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A Proof Of The Theorems

A.1 Proof of Theorem 1

In this section we give the full statement of the maximum principle for the adversarial training and
present a proof. Let’s start from the case of the natural training of neural networks.
Theorem. (PMP for adversarial training) Assume `i is twice continuous differentiable,
ft(·, θ), Rt(·, θ) are twice continuously differentiable with respect to x, and ft(·, θ), Rt(·, θ) to-
gether with their x partial derivatives are uniformly bounded in t and θ. The sets {ft(x, θ) : θ ∈ Θt}
and {Rt(x, θ) : θ ∈ Θt} are convex for every t and x ∈ Rdt . Let θ∗ to be the solution of

min
θ∈Θ

max
‖η‖∞≤ε

J(θ, η) :=
1

N

N∑
i=1

`i(xi,T ) +
1

N

N∑
i=1

T−1∑
t=0

Rt(xi,t, θt) (1)

subject to xi,1 = f0(xi,0 + ηi; θ0), i = 1, 2, · · · , N (2)
xi,t+1 = ft(xi,t, θt), t = 1, 2, · · · , T − 1. (3)

Then there exists co-state processes p∗i := p∗i,t : t = 0, · · · , T such that the following holds for all
t ∈ [T ] and i ∈ [N ]:

x∗i,t+1 = ∇pHt(x
∗
i,t, p

∗
i,t+1, θ

∗
t ), x∗i,0 = xi,0 + η∗i (4)

p∗i,t = ∇xHt(x
∗
i,t, p

∗
i,t+1, θ

∗
t ), p∗i,T = − 1

N
∇`i(x∗i,T ) (5)

Here H is the per-layer defined Hamiltonian function Ht : Rdt × Rdt+1 ×Θt → R as

Ht(x, p, θt) = p · ft(x, θt)−
1

N
Rt(x, θt)

At the same time, the parameter of the first layer θ∗0 ∈ Θ0 and the best perturbation η∗ satisfy
N∑
i=1

H0(x∗i,0 + ηi, p
∗
i,1, θ

∗
0) ≥

N∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ

∗
0) ≥

N∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ0),∀θ0 ∈ Θ0, ‖ηi‖∞ ≤ ε

(6)

while parameter of the other layers θ∗t ∈ Θt, t = 1, 2, · · · , T − 1 will maximize the Hamiltonian
functions

N∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θ

∗
t ) ≥

N∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θt),∀θt ∈ Θt (7)

Proof. We first propose PMP for discrete time dynamic system and utilize it directly gives out the
proof of PMP for adversarial training.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Lemma 1. (PMP for discrete time dynamic system) Assume ` is twice continuous differentiable,
ft(·, θ), Rt(·, θ) are twice continuously differentiable with respect to x, and ft(·, θ), Rt(·, θ) together
with their x partial derivatives are uniformly bounded in t and θ. The sets {ft(x, θ) : θ ∈ Θt} and
{Rt(x, θ) : θ ∈ Θt} are convex for every t and x ∈ Rdt . Let θ∗ to be the solution of

min
θ∈Θ

max
‖η‖∞≤ε

J(θ, η) :=
1

N

N∑
i=1

`i(xi,T ) +
1

N

N∑
i=1

T−1∑
t=0

Rt(xi,t, θt) (8)

subject to xi,t+1 = ft(xi,t, θt), i ∈ [N ], t = 0, 1, · · · , T − 1. (9)

There exists co-state processes p∗i := p∗i,t : t = 0, · · · , T such that the following holds for all t ∈ [T ]
and i ∈ [N ]:

x∗i,t+1 = ∇pHt(x
∗
i,t, p

∗
i,t+1, θ

∗
t ), x∗i,0 = xi,0 (10)

p∗i,t = ∇xHt(x
∗
i,t, p

∗
i,t+1, θ

∗
t ), p∗i,T = − 1

N
∇`i(x∗i,T ) (11)

Here H is the per-layer defined Hamiltonian function Ht : Rdt × Rdt+1 ×Θt → R as

Ht(x, p, θt) = p · ft(x, θt)−
1

N
Rt(x, θt)

The parameters of the layers θ∗t ∈ Θt, t = 0, 1, · · · , T − 1 will maximize the Hamiltonian functions
N∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θ

∗
t ) ≥

N∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θt),∀θt ∈ Θt (12)

Proof. Without loss of generality, we let L = 0. The reason is that we can simply add an extra
dynamic wt to calculate the regularization term R, i.e.

wt+1 = wt +Rt(xt, θt), w0 = 0.

