by definition choosing γ = γΘ makes the first term on the LHS vanish and gives the
statement of the lemma.

Proof of Proposition D.1. Given parameters Θ = (W1, . . . ,Wq), we first construct parameters Θ̃ =

(W̃1, . . . , W̃q) such that f(·; Θ̄) and f(·; Θ̃) compute the same function, and ‖W̃1‖2F = ‖W̃2‖2F =

· · · = ‖W̃q‖2F ≤ 1
q . To do this, we set

W̃j =
(
∏q
k=1 ‖Wk‖F )1/k

‖Wj‖F ‖Θ‖F
Wj

By construction

‖W̃j‖2F =
(
∏q
k=1 ‖Wk‖2F )1/k

‖Θ‖2F

=
(
∏q
k=1 ‖Wk‖2F )1/k∑q
k=1 ‖Wk‖2F

≤ 1

k
(by the AM-GM inequality)
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Furthermore, we also have

f(x; Θ̃) = W̃qφ(· · ·φ(W̃1x) · · · )

=

q∏
j=1

(
∏q
k=1 ‖Wk‖F )1/k

‖Wj‖F ‖Θ‖F
Wqφ(· · ·φ(W1x) · · · ) (by the homogeneity of φ)

=
1

‖Θ‖qF
f(x; Θ)

= f

(
x;

Θ

‖Θ‖F

)
(since f is q-homogeneous in Θ)

= f(x; Θ̄)

Now we note that by construction, L(Θ) = L(Θ̃). Now f(·; Θ̃) must also classify the training data
perfectly, has unnormalized margin γ, and furthermore f(·; Θ̃) ∈ Fq . As a result, Lemma D.3 allows
us to conclude the desired statement.

To conclude Corollary 4.2, we apply the above on Θλ,M and use Theorem 4.1.

Proof of Corollary 4.2. Applying the statement of Proposition D.1, with probability 1 − δ, for all
λ > 0,

L(Θλ,M) .
C

γλ,Mq(q−1)/2
√
n

+ ε(γλ,M)

Now we take the lim sup of both sides as λ→ 0:

lim sup
λ→0

L(Θλ,M) . lim sup
λ→0

C

γλ,Mq(q−1)/2
√
n

+ ε(γλ,M)

.
C

γ?,Mq(q−1)/2
√
n

+ ε(γ?,M) (by Theorem 4.1)

E Missing Proofs in Section 3

E.1 Detailed Setup

We first write our regularity assumptions on Φ, R, and V in more detail:

Assumption E.1 (Regularity conditions on Φ, R, V ). R is convex, nonnegative, Lipschitz, and
smooth: ∃MR, CR such that ‖∇2R‖op ≤ CR, and ‖∇R‖2 ≤MR.

Assumption E.2. Φ is differentiable, bounded and Lipschitz on the sphere: ∃BΦ,MΦ such that
‖Φ(θ̄)‖ ≤ BΦ ∀θ̄ ∈ Sd, and |Φi(θ̄)− Φi(θ̄

′)| ≤MΦ‖θ̄ − θ̄′‖2 ∀θ̄, θ̄′ ∈ Sd.

Assumption E.3. V is Lipschitz and upper and lower bounded on the sphere: ∃bV , BV ,MV such
that 0 < bV ≤ V (θ̄) ≤ BV ∀θ̄ ∈ Sd, and ‖∇V (θ̄)‖2 ≤MV ∀θ̄ ∈ Sd.

We state the version of Theorem 3.3 that collects these parameters:

Theorem E.4 (Theorem 3.3 with problem parameters). Suppose that Φ and V are 2-homogeneous
and Assumptions E.1, E.2, and E.3 hold. Fix a desired error threshold ε > 0. Suppose that from a
starting distribution ρ0, a solution to the dynamics in equation 3.2 exists. Choose

σ , exp(−d log(1/ε)poly(k,MV ,MR,MΦ, bV , BV , CR, BΦ, L[ρ0]− L?))

tε ,
d2

ε4
poly(log(1/ε), k,MV ,MR,MΦ, bV , BV , CR, BΦ, L[ρ0]− L?)

Then it must hold that min0≤t≤tε L[ρt]− infρ L[ρ] ≤ 2ε.
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E.2 Proof Outline of Theorem E.4

In this section, we will provide an outline of the proof of Theorem E.4. We will fill in the missing
details in Section E.3.

Throughout the proof, it will be useful to keep track of Wt ,
√
Eθ∼ρt [‖θ‖22], which measures the

second moment of ρt. For convenience, we will also define the constant BL ,MRBΦ +BV . The
following lemma first states that this second moment will never become too large.

