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Abstract

We investigate the sample complexity of networks with bounds on the magnitude
of its weights. In particular, we consider the class

N = {Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : W1, . . . ,Wt−1 ∈Md×d,Wt ∈M1,d}

where the spectral norm of each Wi is bounded by O(1), the Frobenius norm
is bounded by R, and ρ is the sigmoid function ex

1+ex or the smoothened ReLU
function ln (1 + ex). We show that for any depth t, if the inputs are in [−1, 1]d,
the sample complexity of N is Õ

(
dR2

ε2

)
. This bound is optimal up to log-factors,

and substantially improves over the previous state of the art of Õ
(
d2R2

ε2

)
, that was

established in a recent line of work [9, 4, 7, 5, 2, 8].
We furthermore show that this bound remains valid if instead of considering the
magnitude of the Wi’s, we consider the magnitude of Wi −W 0

i , where W 0
i are

some reference matrices, with spectral norm of O(1). By taking the W 0
i to be the

matrices at the onset of the training process, we get sample complexity bounds that
are sub-linear in the number of parameters, in many typical regimes of parameters.
To establish our results we develop a new technique to analyze the sample complex-
ity of familiesH of predictors. We start by defining a new notion of a randomized
approximate description of functions f : X → Rd. We then show that if there is a
way to approximately describe functions in a classH using d bits, then d

ε2 examples
suffices to guarantee uniform convergence. Namely, that the empirical loss of all
the functions in the class is ε-close to the true loss. Finally, we develop a set of
tools for calculating the approximate description length of classes of functions
that can be presented as a composition of linear function classes and non-linear
functions.

1 Introduction

We analyze the sample complexity of networks with bounds on the magnitude of their weights. Let
us consider a prototypical case, where the input space is X = [−1, 1]d, the output space is R, the
number of layers is t, all hidden layers has d neurons, and the activation function is ρ : R→ R. The
class of functions computed by such an architecture is

N = {Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : W1, . . . ,Wt−1 ∈Md×d,Wt ∈M1,d}

As the class N is defined by (t − 1)d2 + d = O(d2) parameters, classical results (e.g. [1]) tell
us that order of d2 examples are sufficient and necessary in order to learn a function from N (in a
standard worst case analysis). However, modern networks often succeed to learn with substantially
less examples. One way to provide alternative results, and a potential explanation to the phenomena,
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is to take into account the magnitude of the weights. This approach was a success story in the days
of SVM [3] and Boosting [10], provided a nice explanation to generalization with sub-linear (in the
number of parameters) number of examples, and was even the deriving force behind algorithmic
progress. It seems just natural to adopt this approach in the context of modern networks. For instance,
it is natural to consider the class

NR = {Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ∀i, ‖Wi‖F ≤ R, ‖Wi‖ ≤ O(1)}

where ‖W‖ = max‖x‖=1 ‖Wx‖ is the spectral norm and ‖W‖F =
√∑d

i,j=1W
2
ij is the Frobenius

norm. This class has been analyzed in several recent works [9, 4, 7, 5, 2, 8]. Best known results
show a sample complexity of Õ

(
d2R2

ε2

)
(for the sake of simplicity, in the introduction, we ignore the

dependence on the depth in the big-O notation). In this paper we prove, for various activations, a
stronger bound of Õ

(
dR2

ε2

)
, which is optimal, up to log factors, for constant depth networks.

How good is this bound? Does it finally provide sub-linear bound in typical regimes of the parameters?
To answer this question, we need to ask how large R is. While this question of course don’t have a
definite answer, empirical studies (e.g. [12]) show that it is usually the case that the norm (spectral,
Frobenius, and others) of the weight matrices is at the same order of magnitude as the norm of the
matrix in the onset of the training process. In most standard training methods, the initial matrices
are random matrices with independent (or almost independent) entries, with mean zero and variance
of order 1

d . The Frobenius norm of such a matrix is of order
√
d. Hence, the magnitude of R is of

order
√
d. Going back to our Õ

(
dR2

ε2

)
bound, we get a sample complexity of Õ

(
d2

ε2

)
, which is

unfortunately still linear in the number of parameters.