We append w to x to study the dynamic of a new dt + 1 dimension vector and modify ft(x, θ) to
(ft(x, θ), w +Rt(x, θ)). Thus we only need to prove the case when L = 0.

For simplicity, we omit the subscript s in the following proof. (Concatenating all xs into x =
(x1, . . . , xN ) can justify this.)

Now we begin the proof. Following the linearization lemma in [? ] [19], consider the linearized
problem

φt+1 = ft(x
∗
t , θt) +∇xft(x∗t , θt)(φt − x∗t ), φ0 = x0 + η. (13)

The reachable states by the linearized dynamic system is denoted as

Wt := {x ∈ Rdt : ∃θ, η = η∗ s.t. φθt = x}
here xθt denotes the the evolution of the dynamical system for xt under θ. We also define

S := {x ∈ RdT : (x− x∗T )∇`(x∗T ) < 0}

The linearization lemma in [? 19] tells us that WT and S are separated by {x : p∗T · (x − x∗T ) =
0, p∗T = −∇`(x∗T )}, i.e.

p∗T · (x− x∗T ) ≤ 0,∀x ∈Wt. (14)

Thus setting
p∗t = ∇xHt(x

∗
t , p
∗
t+1, θ

∗
t ) = ∇xf(x∗t , θ

∗
t )T · p∗t+1,

we have
(φt+1 − x∗t+1) · p∗t = (φt − x∗t ) · p∗t . (15)

Thus from Eq.14 and Eq.15 we get

p∗t+1 · (φθt+1 − x∗t+1) ≤ 0, t = 0, · · · , T − 1,∀θ ∈ Θ := Θ0 ×Θ1 × · · ·
Setting θs = θ∗s for s < t we have φθt+1 = ft(x

∗
t , θt), which leads to p∗t+1 · (ft(x∗t , θt)− x∗t+1) ≤ 0.

This finishes the proof of the maximal principle on weight space Θ.
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We return to the proof of the theorem. The proof of the maximal principle on the weight space, i.e.
N∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θ

∗
t ) ≥

N∑
i=1

Ht(x
∗
i,t, p

∗
i,t+1, θ),∀θt ∈ Θt, t = 1, 2, · · · , T − 1

and
N∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ

∗
0) ≥

N∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ0),∀θ0 ∈ Θ0,

can be reached with the help of Lemma 1: replacing the dynamic start point xi,0 in Eq.10 with
xi,0 + η∗i makes this maximal principle a direct corollary of Lemma 1.

Next, we prove the Hamiltonian conidition for the adversary, i.e.
N∑
i=1

H0(x∗i,0 + η∗i , p
∗
i,1, θ

∗
0) ≤

N∑
i=1

H0(x∗i,0 + ηi, p
∗
i,1, θ

∗
0),∀‖ηi‖∞ ≤ ε (16)

Assuming Ri,t = 0 like above, we define a new optimal control problem with target function
˜̀
i() = −`i() and previous dynamics except xi,1 = f̃0(xi,0; θ0, ηi) = f0(xi,0 + ηi; θ0):

min
‖η‖∞≤ε

J̃(θ, η) :=
1

N

N∑
i=1

˜̀
i(xi,T ) (17)

subject to xi,1 = f̃0(xi,0; θ0, ηi), i = 1, 2, · · · , N (18)
xi,t+1 = ft(xi,t, θt), t = 1, 2, · · · , T − 1. (19)