Lemma E.5. Choose any t ≤ σBL/bV . For all 0 ≤ t′ ≤ t, W 2
t′ ≤

L[ρ0]+σtBL
bV −tσBL . In particular, for all

t ≤ tε, we have Wt ≤Wε, where Wε is defined as follows:

Wε ,

√
L[ρ0] + σtεBL
bv − tεσBL

(E.1)

Next, we will prove the following statement, which intuitively says that for an arbitrary choice of
θ̄ ∈ Sd, if L′[ρt](θ̄) changes by a large amount between time steps t and t+ l, the objective function
must also have decreased a lot.
Lemma E.6. Define the quantity Q(t) ,

∫
Φdρt. For every θ̄ ∈ Sd and 0 ≤ t ≤ t + l ≤ tε,

∃c1 , poly(k,CR, BΦ,MΦ, BL) such that

|L′[ρt](θ̄)− L′[ρt+l](θ̄)| ≤ CRBΦ

∫ t+l

t

‖Q′(t)‖1 (E.2)

≤ σlc1(W 2
ε + 1) + c1Wε

√
l(L[ρt]− L[ρt+l] + σlc1(W 2

ε + 1))1/2 (E.3)

where Wε is defined as in equation E.1.

The proof of Lemma E.6 intuitively holds because in order for L′[ρt](θ̄) to change by a large amount,
the gradient flow dynamics must have shifted ρt by some amount, which would have resulted in some
decrease of the objective L[ρt]. We will rely on the 2-homogeneity of Φ to formalize this argument.

Next, we will rely on the convexity of L: letting ρ? be an ε-approximate global optimizer of L, since
L is convex in ρ, we have

L[ρ?] ≥ L[ρt] + Eθ∼ρ? [L′[ρt](θ)]− Eθ∼ρt [L′[ρt](θ)]

Thus, if ρt is far from optimality, it follows that either 1) the quantity Eθ∼ρt [L′[ρt](θ)] has a large
positive value or 2) there exists some descent direction θ̄ ∈ Sd for which L′[ρt](θ)� 0.

For the first case, we have the following guarantee that the objective decreases by a large amount:
Lemma E.7. For any time t with 0 ≤ t ≤ tε, we have

d

dt
L[ρt] ≤ σBL(W 2

ε + 1)− Eθ∼ρt [L′[ρt](θ)]2

W 2
ε

(E.4)

Lemma E.7 relies on the 2-homogeneity of Φ and R and is proven via arguing that the gradient flow
dynamics will result in a large shift in ρt and therefore substantial decrease in loss.

For the second case, we will show that the σUd noise term will cause mass to grow exponentially
fast in this descent direction until we make progress in decreasing the objective.
Lemma E.8. Fix any τ > 0. Choose time interval length l by

l ≥
log(W 2

ε /σ) + 2d log 2c2
τ

τ − σ
+ 1

If ∃θ̄ ∈ Sd with L′[ρt∗ ](θ̄) ≤ −τ for some t∗ satisfying t∗ + l ≤ tε, then after l steps, we will have

L[ρt∗+l] ≤ L[ρt∗ ]−
(τ/4− σlc1(W 2

ε + 1))2

lc21W
2
ε

+ σlc1(W 2
ε + 1) (E.5)

Here c1 is the constant defined in Lemma E.6 and c2 is defined by c2 ,
√
kMRMΦ +MV .
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Lemma E.8 is proven via the following argument: first, ifL′[ρt](θ̄) is close to−τ for all t ∈ [t∗, t∗+l],
then from the 2-homogeneity of Φ and R, the mass of ρt in the neighborhood around θ̄ will grow
exponentially fast, leading to a violation of Lemma E.5. (Because of the uniform noise injected into
the gradient flow dynamics, ρt will always have some mass in the neighborhood of θ̄ to start with.)
Thus, it follows that L′[ρt](θ̄) must change by at least τ/4, allowing us to invoke Lemma E.6 to argue
that the objective must drop.

Lemmas E.7 and E.8 are enough to ensure that the objective will always decrease a sufficient amount
after some polynomial-size time interval. This allows us to complete the proof of Theorem E.4 below:

Proof of Theorem E.4. Let L? denote the infimum infρ L[ρ], and let ρ? be an ε-approximate global
minimizer of L: L[ρ?] ≤ L? + ε. (We define ρ? because a true minimizer of L might not exist.) Let
W ? , Eθ∼ρ? [‖θ‖22]. We first note that since bVW ?2 ≤ L[ρ?] ≤ L[ρ0], W ?2 ≤ L[ρ0]/bV ≤W 2

ε .