Since our bound is almost optimal, we can ask whether this is the end of the story? Should we
abandon the aforementioned approach to network sample complexity? A more refined examination of
the training process suggests another hope for this approach. Indeed, the training process doesn’t start
from the zero matrix, but rather form a random initialization matrix. Thus, it stands to reason that
instead of considering the magnitude of the weight matrices Wi, we should consider the magnitude
of Wi −W 0

i , where W 0
i is the initial weight matrix. Indeed, empirical studies [6] show that the

Frobenius norm of Wi −W 0
i is often order of magnitude smaller than the Frobenius norm of Wi.

Following this perspective, it is natural to consider the class

NR(W 0
1 , . . . ,W

0
t ) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ‖Wi −W 0

i ‖ ≤ O(1), ‖Wi −W 0
i ‖F ≤ R

}
For some fixed matrices, W 0

1 , . . . ,W
0
t of spectral norm1 O(1). It is natural to expect that considering

balls around the initial W 0
i ’s instead of zero, shouldn’t change the sample complexity of the class

at hand. In other words, we can expect that the sample complexity of NR(W 0
1 , . . . ,W

0
t ) should be

approximately the sample complexity of NR. Namely, we expect a sample complexity of Õ
(
dR2

ε2

)
.

Such a bound would finally be sub-linear, as in practice, it is often the case that R2 � d.

This approach was pioneered by [4] who considered the class

N 2,1
R (W 0

1 , . . . ,W
0
t ) =

{
Wt ◦ ρ . . . ◦ ρ ◦W1 : ‖Wi −W 0

i ‖ ≤ O(1), ‖Wi −W 0
i ‖2,1 ≤ R

}
where ‖W‖2,1 =

∑d
i=1

√∑d
j=1W

2
ij . For this class they proved a sample complexity bound of

Õ
(
dR2

ε2

)
. Since, ‖W‖2,1 ≤

√
d‖W‖F , this implies a sample complexity bound of Õ

(
d2R2

ε2

)
on

NR(W 0
1 , . . . ,W

0
t ), which is still not sublinear2. In this paper we finally prove a sub-linear sample

complexity bound of Õ
(
dR2

ε2

)
on NR(W 0

1 , . . . ,W
0
t ).

To prove our results, we develop a new technique for bounding the sample complexity of function
classes. Roughly speaking, we define a notion of approximate description of a function, and count

1The bound of O(1) on the spectral norm of the W 0
i ’s and Wi −W 0

i is again motivated by the practice of
neural networks – the spectral norm of W 0

i , with standard initializations, is O(1), and empirical studies [6, 12]
show that the spectral norm of Wi −W 0

i is usually very small.
2We note that ‖W‖2,1 = Θ(

√
d) even if W is a random matrix with variance that is calibrated so that

‖W‖F = Θ(1) (namely, each entry has variance 1
d2

).
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how many bits are required in order to give an approximate description for the functions in the class
under study. We then show that this number, called the approximate description length (ADL), gives
an upper bound on the sample complexity. The advantage of our method over existing techniques is
that it behaves nicely with compositions. That is, once we know the approximate description length
of a class H of functions from X to Rd, we can also bound the ADL of ρ ◦ H, as well as L ◦ H,
where L is a class of linear functions. This allows us to utilize the compositional structure of neural
networks.

