
A Proofs and supplementary Analyses

A.1 Proofs and analyses for Section 3.2

Proof. The original LMAXSSN loss minimization problem with an additional constraint of preserving
loss under clean data can be transformed to the problem stated in (3) due to the flexibility of g1 and
g2 under the constraint g1 + g2 = �3:

min
g1,g2

max {L (y, fdirect(x1 + �1, x2)) , L (y, fdirect(x1, x2 + �2))} s.t. g1 + g2 = �3

Under the expected squared loss with fdirect function, the loss can be evaluated,

L (y, fdirect(x1 + �1, x2)) = E
h�
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T zi

!

= �2(||�1||22 + ||g1||22) (* Statistical assumption on ✏i.)

Hence the equivalent problem (6) is achieved.

�2 min
g1,g2

max
�
||�1||22 + ||g1||22, ||�2||22 + ||g2||22

 
s.t. g1 + g2 = �3 (6)

For simple notation, substitute variables as g = g1, v = �3, c1 = ||�1||22, c2 = ||�2||22, and solve the
following convex optimization problem.

min
g

max{||g||22 + c1, ||g � v||22 + c2}

This problem can be solved by introducing a variable � for the upper bound of the inner maximum
value:

min
g,�

� s.t. c1 + ||g||22 � �  0, c2 + ||g � v||22 � �  0

KKT condition gives:

(Primal feasibility) c1 + ||g||22 � �  0, c2 + ||g � v||22 � �  0

(Dual feasibility) �1 � 0, �2 � 0

(Complementary slackness) �1(c1 + ||g||22 � �) = 0, �2(c2 + ||g � v||22 � �) = 0

(Stationary) �1 + �2 = 1, g =
�2

�1 + �2
v

Considering �1 + �2 = 1 and �1, �2 � 0, we first need to analyze the case �1 = 0. This gives
g = v and the complementary slackness condition to find � = c2 + ||g � v||22 = c2. �2 = 0
can be analyzed with similar steps. If both �1 and �2 are positive, the complementary slackness
condition gives � = c1 + ||g||22 = c2 + ||g � v||22, which ensures the balance of the original problem’s
maximum value max{c1 + ||g||22, c2 + ||g � v||22}. This case gives � = c1+c2

2 + ||v||22
4 + (c2�c1)

2

4||v||22

with g = 1
2

⇣
1 + c2�c1

||v||22

⌘
v. Therefore, we can have the result (4) which provides the fusion model

robust against single source corruptions from random noise.

Comparison to the model not considering MAXSSN loss If random noise are added to x1 and
x2 simultaneously, the objective of the problem becomes ming1,g2 E[(y � fdirect(x1 + �1, x2 + �2))2]
instead of considering the MAXSSN loss. This is equivalent to minimizing �2(||�1||22 + ||�2||22 +
||g1||22 + ||g2||22) subject to g1 + g2 = �3, and the solution can be directly found as it is a simple
convex problem, which is g1 = g2 = �3

2 . If we denote this model as f 0
direct, then MAXSSN loss is:

LMAXSSN(f 0
direct, ✏) = L0

MAXSSN = �2 max

⇢
||�1||22 +

1

4
||�3||22, ||�2||22 +

1

4
||�3||22

�

Now, let’s compute the difference L0
MAXSSN � L⇤

MAXSSN.
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Proof. As both term includes �2, let’s assume �2 = 1 for ease of notation. Among the three cases in
(4), consider the first case ||�1||22 + ||�3||22  ||�2||22.

L0
MAXSSN � L⇤

MAXSSN = ||�2||22 +
1

4
||�3||22 � ||�2||22 =

1

4
||�3||22 (* ||�2||22 � ||�1||22)

The second case can be shown similarly. Now assume that
��� ||�2||22�||�1||22

||�3||22

��� < 1 holds, and let
||�2||22 � ||�1||22 without loss of generality. Then we can show that,
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Therefore we can conclude that simply optimizing under noise added to all the input sources at the
same time cannot do better than minimizing MAXSSN loss with some nonnegative gap in our linear
fusion model.