Now we bound the suboptimality of ρt: since L is convex in ρ,

L[ρ?] ≥ L[ρt] + Eθ∼ρ? [L′[ρt](θ)]− Eθ∼ρt [L′[ρt](θ)]

Rearranging gives

L[ρt]− L[ρ?] ≤ Eθ∼ρt [L′[ρt](θ)]− Eθ∼ρ? [L′[ρt](θ)]

≤ Eθ∼ρt [L′[ρt](θ)]−W ?2 min

{
min
θ̄∈Sd−1

L′[ρt](θ̄), 0

}
(E.6)

Now let l , W 2
ε

ε−2W 2
ε σ

(
2 log

W 2
ε

σ + 2d log
4W 2

ε c2
ε

)
, which satisfies Lemma E.8 with the value of τ later

specified. Suppose that there is a t with 0 ≤ t ≤ tε− 2l and ∀t′ ∈ [t, t+ 2l], L[ρt′ ]−L? ≥ 2ε. Then
L[ρt′ ]− L[ρ?] ≥ ε. We will argue that the objective decreases when we are ε suboptimal:

L[ρt]− L[ρt+2l] ≥ (E.7)

min

{
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− 3σlc1(W 2
ε + 1), l

ε2

4W 2
ε

− 2σlBL(W 2
ε + 1)

}
(E.8)

Using equation E.6 and Wε ≥W ?, we first note that

ε ≤ Eθ∼ρt′ [L
′[ρt′ ](θ)]−Wε

2 min

{
min
θ̄∈Sd−1

L′[ρt′ ](θ̄), 0

}
∀t′ ∈ [t, t+ l]

Thus, either minθ̄∈Sd L
′[ρt′ ](θ̄) ≤ − ε

2W?2 ≤ − ε
2W 2

ε
, or Eθ∼ρt′ [L

′[ρt′ ](θ)] ≥ ε
2 . If ∃t′ ∈ [t, t + l]

such that the former holds, then we can apply Lemma E.8 with τ , ε
2W 2

ε
to obtain

L[ρt′ ]− L[ρt′+l] ≥
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− σlc1(W 2
ε + 1)

Furthermore, from Lemma E.13, L[ρt+2l] − L[ρt′+l] ≤ σlc1(W 2
ε + 1) and L[ρt′ ] − L[ρt] ≤

σlBL(W 2
ε + 1), and so combining gives

L[ρt]− L[ρt+2l] ≥
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− 3σlc1(W 2
ε + 1) (E.9)

In the second case Eθ∼ρt′ [L
′[ρt′ ](θ)] ≥ ε

2 , ∀t
′ ∈ [t, t+ l]. Therefore, we can integrate equation E.4

from t to t+ l in order to get

L[ρt]− L[ρt+l] ≥ l
ε2

4W 2
ε

− σlBL(W 2
ε + 1)

Therefore, applying Lemma E.13 again gives

L[ρt]− L[ρt+2l] ≥ l
ε2

4W 2
ε

− 2σlBL(W 2
ε + 1) (E.10)

Thus equation E.8 follows.
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Now recall that we choose

σ , exp(−d log(1/ε)poly(k,MV ,MR,MΦ, bV , BV , CR, BΦ, L[ρ0]− L[ρ?]))

For the simplicity, in the remaining computation, we will use O(·) notation to hide polynomials in
the problem parameters besides d, ε. We simply write σ = exp(−c3d log(1/ε)). Recall our choice
tε , O(d

2

ε4 log2(1/ε)). It suffices to show that our objective would have sufficiently decreased in
tε steps. We first note that with c3 sufficiently large, W 2

ε = O(L[ρ0]/bv) = O(1). Simplifying our
expression for l, we get that l = O(dε log 1

ε ), so long as σW 2
ε = o(ε), which holds for sufficiently

large c3. Now let

δ1 ,
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− 3σlc1(W 2
ε + 1)

δ2 , l
ε2

4W 2
ε

− 2σlBL(W 2
ε + 1)

Again, for sufficiently large c3, the terms with σ become negligible, and δ1 = O( ε
2

l ) = O( ε3

d log(1/ε) ).
Likewise, δ2 = O(dε log(1/ε)).

Thus, if by time t we have not encountered 2ε-optimal ρt, then we will decrease the objective by
O( ε3

d log(1/ε) ) in O(dε log 1
ε ) time. Therefore, a total of O(d

2

ε4 log2(1/ε)) time is sufficient to obtain ε
accuracy.