2 Preliminaries

Notation We denote by med(x1, . . . , xk) the median of x1, . . . , xk ∈ R. For vectors x1, . . . ,xk ∈
Rd we denote med(x1, . . . ,xk) =

(
med(x11, . . . , x

k
1), . . . ,med(x1d, . . . , x

k
d)
)
. We use log to denote

log2, and ln to denote loge An expression of the form f(n) . g(n) means that there is a universal
constant c > 0 for which f(n) ≤ cg(n). For a finite set A and f : A → R we let Ex∈A f =
Ex∈A f(a) = 1

|A|
∑
a∈A f(a). We denote BdM = {x ∈ Rd : ‖x‖ ≤ M} and Bd = Bd1. Likewise,

we denote Sd−1 = {x ∈ Rd : ‖x‖ = 1} We denote the Frobenius norm of a matrix W by
‖W‖2F =

∑
ijW

2
ij , while the spectral norm is denoted by ‖W‖ = max‖x‖=1 ‖Wx‖. For a pair of

vectors x,y ∈ Rd we denote by xy ∈ Rd their point-wise product xy = (x1y1, . . . , xdyd)

Uniform Convergence and Covering Numbers Fix an instance space X , a label space Y and a
loss ` : Rd × Y → [0,∞). We say that ` is Lipschitz / Bounded / etc. if for any y ∈ Y , `(·, y)
is. Fix a class H from X to Rd. For a distribution D and a sample S ∈ (X × Y)

m we define the
representativeness of S as

repD(S,H) = sup
h∈H

`D(h)−`S(h) for `D(h) = E
(x,y)∼D

`(h(x), y) and `S(h) =
1

m

m∑
i=1

`(h(xi), yi)

We note that if repD(S,H) ≤ ε then any algorithm that is guaranteed to return a function ĥ ∈ H
will enjoy a generalization bound `D(h) ≤ `S(h) + ε. In particular, the ERM algorithm will return a
function whose loss is optimal, up to an additive factor of ε. We will focus on bounds on repD(S,H)
when S ∼ Dm. To this end, we will rely on the connection between representativeness and the
covering numbers ofH.
Definition 2.1. Fix a classH of functions from X to Rd, an integer m, ε > 0 and 1 ≤ p ≤ ∞. We
define Np(H,m, ε) as the minimal integer for which the following holds. For every A ⊂ X of size

≤ m there exists H̃ ⊂
(
Rd
)X

such that
∣∣∣H̃∣∣∣ ≤ Np(H,m, ε) and for any h ∈ H there is h̃ ∈ H̃ with(

Ex∈A
∥∥∥h(x)− h̃(x)

∥∥∥p
∞

) 1
p

≤ ε. For p = 2, we denote N(H,m, ε) = N2(H,m, ε)

We conclude with a lemma, which will be useful in this paper. The proof can be found in the
supplementary material.
Lemma 2.2. Let ` : Rd × Y → R be L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded. Assume that for any
0 < ε ≤ 1, log (N(H,m, ε)) ≤ n

ε2 . Then ES∼Dm repD(S,H) . (L+B)
√
n√

m
log(m). Furthermore,

with probability at least 1− δ, repD(S,H) . (L+B)
√
n√

m
log(m) +B

√
2 ln(2/δ)

m

A Basic Inequality
Lemma 2.3. Let X1, . . . , Xn be independent r.v. with that that are σ-estimators to µ. Then
Pr (|med(X1, . . . , Xn)− µ| > kσ) <

(
2
k

)n
3 Simplified Approximate Description Length

To give a soft introduction to our techniques, we first consider a simplified version of it. We next
define the approximate description length of a classH of functions from X to Rd, which quantifies
the number of bits it takes to approximately describe a function fromH. We will use the following
notion of approximation
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Definition 3.1. A random vector X ∈ Rd is a σ-estimator to x ∈ Rd if

EX = x and ∀u ∈ Sd−1, VAR(〈u, X〉) = E 〈u, X − x〉2 ≤ σ2

A random function f̂ : X → Rd is a σ-estimator to f : X → Rd if for any x ∈ X , f̂(x) is a
σ-estimator to f(x).