A.2 Single Source Robustness against Adversarial attacks

Another important type of perturbation is an adversarial attack. Different from the previously studied
random noise, perturbation to the input sources is also optimized to maximize the loss to consider the
worst case. Adversarial version of the MAXSSN loss is defined as follows:
Definition 3. For multiple sources x1, · · · , xns and a target variable y, denote a predefined loss

function by L. If each input source xi is maximally perturbed with some additive noise ⌘i 2 Si for

i 2 [ns], ADVMAXSSN loss for a model f is defined as follows:

LADVMAXSSN(f, ⌘) , max
i

⇢
max
⌘i2Si

L (y, f(xi + ⌘i, x�i))

�ns

i=1

As a simple model analysis, let’s consider a binary classification problem using the logistic regression.
Again, two input sources x1 = [z1; z3] and x2 = [z2; z3] have a common feature vector z3 as in the
linear fusion data model. A binary classifier sgn(f(x1, x2)) is trained to predict label y 2 {�1, 1},
where f(x1, x2) = (wT

1 z1 + gT
1 z3) + (wT

2 z2 + gT
2 z3) and the training loss is Ex,y [` (y · f(x1, x2))]

with the logistic function `(x) = log(1 + exp(�x)). Here, we apply one of the most popular
attacks, fast gradient sign (FGS) method, which was also motivated by linear models without a fusion
framework [13]. The adversarial attack ⌘i per each source xi under `1 norm constraint ||⌘i||1  "
can be similarly derived as follows:

⌘1 = [�"y · sgn(w1); �"y · sgn(g1)], ⌘2 = [�"y · sgn(w2); �"y · sgn(g2)] (7)

As a substitute for the linear fusion data model, let’s assume the true classes are generated by the
hidden relationship y = sgn

⇣P3
i=1 �T

i zi

⌘
. Then the optimal fusion binary classifier becomes

sgn(fdirect(x1, x2)). Similar to the previous section, suppose an objective is to find a model with
robustness against single source adversarial attacks, while preserving the performance on clean data.
Then the overall optimization problem can be reduced to the following one:

min
g1,g2

max {L (y, fdirect(x1 + ⌘1, x2)) , L (y, fdirect(x1, x2 + ⌘2))} s.t. g1 + g2 = �3 (8)

As ` is a decreasing function, optimal g1 and g2 of the original problem are equivalent to the minimizer
of the following one:

" min
g1,g2

max {||w1||1 + ||g1||1, ||w2||1 + ||g2||1} s.t. g1 + g2 = �3 (9)

By solving this convex optimization problem, we can achieve solution L⇤
ADVMAXSSN and optimizers

g⇤
1 , g⇤

2 . Also, we can find L0
ADVMAXSSN, a LADVMAXSSN value evaluated using the optimal model for
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minimizing the adversarial attacks added to all the sources at once. Interestingly, we can show that
L0

ADVMAXSSN � L⇤
ADVMAXSSN if ||�2||1�||�1||1

||�3||1 > 1, but L0
ADVMAXSSN = L⇤

ADVMAXSSN otherwise. In
other words, if inherent influence of z1 and z2 are well balanced compared to the common feature
z3 in the sense of `1 norm, adversarial attacks only applied to a single source can be equivalently
defended by just using a traditional adversarial training strategy to learn a model robust against
attacks added to all the sources at once.

Proof. The original minimizing LADVMAXSSN loss minimization problem with an additional constraint
of preserving loss under clean data can be transformed to the problem stated in (8) due to the flexibility
of g1 and g2:

min
g1,g2

max {L (y, fdirect(x1 + ⌘1, x2)) , L (y, fdirect(x1, x2 + ⌘2))} s.t. g1 + g2 = �3

As ⌘i’s are assumed to be made with FGS method, adversarial attacks under `1 norm constraints are
as follows:

⌘1 = [�"y · sgn(w1); �"y · sgn(g1)], ⌘2 = [�"y · sgn(w2); �"y · sgn(g2)]

Therefore, minimizing LADVMAXSSN(fdirect, ⌘) over g1, g2 becomes:

min
g1,g2

max{E [` (y · fdirect(x1, x2) � "(||w1||1 + ||g1||1))] ,

E [` (y · fdirect(x1, x2) � "(||w2||1 + ||g2||1))]} s.t. g1 + g2 = �3

We can solve the following problem to find minimizers g⇤
1 and g⇤

2 .