In the following section, we will complete the proofs of Lemmas E.5, E.6, E.7, and E.8.

E.3 Missing Proofs for Theorem E.4

In this section, we complete the proofs of Lemmas E.5, E.6, E.7, and E.8. We first collect some
general lemmas which will be useful in these proofs. The following general lemma computes integrals
over vector field divergences.
Lemma E.9. For any h1 : Rd+1 → R, h2 : Rd+1 → Rd+1 and distribution ρ with ρ(θ) → 0 as
‖θ‖ → ∞, ∫

h1(θ)∇ · (h2(θ)ρ(θ))dθ = −Eθ∼ρ[〈∇h1(θ), h2(θ)〉]

Proof. The proof follows from integration by parts.

We note that ρt will satisfy the boundedness condition of Lemma E.9 during the course of our
algorithm - ρ0 starts with this property, and Lemma E.5 proves that ρt will continue to have this
property. We therefore freely apply Lemma E.9 in the remaining proofs. Now we bound the absolute
value of L′[ρt] over the sphere by BL.

Lemma E.10. For any θ̄ ∈ Sd−1, t ≥ 0, |L′[ρt](θ̄)| ≤ BL.

Proof. We compute

|L′[ρt](θ̄)| =
∣∣∣∣〈∇R(∫ Φdρ

)
,Φ(θ̄)

〉
+ V (θ̄)

∣∣∣∣
≤
∥∥∥∥∇R(∫ Φdρ

)∥∥∥∥
2

‖Φ(θ̄)‖2 + V (θ̄) ≤MRBΦ +BV

The next lemma analyzes the decrease in L[ρt] due to the gradient flow dynamics.
Lemma E.11. Under the perturbed Wasserstein gradient flow

d

dt
L[ρt] = −σEθ∼ρt [L′[ρt](θ)] + σEθ̄∼Ud [L′[ρt](θ̄)]− Eθ∼ρt [‖v[ρt](θ)‖22]
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Proof. Applying the chain rule, we can compute

d

dt
L[ρt] =

〈
∇R

(∫
Φdρt

)
,
d

dt

∫
Φdρt

〉
+
d

dt

∫
V dρt

=
d

dt
Eθ∼ρt [L′[ρt](θ)]

=

∫
L′[ρt](θ)ρ

′
t(θ)dθ

= −σ
∫
L′[ρt]dρt + σ

∫
L′[ρt]dU

d −
∫
L′[ρt](θ)∇ · (v[ρt](θ)ρt(θ))dθ

= −σEθ∼ρt [L′[ρt](θ)] + σEθ̄∼Ud [L′[ρt](θ̄)]− Eθ∼ρt [‖v[ρt](θ)‖22],

where we use Lemma E.9 with h1 = L′[ρt] and h2 = v[ρt].

By combining the above Lemma with Lemma E.10, it follows that at the decrease in objective value
is approximately the average velocity of all parameters under ρt plus some additional noise on the
scale of σ. At the end, we choose σ small enough so that the noise terms essentially do not matter.

Corollary E.12. We can bound d
dtL[ρt] by

d

dt
L[ρt] ≤ σBL(W 2

t + 1)− Eθ∼ρt [‖v[ρt](θ)‖22] (E.11)

Proof. By homogeneity, and Lemma E.10, Eθ∼ρt [L′[ρt](θ)] = Eθ∼ρt [L′[ρt](θ̄)‖θ‖22] ≤ BLW 2
t . We

also get Eθ̄∼Ud [L′[ρt](θ̄)] ≤ BL since Ud is only supported on Sd. Combining these with Lemma
E.11 gives the desired statement.

Corollary E.12 implies that if we run the dynamics for a short time, the second moment of ρt will
grow slowly, again at a rate that is roughly the scale of the noise σ. This allows us to complete the
proof of Lemma E.5.

Proof of Lemma E.5. Let t∗ , arg maxt′∈[0,t]W
2
t′ . Integrating both sides of equation E.11, and

rearranging, we get

0 ≤
∫ t∗

0

Eθ∼ρs [‖v[ρs](θ)‖22]ds ≤ L[ρ0]− L[ρt] + σBL

∫ t∗

0

(W 2
s + 1)ds

≤ L[ρ0]− L[ρt∗ ] + t∗σBL(W 2
t∗ + 1)

Now since R is nonnegative, we apply L[ρt∗ ] ≥ Eθ∼ρt∗ [V (θ)] ≥ Eθ∼ρt∗ [V (θ̄)‖θ‖22] ≥ bVW 2
t∗ . We

now plug this in and rearrange to get W 2
t′ ≤W 2

t∗ ≤
L[ρ0]+t∗σBL
bV −t∗σBL ≤

L[ρ0]+tσBL
bV −tσBL ∀0 ≤ t

′ ≤ t.