A (σ, n)-compressor C for a classH takes as input a function h ∈ H, and outputs a (random) function
Ch such that (i) Ch is a σ-estimator of h and (ii) it takes n bits to describe Ch. Formally,
Definition 3.2. A (σ, n)-compressor forH is a triplet (C,Ω, µ) where µ is a probability measure on
Ω, and C is a function C : Ω×H →

(
Rd
)X

such that

1. For any h ∈ H and x ∈ X , (Cωh)(x), ω ∼ µ is a σ-estimator of h(x).

2. There are functions E : Ω×H → {±1}n and D : {±1}n →
(
Rd
)X

for which C = D ◦E
Definition 3.3. We say that a classH of functions from X to Rd has approximate description length
n if there exists a (1, n)-compressor forH

It is not hard to see that if (C,Ω, µ) is a (σ, n)-compressor forH, then

(Cω1,...,ωk
h)(x) :=

∑k
i=1(Cωi

h)(x)

k

is a
(
σ√
k
, kn

)
-compressor forH. Hence, if the approximate description length ofH is n, then for

any 1 ≥ ε > 0 there exists an
(
ε, ndε−2e

)
-compressor forH.

We next connect the approximate description length, to covering numbers and representativeness. We
separate it into two lemmas, one for d = 1 and one for general d, as for d = 1 we can prove a slightly
stronger bound.
Lemma 3.4. Fix a classH of functions from X to R with approximate description length n. Then,
log (N(H,m, ε)) ≤ n

⌈
ε−2
⌉
. Hence, if ` : Rd ×Y → R is L-Lipschitz and B-bounded, then for any

distribution D on X × Y , ES∼Dm repD(S,H) . (L+B)
√
n√

m
log(m). Furthermore, with probability

at least 1− δ, repD(S,H) . (L+B)
√
n√

m
log(m) +B

√
2 ln(2/δ)

m

Lemma 3.5. Fix a classH of functions from X to Rd with approximate description length n. Then,

log (N∞(H,m, ε)) ≤ log (N(H,m, ε)) ≤ n
⌈
16ε−2

⌉
dlog(dm)e

Hence, if ` : Rd × Y → R is L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded, then for any distribution D
on X × Y , ES∼Dm repD(S,H) .

(L+B)
√
n log(dm)√
m

log(m). Furthermore, with probability at least

1− δ, repD(S,H) .
(L+B)

√
n log(dm)√
m

log(m) +B
√

2 ln(2/δ)
m

3.1 Linear Functions

We next bound the approximate description length of linear functions with bounded Frobenius norm.
Theorem 3.6. Let class Ld1,d2,M =

{
x ∈ Bd1 7→Wx : W is d2 × d1 matrix with ‖W‖F ≤M

}
has approximate description length

n ≤
⌈

1

4
+ 2M2

⌉
2 dlog (2d1d2(M + 1))e

Hence, if ` : Rd2 × Y → R is L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded, then for any distribution D
on X × Y

E
S∼Dm

repD(S,Ld1,d2,M ) .
(L+B)

√
M2 log(d1d2M) log(d2m)√

m
log(m)

Furthermore, with probability at least 1− δ,

repD(S,Ld1,d2,M ) .
(L+B)

√
M2 log(d1d2M) log(d2m)√

m
log(m) +B

√
2 ln (2/δ)

m
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We remark that the above bounds on the representativeness coincides with standard bounds ([11] for
instance), up to log factors. The advantage of these bound is that they remain valid for any output
dimension d2.

In order to prove theorem 3.6 we will use a randomized sketch of a matrix.

Definition 3.7. Let w ∈ Rd be a vector. A random sketch of w is a random vector ŵ that is samples
as follows. Choose i w.p. pi =

w2
i

2‖w‖2 + 1
2d . Then, w.p. wi

pi
−
⌊
wi

pi

⌋
let b = 1 and otherwise b = 0.

