
A Proofs of lower bounds

A.1 Group-sparse dominance

The set Λ(µ) in the optimization problem can be decomposed into Λ(µ) = Λk(µ) t · · · t ΛK(µ)
where Λk(µ) is the set of alternative parameters in which arm k of category 1 is optimal. Indeed,
as we know that λ1

1 = µ1
1 > 0, the best category is known and the regret incurred by suboptimal

categories is non-existent. Thus, asymptotically, we fall back into deriving a lower bound on the
regret in one category, i.e. in the classic multi-armed bandit setting.

A.2 Strong dominance

Without loss of generality, we assume that we have M = 2 categories and category 2 has a unique
worst arm. The condition in the optimization problem can be written as

K∑
k=2

N1
k (µ1

k − λ2
k)2 +

K∑
k=1

N2
k (µ2

k − λ2
k)2 ≥ 2,∀λ ∈ Λ(µ) ,

where Λ(µ) = Λ2(µ) t · · · t ΛK(µ) t Λ2(µ) where Λk(µ) is the event in which the best arm is
mistaken by arm k in the category 1, i.e.,

Λk(µ) = {µ1
1}×]−∞, µ1

1[× · · ·×]µ1
1,+∞[× · · ·×]−∞, µ1

1[×]−∞, µ1
1[× · · ·×]−∞, µ1

1[

and Λ2(µ) is the event in which we mistake category 2 as the optimal category, i.e.,

Λ2(µ) = {µ1
1}×]−∞, µ1

1[× · · ·×]−∞, µ1
1[×]µ1

1,+∞[× · · ·×]µ1
1,+∞[ .

On Λk(µ), the condition is equivalent to

N1
k

(
µ1

1 − µ2
k

)2 ≥ 2 ,

and on Λ2(µ),
K∑
k=1

N2
k

(
µ1

1 − µ2
k

)2 ≥ 2 .

The minimization problem can thus be separated in two parts: the first part corresponds to finding the
best arm in the optimal category and the second part to finding the optimal category.

For the first part, the solution is the same as in the multi-armed bandit setting and is given by
N1
k = 2

(∆1,k)2
.

For the second part, let us prove that the solution is given by N2
K = 2

(∆2,K)2
and N2

k = 0 for k 6= K.
We have the following problem

min
N2≥0

K∑
k=1

N2
k∆2,k =: f(N2) subject to

K∑
k=1

N2
k (∆2,k)

2 ≥ 2 .

On one side, we have

min
N≥0

f(N) ≤ min
n≥0

f(0, . . . , 0, n) = f

(
0, . . . , 0,

2

(∆2,K)
2

)
=

2

∆2,K
,

and on the other side, since ∆2,k < ∆2,K , we have

K∑
k=1

N2
k∆2,k >

1

∆2,K

K∑
k=1

N2
k (∆2,k)

2 ≥ 2

∆2,K
.

Hence the solution of the optimization problem in the suboptimal category and the lower bound on
the regret follows.
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A.3 First-order dominance

By simplifying the optimization problem, one obtains the two following conditions

∀ k 6= 1, N1
k (∆1,k)

2 ≥ 2 ,

and ∀ k ∈ [K],

k−1∑
i=1

[(
N1
i+1

(
µ1
i+1 − µ̃i

)2
+N2

i

(
µ2
i − µ̃i

)2)
1
{
µ2
i < µ1

i+1

}]
+N2

k (∆2,k)
2

+

K∑
j=k+1

(
N1
j

(
µ1
j − µj

)2
+N2

j

(
µ2
j − µj

)2) ≥ 2 ,

where µ̃i =
N1

i+1µ
1
i+1+N2

i µ
2
i

N1
i+1+N2

i
and µj =

N1
j µ

1
j+N2

j µ
2
j

N1
j +N2

j
.

Assuming the arms are intertwined, the first term in the above equation disappear since the condition
in the indicator function is not verified. In the case of M = 2 categories and two arms per category
K = 2, the following conditions are derived

N1
2 ≥

2

(∆1,2)
2 , N2

2 ≥
2

(∆2,2)
2 ,

and
N2

1 (∆2,1)
2

+N1
2

(
µ1

2 − µ
)2

+N2
2

(
µ2

2 − µ
)2 ≥ 2 ,

where µ =
N1

2µ
1
2+N2

2µ
2
2

N1
2 +N2

2
.

Since this is a minimization problem, it is clear that the regret is minimize on the lower bounds of
N1

2 and N2
2 . Putting this two quantities in the last inequality, we obtain

N2
1 ≥

2

(∆2,1)
2

[
1−

((
µ1

2 − µ
∆1,2

)2

+

(
µ2

2 − µ
∆2,2

)2
)]

.

Developing µ, we have

µ =

2µ1
2

(∆1,2)2
+

2µ2
2

(∆2,2)2

2
(∆1,2)2

+ 2
(∆2,2)2

=
µ1

2 (∆2,2)
2

+ µ2
2 (∆1,2)

2

(∆1,2)
2

+ (∆2,2)
2 .