From the proof above, it immediately follows that ∀0 ≤ t ≤ tε, W 2
t ≤W 2

ε .

The next statement allows us to argue that our dynamics will never increase the objective by too
much.

Lemma E.13. For any t1, t2 with 0 ≤ t1 ≤ t2 ≤ tε, L[ρt2 ]− L[ρt1 ] ≤ σ(t2 − t1)BL(W 2
ε + 1).

Proof. From Corollary E.12, ∀t ∈ [t1, t2] we have

d

dt
L[ρt] ≤ σBL(W 2

ε + 1)

Integrating from t1 to t2 gives the desired result.

The following lemma bounds the change in expectation of a 2-homogeneous function over ρt. At a
high level, we lower bound the decrease in our loss as a function of the change in this expectation.
By applying this lemma, we will be able to prove Lemma E.6.
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Lemma E.14. Let h : Rd+1 → R that is 2-homogeneous, with ‖∇h(θ̄)‖ ≤ M ∀θ̄ ∈ Sd and
|h(θ̄)| ≤ B ∀θ̄ ∈ Sd. Then ∀0 ≤ t ≤ tε, we have∣∣∣∣ ddt

∫
hdρt

∣∣∣∣ ≤ σB(W 2
ε + 1) +MWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

(E.12)

Proof. Let Q(t) ,
∫
hdρt. We can compute:

Q′(t) =

∫
h(θ)

dρt
dt

(θ)dθ

=

∫
h(θ)(−σρt(θ)−∇ · (v[ρt](θ)ρt(θ)))dθ + σ

∫
hdUd

= −σ
∫
h(θ̄)‖θ‖22ρt(θ)dθ + σ

∫
hdUd −

∫
h(θ)∇ · (v[ρt](θ)ρt(θ))dθ (E.13)

Note that the first two terms are bounded by σB(W 2
ε + 1) by the assumptions for the lemma. For the

third term, we have from Lemma E.9:∣∣∣ ∫ h(θ)∇ · (v[ρt](θ)ρt(θ))dθ
∣∣∣ = |Eθ∼ρt [〈∇h(θ), v[ρt](θ)〉]|

≤
√
Eθ∼ρt [‖∇h(θ)‖22]Eθ∼ρt [‖v[ρt](θ)‖22] (by Cauchy-Schwarz)

≤
√
Eθ∼ρt [‖∇h(θ̄)‖22‖θ‖22]Eθ∼ρt [‖v[ρt](θ)‖22] (by homogeneity of∇h)

≤MWε

√
Eθ∼ρt [‖v[ρt](θ)‖22] (since h is Lipschitz on the sphere)

≤MWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

(by Corollary E.12)

Plugging this into equation E.13, we get that

|Q′(t)| ≤ σB(W 2
ε + 1) +MWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

Now we complete the proof of Lemma E.6.

Proof of Lemma E.6. Recall that L′[ρt](θ̄) = 〈∇R(
∫

Φdρt),Φ(θ̄)〉 + V (θ̄). Differentiating with
respect to t,

d

dt
L′[ρt](θ̄) =

〈
d

dt
∇R

(∫
Φdρt

)
,Φ(θ̄)

〉
= Φ(θ̄)>∇2R(Q(t))Q′(t)

≤ CRBΦ‖Q′(t)‖2
≤ CRBΦ‖Q′(t)‖1 (E.14)

Integrating and applying the same reasoning to −L′[ρt] gives us equation E.2. Now we apply Lemma
E.14 to get

‖Q′(t)‖1 =

k∑
i=1

∣∣∣∣ ddt
∫

Φidρt

∣∣∣∣
≤

k∑
i=1

[
σBΦ(W 2

ε + 1) +MΦWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2
]

≤ kσBΦ(W 2
ε + 1) + kMΦWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2
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We plug this into equation E.14 and then integrate both sides to obtain

CRBΦ

∫ t+l

t

‖Q′(t)‖1

≤ kσlCRB2
Φ(W 2

ε + 1) + kCRBΦMΦWε

∫ t+l

t

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

≤ kσlCRB2
Φ(W 2

ε + 1) + kCRBΦMΦWε

√
l(L[ρt]− L[ρt+l] + σlBL(W 2

ε + 1))1/2

Using c1 , max{kCRB2
Φ, kCRBΦMΦ, BL} gives the statement in the lemma.