Finally, let ŵ =
(⌊

wi

pi

⌋
+ b
)
ei. A random k-sketch of w is an average of k-independent random

sketches of w. A random sketch and a random k-sketch of a matrix is defined similarly, with the
standard matrix basis instead of the standard vector basis.

The following useful lemma shows that an sketch w is a
√

1
4 + 2‖w‖2-estimator of w.

Lemma 3.8. Let ŵ be a random sketch of w ∈ Rd. Then, (1) E ŵ = w and (2) for any u ∈ Sd−1,
E (〈u, ŵ〉 − 〈u,w〉)2 ≤ E 〈u, ŵ〉2 ≤ 1

4 + 2‖w‖2

Proof. (of theorem 3.6) We construct a compressor for Ld1,d2,M as follows. Given W , we will
sample a k-sketch Ŵ of W for k =

⌈
1
4 + 2M2

⌉
, and will return the function x 7→ Ŵx. We claim

that that W 7→ Ŵ is a (1, 2k dlog(2d1d2(M + 1))e)-compressor for Ld1,d2,M . Indeed, to specify a
sketch of W we need dlog(d1d2)e bits to describe the chosen index, as well as log (2d1d2M + 2)
bits to describe the value in that index. Hence, 2k dlog(2d1d2(M + 1))e bits suffices to specify a
k-sketch. It remains to show that for x ∈ Bd1 , Ŵx is a 1-estimator of Wx. Indeed, by lemma 3.8,
E Ŵ = W and therefore E Ŵx = Wx. Likewise, for u ∈ Sd2−1. We have

E
(〈

u, Ŵx
〉
− 〈u,Wx〉

)2
= E

(〈
Ŵ ,xuT

〉
−
〈
W,xuT

〉)2
≤

1
4 + 2M2

k
≤ 1

3.2 Simplified Depth 2 Networks

To demonstrate our techniques, we consider the following class of functions. We let the domain X to
be Bd. We fix an activation function ρ : R→ R that is assumed to be a polynomial ρ(x) =

∑k
i=0 aix

i

with
∑n
n=1 |an| = 1. For any W ∈ Md,d we define hW (x) = 1√

d

∑d
i=1 ρ(〈wi,x〉) Finally, we

let H =
{
hW : ∀i, ‖wi‖ ≤ 1

2

}
In order to build compressors for classes of networks, we will

utilize to compositional structure of the classes. Specifically, we have that H = Λ ◦ ρ ◦ F where
F = {x 7→Wx : W is d× d matrix with ‖wi‖ ≤ 1 for all i} and Λ(x) = 1√

d

∑d
i=1 xi.

As F is a subset of Ld,d,√d, we know that there exists a (1, O (d log(d)))-compressor for it. We will
use this compressor to build a compressor to ρ ◦ F , and then to Λ ◦ ρ ◦ F . We will start with the
latter, linear case, which is simpler

Lemma 3.9. Let X be a σ-estimator to x ∈ Rd1 . Let A ∈ Md2,d1 be a matrix of spectral norm
≤ r. Then, AX is a (rσ)-estimator to Ax. In particular, if C is a (1, n)-compressor to a classH of
functions from X to Rd. Then

C′ω(Λ ◦ h) = Λ ◦ Cωh
is a (1, n)-compressor to Λ ◦ H

We next consider the composition of F with the non-linear ρ. As opposed to composition with a linear
function, we cannot just generate a compression version using F’s compressor and then compose
with ρ. Indeed, if X is a σ-estimator to x, it is not true in general that ρ(X) is an estimator of ρ(x).
For instance, consider the case that ρ(x) = x2, and X = (X1, . . . , Xd) is a vector of independent
standard Gaussians. X is a 1-estimator of 0 ∈ Rd. On the other hand, ρ(X) = (X2