min
g1,g2

max {||w1||1 + ||g1||1, ||w2||1 + ||g2||1} s.t. g1 + g2 = �3

Similar to the random noise case, substitute variables as g = g1, v = �3, c1 = ||�1||1, c2 = ||�2||2,
and solve the following convex optimization problem:

min
g

max{||g||1 + c1, ||g � v||1 + c2}

which can be solved by introducing �,

min
g,�

� s.t. c1 + ||g||1 � �  0, c2 + ||g � v||1 � �  0

KKT condition gives:

(Primal feasibility) c1 + ||g||1 � �  0, c2 + ||g � v||1 � �  0

(Dual feasibility) �1 � 0, �2 � 0

(Complementary slackness) �1(c1 + ||g||1 � �) = 0, �2(c2 + ||g � v||1 � �) = 0

(Stationary) �1 + �2 = 1, 0 2 �1@||g||1 + �2@||g � v||1
If �1 = 0 or �2 = 0, these cases handle when the inherent imbalance of three components z1, z2 and
z3. Consider �2 = 0, which gives ||g||1 + c1 � � = 0 from the complementary slackness condition.
And the stationary condition becomes 0 2 @||g||1. As a subgradient of ||g||1 can be zero if and only
if g(i) = 0 for any ith component, the solution is g = 0 with � = c1 and the necessary condition is
||v||1 + c2  c1. Similar solution can be found for �1 = 0 case as g = v, � = c2 if ||v||1 + c1  c2.
Therefore, we can have �⇤ = min max {||w1||1 + ||g1||1, ||w2||1 + ||�3 � g1||1} and corresponding
parameters as:

(�⇤, g⇤
1 , g⇤

2) =

⇢
(||�2||1, �3, 0) if ||�1||1 + ||�3||1  ||�2||1
(||�1||1, 0, �3) if ||�2||1 + ||�3||1  ||�1||1

Now let’s consider �1 6= 0, �2 6= 0. Denote q 2 �1@||g||1 + �2@||g � v||1 as the element of
subdifferential of the Lagrangian. We need to find cases for q(i) = 0 to hold.

(i) If v(i) = 0, then sgn(g(i)) = sgn(g(i) � v(i)) holds. Therefore, if g(i) 6== 0, a subgradient
becomes q(i) = �1sgn(g(i)) + �2sgn(g(i)) = sgn(g(i)) which cannot be zero. ) g(i) = v(i) = 0.
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(ii) If v(i) 6= 0, we need to consider three different sub cases. First, if g(i) 6= 0 and g(i) 6= v(i),
then q(i) = �1(sgn(g(i)) � sgn(g(i) � v(i))) + sgn(g(i) � v(i)). For q(i) = 0 to hold, sgn(g(i)) =
�sgn(g(i) � v(i)) must be true with �1 = 1

2 . This gives a solution g(i) = ↵iv(i) with 8↵i 2 (0, 1).

Secondly, if g(i) = 0 but g(i) 6= v(i), then the subgradient is q(i) = �1↵i + (1 � �1)sgn(�v(i)) for
any ↵i 2 [�1, 1]. Therefore, if ↵i = 1��1

�1
sgn(v(i)) with some �1 2 [ 12 , 1), the stationary condition

holds.

Finally, if g(i) 6= 0 and g(i) = v(i), then q(i) = �1sgn(g(i)) + (1 � �1)↵i for any ↵i 2 [�1, 1].
Therefore, if ↵i = �1

1��1
sgn(v(i)) with �1 2 (0, 1

2 ], q(i) = 0 holds for the stationary condition.

All the above cases in (i) and (ii) can be restated as a combined solution g(i) = ↵iv(i), 8↵i 2 [0, 1].
It is easy to show that |g(i)| + |g(i) � v(i)| = |v(i)| holds for any i. Also, �1 6= 0, �2 6= 0 with the
complementary slackness condition gives a new constraint � = ||g||1 + c1 = ||g � v||1 + c2. Hence,
we can calculate � by averaging the two equivalent values:

� =
1

2
(c1 + c2 + ||g||1 + ||g � v||1) =

1

2
(c1 + c2 + ||v||1)

Therefore, (�⇤, g⇤
1 , g⇤

2) =
�

1
2 (||�1||1 + ||�2||1 + ||�3||1), ↵ � �3, �3 � ↵ � �3

�
, where � is an

element-wise product and each element of ↵ can have any value in [0, 1], i.e. ↵(i) 2 [0, 1].