Now we will fill in the proof of Lemma E.8. We first show that L′ is Lipschitz on the unit ball. Recall
that in the statement of Lemma E.8, we define a constant c2 by c2 ,

√
kMRMΦ +MV .

Lemma E.15. For all θ̄, θ̄′ ∈ Sd,

|L′[ρ](θ̄)− L′[ρ](θ̄′)| ≤ c2‖θ̄ − θ̄′‖2 (E.15)

Proof. Using the definition of L′ and triangle inequality,

|L′[ρ](θ̄)− L′[ρ](θ̄′)| ≤
∥∥∥∥∇R(∫ Φdρ

)∥∥∥∥
2

‖Φ(θ̄)− Φ(θ̄′)‖2 + |V (θ̄)− V (θ̄′)|

≤ (
√
kMRMΦ +MV )‖θ̄ − θ̄′‖2 (by definition of MΦ,MR,MV )

Next, we introduce notation to refer to the −τ -sublevel set of L′[ρt]. This will be useful for our
proof of Lemma E.8. Define K−τt , {θ̄ ∈ Sd : L′[ρt](θ̄) ≤ −τ}, the −τ -sublevel set of L′[ρt],
and let m(S) , Eθ∼Ud [1(θ ∈ S)] be the normalized spherical area of the set S. The following
statement uses the Lipschitz-ness of L′[ρt] to lower bound the volume of K−τ+δ

t for some δ > 0 if
the −τ -sublevel set K−τt is nonempty.

Lemma E.16. If K−τt is nonempty, for 0 ≤ δ ≤ τ , logm(K−τ+δ
t ) ≥ −2d log c2

δ .

Proof. Let θ̄ ∈ K−τt . From Lemma E.15, L′[ρ](θ̄′) ≤ −τ + δ for all θ̄′ with ‖θ̄′ − θ̄‖2 ≤ δ
c2

. Thus,
we have

m(K−τ+δ
t ) ≥ Eθ̄′∼Ud

[
1[‖θ̄′ − θ̄‖2 ≤

δ

c2
]

]
Now the statement follows by Lemma 2.3 of [8].

Finally, the proof of Lemma E.8 will require a general lemma about the magnitude of the gradient of
a 2-homogeneous function in the radial direction.

Lemma E.17. Let h : Rd+1 → R be a 2-homogeneous function. Then for any θ ∈ Rd+1,
θ̄>∇h(θ) = 2‖θ‖2h(θ̄).

Proof. We have h(θ + αθ̄) = (‖θ‖2 + α)2h(θ̄). Differentiating both sides with respect to α and
evaluating the derivative at 0, we get θ̄>∇h(θ) = 2‖θ‖2h(θ̄), as desired.

Now we are ready to complete the proof of Lemma E.8. Recall that in the setting of Lemma E.8, l is
the length of the time interval over which the descent direction causes a decrease in the objective. We
will first show that a descent direction in L′[ρt] will remain for the next l time steps. In the notation
of Lemma E.6, define z(s) , CRBΦ

∫ t∗+s
t∗

‖Q′(t)‖1dt. Note that from Lemma E.6, for all θ̄ ∈ Sd
we have |L′[ρt∗+s](θ̄)− L′[ρt∗ ](θ̄)| ≤ z(s). Thus, the following holds:

Claim E.18. For all s ≤ l, K−τ+z(s)
t∗+s is nonempty.
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Proof. By assumption, ∃θ̄ with θ̄ ∈ K−τt∗ . Then L′[ρt∗+s](θ̄) ≤ L′[ρt∗ ](θ̄) + z(s) ≤ −τ + z(s), so
K
−τ+z(s)
t∗+s is nonempty.

Let Ts , K
−τ/2+z(s)
t∗+s for 0 ≤ s ≤ l. We now argue that this set Ts does not shrink as t increases.

Claim E.19. For all s′ > s, Ts′ ⊇ Ts.

Proof. From equation E.14 and the definition of z(s), |L′[ρt+s′ ](θ̄)− L′[ρt+s](θ̄)| ≤ z(s′)− z(s).
It follows that for θ̄ ∈ Ts

L′[ρt+s′ ](θ̄) ≤ L′[ρt+s](θ̄) + z(s′)− z(s)
≤ −τ/2 + z(s)− z(s) + z(s′) (by definition of Ts)

≤ −τ/2 + z(s′)

which means that θ̄ ∈ Ts′ .

Now we show that the weight of the particles in Ts grows very fast if z(k) is small.