However in this time, all the layer parameters θt are fixed and ηi is the control. From the above
Lemma 1 we get

x̃∗i,1 = ∇pH̃0(x̃∗i,0, p̃
∗
i,1, θ0, η

∗
i ), x̃∗i,t+1 = ∇pHt(x̃

∗
i,t, p̃

∗
i,t+1, θt), x̃∗i,0 = xi,0, (20)

p̃∗i,0 = ∇xH̃0(x̃∗i,0, p̃
∗
i,1, θ0, η

∗
i ), p̃∗i,t = ∇xHt(x̃

∗
i,t, p̃

∗
i,t+1, θt), p̃∗i,T =

1

N
∇`i(x̃∗i,T ), (21)

where H̃0(x, p, θ0, η) = p · f̃0(x; θ0, η) = p · f0(x + η; θ0) and t = 1, · · · , T − 1. This gives the
fact that x̃∗i,t = x∗i,t. Lemma 1 also tells us

N∑
i=1

H̃0(x̃∗i,0, p̃
∗
i,t+1, θ0, η

∗
i ) ≥

N∑
i=1

H̃0(x̃∗i,0, p̃
∗
i,1, θ0, ηi),∀‖ηi‖∞ ≤ ε (22)

which is
N∑
i=1

p̃∗i,1 · f0(x̃∗i,0 + η∗i ; θ0) ≥
N∑
i=1

p̃∗i,1 · f0(x̃∗i,0 + ηi; θ0),∀‖ηi‖∞ ≤ ε (23)

On the other hand, Lemma 1 gives

p̃∗t = −∇xt(˜̀(xT )) = ∇xt(`(xT )) = −p∗t .
Then we have

N∑
i=1

p∗i,1 · f0(x∗i,0 + η∗i ; θ0) ≤
N∑
i=1

p∗i,1 · f0(x∗i,0 + ηi; θ0),∀‖ηi‖∞ ≤ ε (24)

which is
N∑
i=1

H0(x∗i,0, p
∗
i,t+1, θ0, η

∗
i ) ≤

N∑
i=1

H0(x∗i,0, p
∗
i,1, θ0, ηi),∀‖ηi‖∞ ≤ ε (25)

This finishes the proof for the adversarial control.

Remark. The additional assumption that the sets {ft(x, θ) : θ ∈ Θt} and {Rt(x, θ) : θ ∈ Θt} are
convex for every t and x ∈ Rdt is extremely weak and is not unrealistic which is already explained in
[19].
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B Experiment Setup and Supplementary Experiments

B.1 MNIST

Training against PGD-40 is a common practice to get sota results on MNIST. We adopt network
architectures from [42] with four convolutional layers followed by three fully connected layers.
Following [42] and [23], we set the size of perturbation as ε = 0.3 in an infinite norm sense.
Experiments are taken on idle NVIDIA Tesla P100 GPUs. We train models for 55 epochs with a
batch size of 256, longer than what convergence needs for both training methods. The learning rate is
set to 0.1 initially, and is lowered by 10 times at epoch 45. We use a weight decay of 5e− 4 and a
momentum of 0.9. To measure the robustness of trained models, we performed a PGD-40 and CW[?
] attack with CW coefficient c = 5e2 and lr = 1e− 2.

Training Methods Clean Data PGD-40 Attack CW Attack
PGD-5 [23] 99.43% 42.39% 77.04%

PGD-10 [23] 99.53% 77.00% 82.00%
PGD-40 [23] 99.49% 96.56% 93.52%

YOPO-5-10 (Ours) 99.46% 96.27% 93.56%
Table 1: Results of MNIST robust training. YOPO-5-10 achieves state-of-the-art result as PGD-40.
Notice that for every epoch, PGD-5 and YOPO-5-3 have approximately the same computational cost.

