
A Theoretical Analysis

In this section, we provide a proof for Theorem 1 described in Section 4.1.

Lemma 1. (Lemma C.1 in MES [26]). Pick δ ∈ (0, 1) and set ζt =
(
2 log

(
πt

2δ

))1/2
, where∑T

t=1(πt)
−1 ≤ 1, πt > 0. Then, it holds that for each function fj , Pr[µj,t−1(xt) − fj(xt) ≤

ζtσj,t−1(x),∀t ∈ [1, T ]] ≥ 1 − δ. Here µj,t−1 and σj,t−1(x) refers to the predictive mean and
variance of jth GP at iteration number t.
Lemma 2. (Lemma C.2 in MES [26]) If µj,t−1(xt)−fj(xt) ≤ ζtσj,t−1(x), for each j ∈ [1, · · · ,K],

the quantity rjt = fj(x
∗)− fj(xt) ≤

(
vjt + ζt

)
σj,t−1(xt), where vjt

.
= minx∈X

yj∗−µj,t−1(x)
σj,t−1(x) and

yj∗ ≥ fj(x∗)∀t ∈ [1, T ].

Theorem 1. Let P be a distribution over vector [y1∗, · · · , yK∗] where each yj∗ is the maximum value
for function fj among the vectors in the Pareto front obtained by solving the cheap multi-objective op-
timization problem over sampled functions from the K Gaussian process models. Let the observation
noise for function evaluations is i.i.dN (0, σ) and w = Pr[

(
y1∗ > f1(x∗)

)
, · · · ,

(
yK∗ > fK(x∗)

)
].

If xt is the candidate input selected by MESMO at the tth iteration according to 4.12 and
[y1∗, · · · , yK∗] is drawn from P , then with probability atleast 1 − δ, in T ′ =

∑T
i=1 logw

δ
2πi

number of iterations

R(x∗) =

√√√√ K∑
j=1

((
vjt∗ + ζT

)2
(

2TγjT
log(1 + σ−2)

))
(A.1)

where ζT = (2 log(πT /δ))
1/2, πi > 0, and

∑T
i=1

1
πi
≤ 1, vjt∗ = maxt v

j
t with vjt =

minx∈X
yj∗−µj,t−1(x)
σj,t−1(x) , and γjT is the maximum information gain about function fj after T func-

tion evaluations.

Proof. The result for each Rj can be derived from the fact that the corresponding expression for a
single sample in Equation 4.12

(
γj
s(x)φ(γj

s(x))

2Φ(γj
s(x))

− ln Φ(γjs(x))
)

is equivalent to EST (optimization as
estimation strategy) [27]. This fact is proven as Lemma 3.1 in MES (Max-value entropy search) [26].
Therefore, theoretical results from MES can be leveraged for each Rj provided yj∗ > fj(x

∗) for all
j ∈ {1, · · · ,K}.
Since [y1∗, · · · , yK∗] is drawn from P , the probability that there exists atleast one vector
[y1∗, · · · , yK∗] in ki iterations that satisfies [

(
y1∗ > f1(x∗)

)
, · · · ,

(
yK∗ > fK(x∗)

)
] is given by:

⇒ w + (1− w)w + (1− w)2w · · ·+ (1− w)ki−1w (A.2)

= w ·
(

1− (1− w)ki

1− (1− w)

)
(A.3)

= 1− (1− w)ki (A.4)

≥ (1− (1− w))
ki since w ∈ (0, 1) (A.5)

≥ wki (A.6)

Suppose T ′ =
∑T
i=1 ki be the total number of iterations (function evaluations). Following Theorem

3.2 from MES [26], splitting the total number of iterations into T parts, where each part has ki
iterations, there exists at least one iteration ti in each of the T parts with probability 1−

∑T
i=1 w

ki

such that [
(
y1∗ > f1(x∗)

)
, · · · ,

(
yK∗ > fK(x∗)

)
].

Let
∑T
i=1 w

ki = δ
2 and setting ki = logw

δ
2πi

for any
∑T
i=1

1
πi

= 1. A standard choice for πi
is πi = π2i2/6. Using this transformation of variables, the probability that there exists sampled
functions such that [

(
y1∗ > f1(x∗)

)
, · · · ,

(
yK∗ > fK(x∗)

)
] is atleast 1− δ/2,∀i ∈ [1, T ].