Now, let’s consider a model robust against adversarial attacks added to both sources x1 and x2 at the
same time. This becomes a problem of minimizing ||�1||1 + ||�2||1 + ||g1||1 + ||�3 � g1||1. And
the optimal solution can be achieved by (g0

1, g
0
2) = (↵ � �3, �3 � ↵ � �3) for any alpha satisfying

↵(i) 2 [0, 1]. Therefore, we can conclude that our LADVMAXSSN loss is necessary to give a binary
classifier more robust against single source adversarial attacks, i.e. L⇤

ADVMAXSSN  L0
ADVMAXSSN, if

||�2||1�||�1||1
||�3||1 > 1 holds. Surprisingly, if ||�2||1�||�1||1

||�3||1  1 holds to have balanced influence from
inherent components from the different source of inputs, L⇤

ADVMAXSSN = L0
ADVMAXSSN. In other

words, if different input sources contributes to the target variable with certain balance, a traditional
way of generating adversarial samples by considering all the sources at once can train a model robust
against single source attacks as well.

B Additional Experimental Results

Evaluation on ASN data Although our main focus is corruption on a single source, it is possible
for a model to encounter a case where all the sources are corrupted. If the level of corruption is severe,
then extracting any meaningful information from the input sources is impossible, e.g. occlusion on
every sensors. However, we hope our model to be robust against reasonably corrupted input sources
even if our training objective leans toward the single source robustness. Therefore, we also report
the model’s performance against data corrupted with ASN. In most cases, the AVOD learned with
TRAINASN method achieves the best robustness against ASN, which is designed to do so. However,
a model using element-wise mean fusion layers trained with TRAINASN shows lower robustness
scores compared to the SSN oriented approaches. We believe that this phenomenon is caused by
corrupted feature extraction combined with the structural limitation of the mean fusion layer.

Fine-tuning We also consider another algorithmic framework using fine-tuing. The algorithm
starts with a normal training on clean data for mclean iterations, which may include some general
data augmentation methods like random cropping, and flipping. Then mtune steps of fine-tuning
is run to update only a subset of the model’s parameters, ✓fusion ⇢ f , so that any essential parts
for extracting features from normal data are not affected. Convolutional layers extracting features
from different sources before the fusion stages are fixed, and other layers for fusing the features
and making predictions are updated in the fine-tuning stage. The experimental results using this
method are provided in Table 4 and 6 for the Gaussian noise case. Overall performance of the fusion
model trained from the scratch is better than using fine-tuning. This shows the importance of feature
extraction parts in deep learning models.

Concatenation Our analyses in Section 3 assume to use a linear fusion model with a simple
concatenation strategy. Therefore, we first train the AVOD model with concatenation fusion layers on
clean data and fine-tune with different training strategies. Interestingly, a simple data augmentation
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Table 3: Car detection (3D/BEV) performance of AVOD with element-wise mean fusion layers
against Gaussian SSN and ASN on the KITTI validation set.

(Data) Train Algo. Easy Moderate Hard Easy Moderate Hard

(Clean Data) AP3D(%) APBEV (%)

AVOD [25] 76.41 72.74 66.86 89.33 86.49 79.44

+TRAINASN 75.96 66.68 65.97 88.63 79.45 78.79
+TRAINSSN 76.28 67.10 66.51 88.86 79.60 79.11
+TRAINSSNALT 77.46 67.61 66.06 89.68 86.71 79.41

(Gaussian ASN) AP3D(%) APBEV (%)

AVOD [25] 28.08±0.91 26.35±2.18 21.81±0.63 42.01±0.23 33.68±0.17 33.60±0.13
+TRAINASN 61.26±0.45 47.71±0.24 45.60±0.19 87.40±0.07 72.07±2.89 70.13±0.05
+TRAINSSN 69.33±0.43 55.41±0.21 52.90±2.12 88.39±0.13 78.37±0.10 70.75±0.05
+TRAINSSNALT 71.63±0.04 56.24±0.16 49.14±0.10 87.95±0.08 77.88±0.17 69.96±0.08