1 , . . . , X
2
n) is not

an estimator of 0 = ρ(0). We will therefore take a different approach. Given f ∈ F , we will sample
k independent estimators {Cωif}ki=1 from F’s compressor, and define the compressed version of
σ ◦ h as C′ω1,...,ωk

f =
∑d
i=0 ai

∏i
j=0 Cωi

f . This construction is analyzed in the following lemma
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Lemma 3.10. If C is a
(
1
2 , n
)
-compressor of a classH of functions from X to

[
− 1

2 ,
1
2

]d
. Then C′ is

a (1, n)-compressor of ρ ◦ H

Combining theorem 3.6 and lemmas 3.9, 3.10 we have:
Theorem 3.11. H has approximation length . d log(d). Hence, if ` : R × Y → R is L-Lipschitz
and B-bounded, then for any distribution D on X × Y

E
S∼Dm

repD(S,H) .
(L+B)

√
d log(d)√
m

log(m)

Furthermore, with probability at least 1− δ,

repD(S,H) .
(L+B)

√
d log(d)√
m

log(m) +B

√
2 ln (2/δ)

m

Lemma 3.10 is implied by the following useful lemma:
Lemma 3.12. 1. If X is a σ-estimator of x then aX is a (|a|σ)-estimator of aX

2. Suppose that for n = 1, 2, 3, . . . Xn is a σn-estimator of xn ∈ Rd. Assume furthermore
that

∑∞
n=1 xn and

∑∞
n=1 σn converge to x ∈ Rd and σ ∈ [0,∞). Then,

∑∞
n=1Xn is a

σ-estimator of x

3. Suppose that {Xi}ki=1 are independent σi-estimators of xi ∈ Rd. Then
∏k
i=1Xi is a

σ′-estimator of
∏k
i=1 xi for σ′2 =

∏k
i=1

(
σ2
i + ‖xi‖2∞

)
−
∏k
i=1 ‖xi‖

2
∞

We note that the bounds in the above lemma are all tight.

4 Approximation Description Length

In this section we refine the definition of approximate description length that were given in section 3.
We start with the encoding of the compressed version of the functions. Instead of standard strings,
we will use what we call bracketed string. The reason for that often, in order to create a compressed
version of a function, we concatenate compressed versions of other functions. This results with
strings with a nested structure. For instance, consider the case that a function h is encoded by the
concatenation of h1 and h2. Furthermore, assume that h1 is encoded by the string 01, while h2 is
encoded by the concatenation of h3, h4 and h5 that are in turn encoded by the strings 101, 0101 and
1110. The encoding of h will then be [[01][[101][0101][1110]]]. We note that in section 3 we could
avoid this issue since the length of the strings and the recursive structure were fixed, and did not
depend on the function we try to compress. Formally, we define
Definition 4.1. A bracketed string is a rooted tree S, such that (i) the children of each edge are
ordered, (ii) there are no nodes with a singe child, and (iii) the leaves are labeled by {0, 1}. The
length, len(S) of S is the number of its leaves.

Let S be a bracketed string. There is a linear order on its leaves that is defined as follows. Fix a pair
of leaves, v1 and v2, and let u be their LCA. Let u1 (resp. u2) be the child of u that lie on the path to
v1 (resp. v2). We define v1 < v2 if u1 < u2 and v1 > v2 otherwise (note that necessarily u1 6= u2).
Let v1, . . . , vn be the leaves of T , ordered according to the above order, and let b1, . . . , bn be the
corresponding bits. The string associated with T is s = b1 . . . bn. We denote by Sn the collection of
bracketed strings of length ≤ n, and by S = ∪∞n=1Sn the collection of all bracketed strings.