Claim E.20. Suppose that z(l) ≤ τ/4. Let T̃s = {θ ∈ Rd+1 : θ̄ ∈ Ts}. Define N(s) ,∫
T̃s
‖θ‖2dρt∗+s and β , exp(−2d log 2c2

τ ). Then N ′(s) ≥ (τ − σ)N(s) + σβ.

Proof. From the assumption z(l) ≤ τ
4 , it holds that Ts ⊆ K

−τ/4
t∗+s ∀s ≤ k. Since Ts is defined as a

sublevel set, v[ρt∗+s](θ̄) points inwards on the boundary of Ts for all θ̄ ∈ Ts, and by 1-homogeneity
of the gradient, the same must hold for all u ∈ T̃s.

Now consider any particle θ ∈ T̃s. We have that θ flows to θ + v[ρt∗+s](θ)ds at time t∗ + s +
ds. Furthermore, since the gradient points inwards from the boundary, it also follows that u +
v[ρt∗+s](θ)ds ∈ T̃s. Now we compute∫

T̃s

‖θ‖22dρt∗+s+ds = (1− σds)
∫
T̃s

‖θ + v[ρt∗+s](θ)ds‖22dρt∗+s + σds

∫
T̃s

1dUd

≥ (1− σds)
∫
T̃s

(‖θ‖22 + 2θ>v[ρt∗+s](θ)ds)dρt∗+s + σm(K
−τ/2+z(s)
t∗+s )ds

(E.16)

Now we apply Lemma E.17, using the 2-homogeneity of F ′ and the fact that L′[ρt∗+s](θ̄) ≤
−τ/4 ∀θ ∈ T̃s

‖θ‖22 + 2θ>v[ρt∗+s](θ)ds = ‖θ‖22 − 4‖θ‖22L′[ρt∗+s](θ̄)ds
≥ ‖θ‖22(1 + τds) (E.17)

Furthermore, since K−τ+z(s)
t∗+s is nonempty by Claim E.18, we can apply Lemma E.16 and obtain

m(K
−τ/2+z(s)
t∗+s ) ≥ β (E.18)

Plugging equation E.17 and equation E.18 back into equation E.16, we get∫
T̃s

‖u‖22dρt∗+s+ds ≥ (1− σds)(1 + 2τds)N(s) + σβds

Since we also have that T̃s+ds ⊇ T̃s, it follows that

N(s+ ds) =

∫
T̃s+ds

‖u‖22dρt∗+s+ds ≥ (1− σds)(1 + τds)N(s) + σβds

and so N ′(s) ≥ (τ − σ)N(s) + σβ.

Using Claim E.20 allows us to complete the proof of Lemma E.8.
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Proof of Lemma E.8. If z(l) = CRBΦ

∫ t+l
t
‖Q′(t)‖1 ≥ τ

4 , then by rearranging the conclusion of
Lemma E.6 we immediately get equation E.5.

Suppose for the sake of contradiction that z(l) ≤ τ/4. From Claim E.20, it follows that N(1) ≥ σβ,

andN(l) ≥ exp((τ−σ)(l−1))N(1). Thus, in log(W 2
ε /σ)+2d log

2c2
τ

τ−σ +1 time,Wt∗+l ≥ N(l) ≥W 2
ε ,

a contradiction. Therefore, it must be true that z(l) ≥ τ/4.

Finally, we fill in the proof of Lemma E.7.

Proof. We can first compute

Eθ∼ρt [L′[ρt](θ)] = Eθ∼ρt [L′[ρt](θ̄)‖θ‖22]

=
1

2
Eθ∼ρt [‖θ‖2θ̄>v[ρt](θ)] (via Lemma E.17)

≤ 1

2

√
Eθ∼ρt [‖θ‖22]Eθ∼ρt [‖v[ρt](θ)‖22] (by Cauchy-Schwarz)

≤ 1

2
Wε

√
Eθ∼ρt [‖v[ρt](θ)‖22]

Rearranging gives Eθ∼ρt [‖v[ρt](θ)‖22] ≥ Eθ∼ρt [L
′[ρt](θ)]

2

W 2
ε

, and plugging this into equation E.11 gives
the desired result.

E.4 Discrete-Time Optimization

To circumvent the technical issue of existence of a solution to the continuous-time dynamics, we also
note that polynomial time convergence holds for discrete-time updates.
Theorem E.21. Along with Assumptions E.1, E.2, E.3 additionally assume that ∇Φi and ∇V are
CΦ and CV -Lipschitz, respectively. Let ρt evolve according to the following discrete-time update:

ρt+1 , ρt + η(−σρt + σUd −∇ · (v[ρt]ρt))

There exists a choice of

σ , exp(−d log(1/ε)poly(k,MV ,MR, bV , BV , CR, BΦ, CΦ, CV , L[ρ0]− L[ρ?]))