(Gaussian SSN) min AP3D(%) min APBEV (%)

AVOD [25] 47.41±0.28 41.84±0.17 36.47±0.16 65.63±0.28 58.02±0.23 50.43±0.14
+TRAINASN 61.53±0.57 52.72±0.08 47.25±0.13 87.71±0.14 78.37±0.06 77.85±0.08
+TRAINSSN 71.65±0.31 62.14±0.08 56.78±0.12 88.21±0.08 78.90±0.09 77.92±0.11
+TRAINSSNALT 71.66±0.48 57.61±0.12 55.90±0.11 89.42±0.04 79.56±0.06 77.92±0.05

(Gaussian SSN) max DiffAP3D(%) max DiffAPBEV (%)
AVOD [25] 26.70±0.52 22.42±0.29 20.92±0.25 22.27±0.41 20.76±0.33 20.09±0.20
+TRAINASN 14.48±0.82 12.72±0.33 11.18±0.27 0.88±0.22 0.48±0.13 0.28±0.12
+TRAINSSN 3.71±0.46 3.42±0.25 7.50±0.25 0.36±0.17 0.04±0.15 0.71±0.17
+TRAINSSNALT 5.55±0.81 8.73±0.32 2.91±0.22 0.09±0.14 0.13±0.11 0.18±0.11

Table 4: Car detection (3D/BEV) performance of AVOD with element-wise mean fusion layers
(trained with fine-tuning) against Gaussian SSN and ASN on the KITTI validation set.

(Data) Train Algo. Easy Moderate Hard Easy Moderate Hard

(Clean Data) AP3D(%) APBEV (%)

AVOD [25] 76.41 72.74 66.86 89.33 86.49 79.44

+TRAINASN 62.55 55.81 55.34 79.08 69.90 69.83
+TRAINSSN 73.50 65.66 64.74 88.27 85.65 78.98
+TRAINSSNALT 75.76 71.99 66.31 88.76 85.73 79.14

(Gaussian ASN) AP3D(%) APBEV (%)

AVOD [25] 28.08±0.91 26.35±2.18 21.81±0.63 42.01±0.23 33.68±0.17 33.60±0.13
+TRAINASN 68.58±1.93 54.76±0.30 48.00±0.29 83.15±3.01 76.10±0.069 68.49±0.08
+TRAINSSN 60.73±0.32 45.52±0.19 44.42±0.11 78.24±0.10 68.41±0.10 60.45±0.07
+TRAINSSNALT 53.25±0.27 44.96±0.14 38.64±0.10 68.69±0.18 59.41±0.14 51.37±0.07

(Gaussian SSN) min AP3D(%) min APBEV (%)

AVOD [25] 47.41±0.28 41.84±0.17 36.47±0.16 65.63±0.28 58.02±0.23 50.43±0.14
+TRAINASN 52.72±0.34 45.66±0.24 39.29±0.22 69.33±0.21 60.19±0.15 59.66±0.15
+TRAINSSN 62.46±0.48 53.85±0.22 47.62±0.14 77.77±0.16 68.71±0.09 67.89±0.09
+TRAINSSNALT 70.09±0.46 56.20±0.21 54.46±0.13 84.46±2.66 76.32±0.06 68.74±0.08

strategy TRAINSSNALT does not work well in this case, and TRAINASN algorithm learns the best
robust model. Unlike our simple linear model deep learning jointly learns both feature representation
and weights for the fusion layers. Also, concatenated convolutional features have large number of
channels which are mixed without sparse constraints. Therefore, this may lead to a model with too
complex joint feature representation which needs stronger guideline in optimization steps.

Results on downsampling corruption Downsampling the LIDAR sensor is important as it is not
clear whether a model trained with a high-resolution sensor will still work with a low-resolution one.
In fact, reducing the number of lasers of a LIDAR is directly related to its price, which an important
practical issue in deploying an actual autonomous vehicle. As the rotating LIDAR sensor used in
the KITTI dataset outputs point clouds with a horizontal structure, an RGB image’s horizontal lines
are also set to black to match the information loss ratio 1/4. Table 8 fully reports the performance of
AVOD using our LEL when downsampling is considered as a corruption method.
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Table 5: Car detection (3D/BEV) performance of AVOD with latent ensemble layers (LEL) against
Gaussian SSN and ASN on the KITTI validation set.