The following lemma shows that in log-scale, the number of bracketed strings of length ≤ n differ
from standard strings of length ≤ n by only a constant factor
Lemma 4.2. |Sn| ≤ 32n

We next revisit the definition of a compressor for a classH. The definition of compressor will now
have a third parameter, ns, in addition to σ and n. We will make three changes in the definition.
The first, which is only for the sake of convenience, is that we will use bracketed strings rather than
standard strings. The second change, is that the length of the encoding string will be bounded only
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in expectation. The final change is that the compressor can now output a seed. That is, given a
function h ∈ H that we want to compress, the compressor can generate both a non-random seed
Es(h) ∈ Sns and a random encoding E(ω, h) ∈ S with Eω∼µ len(E(ω, h)) ≤ n. Together, Es(h)

and E(ω, h) encode a σ-estimator. Namely, there is a function D : Sns
× S →

(
Rd
)X

such that
D(Es(h), E(ω, h)), ω ∼ µ is a σ-estimator of h. The advantage of using seeds is that it will
allow us to generate many independent estimators, at a lower cost. In the case that n � ns, the
cost of generating k independent estimators of h ∈ H is ns + kn bits (in expectation) instead of
k(ns + n) bits. Indeed, we can encode k estimators by a single seed Es(h) and k independent
“regular" encodings E(ωk, h), . . . , E(ωk, h). The formal definition is given next.
Definition 4.3. A (σ, ns, n)-compressor for H is a 5-tuple C = (Es, E,D,Ω, µ) where µ is a
probability measure on Ω, and Es, E,D are functions Es : H → T ns , E : Ω × H → T , and
D : T ns × T →

(
Rd
)X

such that for any h ∈ H and x ∈ X (1) D(Es(h), E(ω, h)), ω ∼ µ is a
σ-estimator of h and (2) Eω∼µ len(E(ω, h)) ≤ n

We finally revisit the definition of approximate description length. We will add an additional
parameter, to accommodate the use of seeds. Likewise, the approximate description length will
now be a function of m – we will say thatH has approximate description length (ns(m), n(m)) if
there is a (1, ns(m), n(m))-compressor for the restriction ofH to any set A ⊂ X of size at most m.
Formally:
Definition 4.4. We say that a classH of functions from X to Rd has approximate description length
(ns(m), n(m)) if for any set A ⊂ X of size ≤ m there exists a (1, ns(m), n(m))-compressor for
H|A

It is not hard to see that if H has approximate description length (ns(m), n(m)), then for any
1 ≥ ε > 0 and a setA ⊂ X of size≤ m, there exists an

(
ε, ns(m), n(m)dε−2e

)
-compressor forH|A.

We next connect the approximate description length, to covering numbers and representativeness.
The proofs are similar the the proofs of lemmas 3.4 and 3.5.
Lemma 4.5. Fix a class H of functions from X to R with approximate description length
(ns(m), n(m)). Then, log (N(H,m, ε)) . ns(m) + n(m)

ε2 Hence, if ` : Rd × Y → R is L-Lipschitz
and B-bounded, then for any distribution D on X × Y

E
S∼Dm

repD(S,H) .
(L+B)

√
ns(m) + n(m)√
m

log(m)

Furthermore, with probability at least 1− δ,

repD(S,H) .
(L+B)

√
ns(m) + n(m)√
m

log(m) +B

√
2 ln (2/δ)

m

Lemma 4.6. Fix a class H of functions from X to Rd with approximate description length
(ns(m), n(m)). Then, log (N(H,m, ε)) ≤ log (N∞(H,m, ε)) . ns(m) + n(m) log(dm)

ε2 . Hence, if
` : Rd × Y → R is L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded, then for any distribution D on X × Y

E
S∼Dm

repD(S,H) .
(L+B)

√
ns(m) + n(m) log(dm)√

m
log(m)

Furthermore, with probability at least 1− δ,

repD(S,H) .
(L+B)

√
ns(m) + n(m) log(dm)√

m
log(m) +B

√
2 ln (2/δ)

m

We next analyze the behavior of the approximate description length under various operations
Lemma 4.7. LetH1,H2 be classes of functions from X to Rd with approximate description length
of (n1s(m), n1(m)) and (n2s(m), n2(m)). Then H1 + H2 has approximate description length of
(n1s(m) + n2s(m), 2n1(m) + 2n2(m))