Now developing µ1
2−µ

∆1,2
, we get:

µ1
2 − µ
∆1,2

=
∆1,2

(
µ1

2 − µ2
2

)
(∆1,2)

2
+ (∆2,2)

2 =
∆1,2∆1,2

2,2

(∆1,2)
2

+ (∆2,2)
2 .

Similarly,

µ2
2 − µ
∆2,2

= −
∆2,2∆1,2

2,2

(∆1,2)
2

+ (∆2,2)
2 .

Plugging this into the inequality on N2
1 , we obtain

N2
1 ≥

2

(∆2,1)
2

1−

(
∆1,2

2,2

)2

(∆1,2)
2

+ (∆2,2)
2

 .
The result follows by the decomposition of the expected regret.
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B Characterizations of dominance

B.1 Strong dominance

Let (ei)i denotes the unit vectors. Taking x = ek and y = el hands µ1
k ≥ µ2

l .

In the other direction, let (α, β) ∈ ∆(K)×∆(K). We have

〈α, µ〉 =

K∑
k=1

αkµk =

K−1∑
k=1

αkµk +

(
1−

K−1∑
k=1

αk

)
µK = µK +

K−1∑
k=1

αk(µk − µK) .

Now, using the previous equality, we obtain

〈α, µ1〉−〈β, µ2〉 =

K∑
k=1

αkµ
1
k−

K∑
k=1

βkµ
2
k = (µ1

K−µ2
1)+

K−1∑
k=1

αk(µ1
k−µ1

K)+

K∑
k=2

βk(µ2
1−µ2

k) ≥ 0 .

B.2 First-order dominance

Taking x = ek hands µ1
k ≥ µ2

k. In the other direction, let x ∈ ∆(K). We have

〈x, µ1 − µ2〉 =

K∑
k=1

xk(µ1
k − µ2

k) ≥ 0 .

C Regret upper bounds of CATSE

C.1 Group-sparse dominance

Consider the following clean event

Es =

∀ t ∈ [T ],∀ k ∈ [K], |µ̂1
k(t)− µ1

k| ≤

√
2 log 1

δ

N1
k (t)

 .

Using union bounds over t and k, one obtains thanks to the subGaussian assumption that P (Es) ≥
2δKT . In the following, we assume the clean event holds true. In the case in which only the optimal
category is active, we get the regret of the UCB algorithm

RT ≤
K∑
k=2

8 log 1
δ

∆1,k
.

On the other hand, the set of active categories is empty if the optimal category is non active. That

means that ∀ k ≤ s, µ̂1
k(N1

k (t)) < 2

√
logN1

k(t)

N1
k(t)

where s is the number of arms with positive expected

reward. Let As denote this event. The number of times it happen is bounded. Indeed, since

As ⊆

{
µ̂1

1(N1
1 (t)) < 2

√
logN1

1 (t)

N1
1 (t)

}
=: A1 ,

and

n ≥ 3 +
32

(µ1
1)2

log
16

(µ1
1)2
⇒ 2

√
log n

n
− µ1

1 ≤ −
µ1

1

2
,
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we have

E

[
T∑

t=MK+1

1 {As}

]
≤ E

[
T∑

t=MK+1

1 {A1}

]

≤
(

3 +
32

(µ1
1)2

log
16

(µ1
1)2

)
+

T∑
u=1

P
(
µ̂1

1(u)− µ1
1 < −

µ1
k

2

)

≤
(

3 +
32

(µ1
1)2

log
16

(µ1
1)2

)
+

T∑
u=1

exp
{
−u

8
(µ1

1)2
}

≤ 3 +
32

(µ1
1)2

log
16

(µ1
1)2

+
8

(µ1
1)2

.

Finally, the set of active categories has more than one element if a sub-optimal category is active, i.e.

∃m 6= 1,∃ k ∈ [K]; µ̂mk (Nm
k (t)) ≥ 2

√
logNm

k (t)

Nm
k (t) . Let B denote this event. The number of times it

happen is also bounded. Indeed,

E
T∑
t=1

1 {B} ≤
∑
m,k

T∑
u=1

P

(
µ̂mk (u) ≥ 2

√
log u

u

)

≤
∑
m,k

T∑
u=1

P

(
µ̂mk (u)− µmk ≥ 2

√
log u

u

)

≤
∑
m,k

T∑
u=1

1

u2
≤ (M − 1)K

π2

6
.

Combining the three inequalities, we conclude.

C.2 Strong dominance

Let E0 denote the clean event
E0 =

{
∀ t ∈ [T ]; ∀m ∈ [M ],∀x ∈ RK , 〈x, µ̂m(t)− µm〉 ≤ ‖x‖2β(t, δ)

}
,

where β(t, δ) =
√

2
Nm(t)

(
K log 2 + log 1

δ

)
.