(Data) Train Algo. Easy Moderate Hard Easy Moderate Hard

(Clean Data) AP3D(%) APBEV (%)

AVOD [25] 77.79 67.69 66.31 88.90 85.64 78.86

+TRAINASN 75.00 64.75 58.28 88.30 78.60 77.23
+TRAINSSN 74.25 65.00 63.83 87.88 78.84 77.66
+TRAINSSNALT 76.04 66.42 64.41 88.80 79.53 78.53

(Gaussian ASN) AP3D(%) APBEV (%)

AVOD [25] 46.79±0.37 41.46±0.27 36.31±0.20 77.40±0.34 67.46±0.11 59.53±0.11
+TRAINASN 74.24±0.29 63.47±0.18 57.25±0.19 87.72±0.12 77.89±0.09 70.36±0.05
+TRAINSSN 67.69±0.28 55.74±0.30 53.16±0.32 87.73±0.16 77.80±0.15 70.00±0.10
+TRAINSSNALT 63.72±0.40 53.15±0.29 48.17±0.22 85.36±0.08 75.60±0.08 69.17±0.03

(Gaussian SSN) min AP3D(%) min APBEV (%)

AVOD [25] 61.97±0.55 53.95±0.42 47.24±0.27 79.44±0.09 72.46±3.14 68.25±0.06
+TRAINASN 74.24±0.38 58.25±0.16 56.13±0.10 88.10±0.26 78.19±0.13 70.42±0.07
+TRAINSSN 68.16±0.88 60.39±0.38 56.04±0.28 88.12±0.16 78.17±0.06 70.21±0.05
+TRAINSSNALT 68.63±0.40 55.48±0.16 54.42±0.17 86.51±0.46 76.85±0.11 71.95±2.72

(Gaussian SSN) max DiffAP3D(%) max DiffAPBEV (%)
AVOD [25] 3.75±2.05 0.98±0.55 5.95±0.40 7.28±0.37 4.46±3.25 1.25±0.13
+TRAINASN 1.54±0.40 0.85±0.24 0.83±0.25 0.92±0.17 1.09±0.14 7.44±0.08
+TRAINSSN 4.61±1.16 2.51±0.50 0.74±0.46 0.16±0.32 0.72±0.14 7.10±0.14
+TRAINSSNALT 4.65±1.04 7.88±0.46 2.90±0.45 1.12±0.71 1.83±0.17 3.42±2.84

Table 6: Car detection (3D/BEV) performance of AVOD with latent ensemble layers (LEL) (trained
with fine-tuning) against Gaussian SSN and ASN on the KITTI validation set.

(Data) Train Algo. Easy Moderate Hard Easy Moderate Hard

(Clean Data) AP3D(%) APBEV (%)

AVOD [25] 77.79 67.69 66.31 88.90 85.64 78.86
+TRAINASN 74.65 65.40 63.40 88.18 79.21 78.42
+TRAINSSN 76.95 67.22 65.66 88.77 79.74 78.96

+TRAINSSNALT 76.81 67.46 66.12 88.47 79.62 78.86

(Gaussian ASN) AP3D(%) APBEV (%)

AVOD [25] 46.79±0.37 41.46±0.27 36.31±0.20 77.40±0.34 67.46±0.11 59.53±0.11
+TRAINASN 63.73±0.24 53.16±0.16 47.79±0.17 80.18±0.07 76.26±0.03 69.12±0.04
+TRAINSSN 60.80±0.48 47.73±0.13 45.67±0.15 79.82±0.22 69.66±0.10 68.38±0.10
+TRAINSSNALT 52.25±1.47 43.77±0.62 37.91±0.48 77.51±0.12 67.32±0.09 59.65±0.10

(Gaussian SSN) min AP3D(%) min APBEV (%)

AVOD [25] 61.97±0.55 53.95±0.42 47.24±0.27 79.44±0.09 72.46±3.14 68.25±0.06
+TRAINASN 68.08±0.44 57.28±0.18 55.27±0.20 86.45±0.08 77.19±0.08 69.57±0.08
+TRAINSSN 67.98±1.31 55.61±0.23 53.76±0.20 86.87±0.12 77.56±0.05 69.81±0.08
+TRAINSSNALT 62.76±0.41 52.14±0.26 46.55±0.13 85.34±2.36 75.72±0.04 68.60±0.02
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Table 7: Car detection (3D/BEV) performance of AVOD with concatenation fusion layers (trained
with fine-tuning) against Gaussian SSN and ASN on the KITTI validation set.