Lemma 4.8. Let H be a class of functions from X to Rd with approximate description length
of (ns(m), n(m)). Let A be d2 × d1 matrix. Then A ◦ H1 has approximate description length(
ns(m),

⌈
‖A‖2

⌉
n(m)

)
7



Figure 1: The functions ln (1 + ex) and ex

1+ex

Definition 4.9. Denote by Ld1,d2,r,R the class of all d2× d1 matrices of spectral norm at most r and
Frobenius norm at most R.
Lemma 4.10. Let H be a class of functions from X to Rd1 with approximate description length
(ns(m), n(m)). Assume furthermore that for any x ∈ X and h ∈ H we have that ‖h(x)‖ ≤ B. Then,
Ld1,d2,r,R ◦ H has approximate description length(

ns(m), n(m)O(r2 + 1) +O
(
(d1 +B2)(R2 + 1) log(Rd1d2 + 1)

))
Definition 4.11. A function f : R → R is B-strongly-bounded if for all n ≥ 1, ‖f (n)‖∞ ≤ n!Bn.
Likewise, f is strongly-bounded if it is B-strongly-bounded for some B

We note that
Lemma 4.12. If f is B-strongly-bounded then f is analytic and its Taylor coefficients around any
point are bounded by Bn

The following lemma gives an example to a strongly bounded sigmoid function, as well as a strongly
bounded smoothened version of the ReLU (see figure 1).
Lemma 4.13. The functions ln (1 + ex) and ex

1+ex are strongly-bounded

Lemma 4.14. Let H be a class of functions from X to Rd with approximate description length of
(ns(m), n(m)). Let ρ : R→ R be B-strongly-bounded. Then, ρ ◦ H has approximate description
length of (

ns(m) +O
(
n(m)B2 log(md)

)
, O
(
n(m)B2 log(d)

))
5 Sample Complexity of Neural Networks

Fix the instance space X to be the ball of radius
√
d in Rd (in particular [−1, 1]d ⊂ X ) and a B-

strongly-bounded activation ρ. Fix matrices W 0
i ∈Mdi,di−1

, i = 1, . . . , t. Consider the following
class of depth-t networks
Nr,R(W 0

1 , . . . ,W
0
t ) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ‖Wi −W 0

i ‖ ≤ r, ‖Wi −W 0
i ‖F ≤ R

}
We note that

Nr,R(W 0
1 , . . . ,W

0
t ) = Nr,R(W 0

t ) ◦ . . . ◦ Nr,R(W 0
1 )

The following lemma analyzes the cost, in terms of approximate description length, when moving
from a classH to Nr,R(W 0) ◦ H.
Lemma 5.1. Let H be a class of functions from X to Rd1 with approximate description length
(ns(m), n(m)) and ‖h(x)‖ ≤M for any x ∈ X and h ∈ H. Fix W 0 ∈Md2,d1 . Then, Nr,R(W 0

t ) ◦
H has approximate description length of(

ns(m) + n′(m)B2 log(md2), n′(m)B2 log(d2)
)

for
n′(m) = n(m)O(r2 + ‖W 0‖2 + 1) +O

(
(d1 +M2)(R2 + 1) log(Rd1d2 + 1)

)
The lemma is follows by combining lemmas 4.7, 4.8, 4.10 and 4.14. We note that in the case that
d1, d2 ≤ d, M = O(

√
d1), B, r, ‖W 0‖ = O(1) (and hence R = O

(√
d
)

) and R ≥ 1 we get that

Nr,R(W 0) ◦ H has approximate description length of(
ns(m) +O (n(m) log(md)) , O (n(m) log(d)) +O

(
d1R

2 log2(d)
))

By induction, the approximate description length of Nr,R(W 0
1 , . . . ,W

0
t ) is(

dR2O (log(d))
t
log(md), dR2O (log(d))

t+1
)
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