Lemma 2. With probability at least 1− δ, the following holds uniformly overall all x ∈ RK ,

〈x, µ̂m(p)− µm〉 ≤ ‖x‖2

√
2

p

(
K log 2 + log

1

δ

)
.

Proof. Fix x ∈ R and δ ∈ (0, 1) a confidence level. According to (Lattimore and Szepesvári, 2018),
we have with probability at least 1− δ,

‖µ̂(t)− µ‖Vt
≤

√
2

(
K log 2 + log

1

δ

)
.

If an agent pulls each arm sequentially, we are in the fixed design setting. In this case, (assuming t is
a multiple of K), we have Vt = N(t)IK , i.e. it is a diagonal matrix and we conclude.

Using union bounds over the time and the categories, and using the definition of the confidence set,
we obtain P (Ec0) ≤ δMT .

Suppose we are in the clean event and let m 6= 1 and t be the last time when we did not invoke the
stopping rule, i.e. that the category m is still active. First remark that category 1 is never eliminated
by category m on the clean event since mink µ

1
k ≥ maxk µ

m
k . By Equation (1), this means that

∀x ∈ ∆(K),∀y ∈ ∆(K), 〈x, µ̂1(t)〉−〈y, µ̂m(t)〉 ≤ (‖x‖2 + ‖y‖2)

√
2

N(t)

(
log

1

δ
+K log 2

)
,
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where N(t) denotes the number of times each category have been pulled. As we are in the clean
event, we have

∀x ∈ ∆(K),∀y ∈ ∆(K), 〈x, µ1〉 − 〈y, µm〉 ≤ 2 (‖x‖2 + ‖y‖2)

√
2

N(t)

(
log

1

δ
+K log 2

)
.

Inverting this equation, we obtain the following upper bound on N(t)

∀x ∈ ∆(K),∀y ∈ ∆(K), N(t) ≤ 8

(
K log 2 + log

1

δ

)(
‖x‖2 + ‖y‖2
〈x, µ1〉 − 〈y, µm〉

)2

.

The proof is conclude with the proof of the UCB algorithm [3].

C.3 First-order dominance

Lemma 3. With probability at least 1− δ,

‖µ̂mσm
t

(t)− µm‖2 ≤
1√
2t

(√
K log

1

δ
+
√

1 + (K + 1) logK

)
,

where µ̂mσm
t

(t) denotes the vector µ̂m(t) ordered in decreasing order.

Proof. The McDiarmid inequality gives the following

P
{
‖µ̂mσm

t
(t)− µm‖ ≥ E‖µ̂mσm

t
(t)− µm‖+ ε

}
≤ exp(−2tε2/K)

Now we just has to bound E‖µ̂mσm
t

(t)− µm‖2. If Y1, . . . , YN are σ2 sub-Gaussian, then

P
{

max
i=1,...,N

Yi ≥ ε
}
≤ N exp

(
− ε2

2σ2

)
.

This give, by a careful integration, that

E
(

max
i=1,...,N

Yi

)2

≤ 2σ2(log(N) + 1) .

In our case, we have σ2 = 1
4t . Using that the expectation of the kth maximum of N random variables

is smaller than the expectation of the maximum of N − (k − 1) random variables [11], we obtain

E‖µ̂mσm
t

(t)− µm‖22 ≤
1

2t

K∑
k=1

(1 + log(K − (k − 1))) =
1

2t
(K + logK!) ≤ 1 + (K + 1) logK

2t
,

where the last inequality comes from the Stirling formulae. The result follows.

Let define the clean event

E1 =

{
∀ t ∈ [T ],∀m ∈ [m], ‖µ̂mσm

t
(t)− µm‖2 ≤

1√
2t

(√
K log

1

δ
+
√

1 + (K + 1) logK

)}
By the lemma and with union bounds over t and m, we have P (Ec1) ≤ δMT . Let m 6= 1 and t be
the last time we pulled category m.

By Equation (2), we have

∀x ∈ ∆(K), 〈x, µ̂1
σ1
t
(t)− µ̂mσm

t
(t)〉 ≤ 2‖x‖2γ(t, δ) .

Moreover, notice that after t samples

∀x ∈ ∆(K),
1

‖x‖2

∣∣∣〈x, µ̂1
σ1
t
(t)− µ̂mσm

t
(t)〉 − 〈x, µ1 − µm〉

∣∣∣ ≤ ‖µ̂1
σ1
t
(t)− µ1‖2 + ‖µ̂mσm

t
(t)− µm‖2

≤ 2γ(t, δ) ,
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where the last inequality holds true with probability at least 1−δMT . Combining the two inequalities,
one obtains with probability at least 1− δMT ,

Nm(t) ≤ 8

‖µ1 − µm‖22

(√
K log

1

δ
+
√

1 + (K + 1) logK

)2

≤ 16

‖µ1 − µm‖22

(
K log

1

δ
+K logK + logK + 1

)
where in the last inequality we used the Cauchy–Schwarz inequality. Hence the result.
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