η , poly(k,MV ,MR, bV , BV , CR, BΦ, CΦ, CV , L[ρ0]− L[ρ?])

tε ,
d2

ε4
poly(k,MV ,MR, bV , BV , CR, BΦ, CΦ, CV , L[ρ0]− L[ρ?])

such that min0≤t≤tε L[ρt]− L? ≤ ε.

The proof follows from a standard conversion of the continuous-time proof of Theorem E.4 to discrete
time, and we omit it here for simplicity.

F Additional Simulations

In this section we provide more details on the simulations described in Section 5. The experiments
were small enough to run on a standard computer, though we used a single NVIDIA TitanXp GPU.
We decided the value of regularization λ based on the training length - longer training time meant we
could use smaller λ.

F.1 Test Error and Margin vs. Hidden Layer Size

To justify Theorem 4.3, we also plot the dependence of the test error and margin on the hidden layer
size in Figure 3 for synthetic data generated from a ground truth network with 10 hidden units and
also MNIST. The plots indicate that test error is decreasing in hidden layer size while margin is
increasing, as Theorem 4.3 predicts. We train the networks for a long time in this experiment: we
train for 80000 passes on the synthetic data and 600 epochs for MNIST.
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Figure 3: Dependence of margin and test error on hidden layer size. Left: Synthetic. Right: MNIST.

Figure 4: Neural nets vs. kernel method with rw = 0, ru = 1 (Theorem 2.1 setting). Left:
Classification. Right: Regression.

The left side of Figure 3 shows the experimental results for synthetic data generated from a ground
truth network with 10 hidden units, input dimension d = 20, and a ground truth unnormalized margin
of at least 0.01. We train for 80000 steps with learning rate 0.1 and λ = 10−5, using two-layer
networks with 2i hidden units for i ranging from 4 to 10. We perform 20 trials per hidden layer size
and plot the average over trials where the training error hit 0. (At a hidden layer size of 27 or greater,
all trials fit the training data perfectly.) The right side of Figure 3 demonstrates the same experiment,
but performed on MNIST with hidden layer sizes of 2i for i ranging from 6 to 15. We train for 600
epochs using a learning rate of 0.01 and λ = 10−6 and use a single trial per plot point. For MNIST,
all trials fit the training data perfectly. The MNIST experiments are more noisy because we run one
trial per plot point for MNIST, but the same trend of decreasing test error and increasing margin still
holds.

F.2 Neural Net and Kernel Generalization vs. Training Set Size

We compare the generalization of neural nets and kernel methods for classification and regression.
In Figure 4 we plot the generalization error of a trained neural net against a `2 kernel method with
relu features (corresponding to r1 = 0, r2 = 1 in the setting of Theorem 2.1) as we vary n. Our
ground truth comes from a random neural network with 6 hidden units, and during training we use a
network with as many hidden units as examples. For classification, we used rejection sampling to
obtain datapoints with unnormalized margin of at least 0.1 on the ground truth network. We use a
fixed dimension of d = 20. For all experiments, we train the network for 20000 steps with λ = 10−8

and average over 100 trials for each plot point.

For classification we plot 0-1 error, whereas for regression we plot squared error. The plots show that
two-layer nets clearly outperform the kernel method in test error as n grows.

F.3 Verifying Convergence to the Max-Margin

We verify the normalized margin convergence on a two-layer networks with one-dimensional input.
A single hidden unit computes the following: x 7→ ajrelu(wjx+ bj). We add ‖ · ‖22-regularization to
a,w, and b and compare the resulting normalized margin to that of an approximate solution of the `1
SVM problem with features relu(wxi + b) for w2 + b2 = 1. Writing this feature vector is intractable,
so we solve an approximate version by choosing 1000 evenly spaced values of (w, b). Our theory
predicts that with decreasing regularization, the margin of the neural network converges to the `1
SVM objective. In Figure 5, we plot this margin convergence and visualize the final networks and
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Figure 5: Neural network with input dimension 1. Left: Normalized margin as we decrease λ. Right:
Visualization of the normalized functions computed by the neural network and `1 SVM solution for
λ ≈ 2−14.

ground truth labels. The network margin approaches the ideal one as λ→ 0, and the visualization
shows that the network and `1 SVM functions are extremely similar.
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