By lemma 1 and 2,

rjti =
(
vjti + ζti

)
σj,ti−1(xti) (A.7)
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From Lemma C.3 in MES[26],
∑T
i=1 σ

2
j,ti−1(xti) ≤ 2

log(1+σ−2)γ
j
T , where γjT is the maximum infor-

mation gain about function fj and is an important theoretical quantity related to regret bounds
in bayesian optimization literature[25]. By Cauchy-Schwarz inequality,

∑T
i=1 σj,ti−1(xti) ≤√

T
∑T
i=1 σ

2
j,ti−1(xti) ≤

√
2TγjT / log(1 + σ−2). Therefore, with probability 1− δ,

Rj(x∗) =

T∑
i=1

rjti ≤
(
vjt∗ + ζT

)√ 2TγjT
log(1 + σ−2)

(A.8)

Consequently,

R(x∗) =

√√√√ K∑
j=1

((
vjt∗ + ζT

)2
(

2TγjT
log(1 + σ−2)

))
(A.9)

B Detailed derivation of acquisition function

The complete derivation of Equation 4.12 from Equation 4.10 is given below.

H(y | D,x,Y∗s ) '
K∑
j=1

H(yj |D,x,max{zj1, · · · zjm}) (B.1)

The r.h.s is a summation over entropies of K variables {y1, · · · , yK}. Let yj∗s = max{zj1, · · · zjm}
and γjs(x) =

yj∗s −µj(x)
σj(x) . The probability distribution of each variable yj is a truncated Gaussian with

upper bound yj∗s . The differential entropy for each yj is given as:

H(yj | D,x,Y∗s ) '

[
(1 + ln(2π))

2
+ ln(σj(x)) + ln Φ(γjs(x))− γjs(x)φ(γjs(x))

2Φ(γjs(x))

]
(B.2)

Summing over all K variables gives:

H(y | D,x,Y∗s ) '
K∑
j=1

[
(1 + ln(2π))

2
+ ln(σj(x)) + ln Φ(γjs(x))− γjs(x)φ(γjs(x))

2Φ(γjs(x))

]
(B.3)

Equation 4.8 is given below:

EY∗ [H(y | D,x,Y∗)] ' 1

S

S∑
s=1

[H(y | D,x,Y∗s )] (B.4)

Using B.3 in B.4:

EY∗ [H(y | D,x,Y∗)] ' 1

S

S∑
s=1

K∑
j=1

[
(1 + ln(2π))

2
+ ln(σj(x)) + ln Φ(γjs(x))− γjs(x)φ(γjs(x))

2Φ(γjs(x))

]
(B.5)

Equation 4.7 is given below:

H(y | D,x) =
K(1 + ln(2π))

2
+

K∑
i=1

ln(σi(x)) (B.6)
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Recall that MESMO acquisition function is given by Equation 4.6 which is composed of B.5 and B.6:

α(x) = H(y | D,x)− EY∗ [H(y | D,x,Y∗)]

α(x) '

[
K(1 + ln(2π))

2
+

K∑
i=1

ln(σi(x))

]
−[

1

S

S∑
s=1

K∑
i=1

[
(1 + ln(2π))

2
+ ln(σi(x)) + ln Φ(γis(x))− γis(x)φ(γis(x))

2Φ(γis(x))

]]

α(x) ' 1

S

S∑
s=1

[
K(1 + ln(2π))

2
+

K∑
i=1

ln(σi(x))

]
−[

1

S

S∑
s=1

K∑
i=1

[
(1 + ln(2π))

2
+ ln(σi(x)) + ln Φ(γis(x))− γis(x)φ(γis(x))

2Φ(γis(x))

]]

Re-arranging similar terms together:

α(x) ' 1

S

[
S∑
s=1

K(1 + ln(2π))

2
− K(1 + ln(2π))

2
+

K∑
i=1

ln(σi(x))−
K∑
i=1

ln(σi(x))

]
+[

S∑
s=1

K∑
i=1

[
γis(x)φ(γis(x))

2Φ(γis(x))
− ln Φ(γis(x))

]]

α(x) '

[
S∑
s=1

K∑
i=1

[
γis(x)φ(γis(x))

2Φ(γis(x))
− ln Φ(γis(x))

]]

C Additional Experimental Results

Figure 3 shows the results for MESMO and baseline algorithms on two benchmarks from the general
multi-objective optimization literature. Figure 4 shows the results comparing the acquisition function
optimization time of MESMO and baseline algorithms. We fix the input space dimensions to d = 5
and vary the number of objective functions to show how different algorithms scale with increasing
number of objectives.

Figure 3: Results of different multi-objective BO
algorithms including MESMO on synthetic bench-
marks from general MO literature. The log of the
hypervolume difference is shown with different
number of function evaluations. The mean and
variance of 10 different runs are plotted. The title
of each figure refers to the name of benchmark.
(Figures better seen in color.)

Figure 4: Results for acquisition function opti-
mization time of different multi-objective BO
algorithms including MESMO with increasing
number of objective functions for fixed input
space dimension d = 5.
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