(Data) Train Algo. Easy Moderate Hard Easy Moderate Hard

(Clean Data) AP3D(%) APBEV (%)

AVOD [25] 78.40 74.88 67.78 89.74 87.76 79.83

+TRAINASN 72.89 63.47 62.22 88.44 84.97 78.88
+TRAINSSN 76.15 66.79 65.78 89.02 86.06 79.29
+TRAINSSNALT 76.46 72.98 66.94 89.07 86.39 79.34

(Gaussian ASN) AP3D(%) APBEV (%)

AVOD [25] 16.50±2.27 15.12±0.06 15.06±0.08 25.81±0.23 25.38±0.18 17.45±0.08
+TRAINASN 69.21±0.24 54.85±0.08 53.30±0.08 86.07±0.11 76.42±0.04 69.54±0.02
+TRAINSSN 62.05±0.36 50.35±2.58 46.04±0.25 79.21±0.08 69.31±0.10 61.21±0.06
+TRAINSSNALT 33.86±2.85 27.99±0.64 22.59±0.60 42.65±0.18 41.77±0.18 34.13±0.12

(Gaussian SSN) min AP3D(%) min APBEV (%)

AVOD [25] 31.23±0.31 30.27±0.13 30.49±0.18 43.04±0.16 42.81±0.10 42.96±0.08
+TRAINASN 68.21±0.37 54.50±0.26 47.91±0.21 86.66±0.11 76.95±0.11 69.70±0.08
+TRAINSSN 64.39±0.23 55.12±0.21 48.38±0.14 79.71±0.07 70.05±0.07 69.32±0.10
+TRAINSSNALT 44.25±0.49 37.23±0.44 37.58±0.34 59.06±0.12 51.19±0.08 51.28±0.06

Table 8: Car detection (3D/BEV) performance of AVOD with latent ensemble layers (LEL) against
downsampling SSN and ASN on the KITTI validation set.

(Data) Train Algo. Easy Moderate Hard Easy Moderate Hard

(Clean Data) AP3D(%) APBEV (%)

AVOD [25] 77.79 67.69 66.31 88.90 85.64 78.86

+TRAINASN 71.74 61.78 60.26 87.29 77.08 75.89
+TRAINSSN 75.54 66.26 63.72 88.07 79.18 78.03
+TRAINSSNALT 76.22 66.05 63.87 89.00 79.65 78.03

(Downsample ASN) AP3D(%) APBEV (%)

AVOD [25] 36.13 27.39 26.39 77.60 59.84 51.82
+TRAINASN 71.30 56.04 49.08 85.66 70.17 68.55

+TRAINSSN 64.88 48.92 47.06 86.21 69.26 61.48
+TRAINSSNALT 48.98 36.30 31.06 75.00 51.35 49.60

(Downsample SSN) min AP3D(%) min APBEV (%)

AVOD [25] 61.70 51.66 46.17 86.08 69.99 61.55
+TRAINASN 65.74 53.49 51.35 82.27 67.88 65.79
+TRAINSSN 73.33 57.85 54.91 86.61 76.07 68.59

+TRAINSSNALT 64.77 53.34 48.29 85.27 69.87 67.77

(Downsample SSN) max DiffAP3D(%) max DiffAPBEV (%)
AVOD [25] 11.71 5.88 3.59 1.96 7.60 8.65
+TRAINASN 10.00 11.34 11.76 6.53 11.23 12.40
+TRAINSSN 0.94 5.71 3.11 1.74 2.36 9.00
+TRAINSSNALT 6.98 3.63 1.34 1.67 0.12 0.81
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