B.2 CIFAR-10

Following [23], we take Preact-ResNet18 and Wide ResNet-34 as the models for testing. We set the
the size of perturbation as ε = 8/255 in an infinite norm sense. We perform a 20 steps of PGD with
step size 2/255 when testing. For PGD adversarial training, we train models for 105 epochs as a
common practice. The learning rate is set to 5e − 2 initially, and is lowered by 10 times at epoch
79, 90 and 100. For YOPO-m-n, we train models for 40 epochs which is much longer than what
convergence needs. The learning rate is set to 0.2/m initially, and is lowered by 10 times at epoch
30 and 36. We use a batch size of 256, a weight decay of 5e− 4 and a momentum of 0.9 for both
algorithm. We also test our model’s robustness under CW attack [? ] with c = 5e2 and lr = 1e− 2.
The experiments are taken on idle NVIDIA GeForce GTX 1080 Ti GPUs.

Training Methods Clean Data PGD-20 Attack CW Attack
PGD-3 [23] 88.19% 32.51% 54.65%
PGD-5 [23] 86.63% 37.78% 57.71%

PGD-10 [23] 84.82% 41.61% 58.88%
YOPO-3-5 (Ours) 82.14% 38.18% 55.73%
YOPO-5-3 (Ours) 83.99% 44.72% 59.77%

Table 2: Results of PreAct-Res18 for CIFAR10. Note that for every epoch, PGD-3 and YOPO-3-5
have the approximately same computational cost, and so do PGD-5 and YOPO-5-3.

B.3 TRADES

TRADES[42] achieves the state-of-the-art results in adversarial defensing. The methodology achieves
the 1st place out of the 1,995 submissions in the robust model track of NeurIPS 2018 Adversarial
Vision Challenge. TRADES proposed a surrogate loss which quantify the trade-off in terms of the
gap between the risk for adversarial examples and the risk for non-adversarial examples and the
objective function can be formulated as

min
θ

E(x,y)∼D max
‖η‖≤ε

(`(fθ(x), y) + L (fθ (x) , fθ (x+ η)) /λ) (26)

where fθ(x) is the neural network parameterized by θ, ` denotes the loss function, L(·, ·) denotes the
consistency loss and λ is a balancing hyper parameter which we set to be 1 as in [42]. To solve the
min-max problem, [42] also searched the ascent direction via the gradient of the "adversarial loss", i.e.
generating the adversarial example before performing gradient descent on the weight. Specifically,
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the PGD attack is performed to maximize a consistency loss instead of classification loss. For each
clean data x, a single iteration of the adversarial attach can be formulated as

x′ ← Π‖x′−x‖≤ε (α1 sign (∇x′L (fθ (x) , fθ (x′))) + x′) ,

where Π is projection operator. In the implementation of [42], after 10 such update iterations for each
input data xi, the update for weights is performed as

θ ← θ − α2

B∑
i=1

∇θ [` (fθ (xi) , yi) + L (fθ (xi) , fθ (x′i)) /λ] /B,

where B is the batch size. We name this algorithm as TRADES-10, for it uses 10 iterations to update
the adversary.

Following the notation used in previous section, we denote f0 as the first layer of the neural network
and gθ̃ denotes the network without the first layer. The whole network can be formulated as the
compostion of the two parts, i.e. fθ = gθ̃ ◦ f0. To apply our gradient based YOPO method to
TRADES, following Section 2, we decouple the adversarial calculation and network updating as
shown in Algorithm 1. Projection operation is omitted. Notice that in Section.2 we take advantage
every intermediate perturbation ηj , j = 1, · · · ,m− 1 to update network weights while here we only
use the final perturbation η = ηm to compute the final loss term. In practice, this accumulation of
gradient doesn’t helps. For TRADES-YOPO, acceleration of YOPO is brought by decoupling the
adversarial calculation with the gradient back propagation.

Algorithm 1 TRADES-YOPO-m-n

Randomly initialize the network parameters or using a pre-trained network.
repeat

Randomly select a mini-batch B = {(x1, y1), · · · , (xB , yB)} from training set.
Initialize η1,0

i , i = 1, 2, · · · , B by sampling from a uniform distribution between [-ε, ε]
for j = 1 to m do
pi = ∇gθ̃

(
L
(
gθ̃

(
f0

(
xi + ηj,0i , θ0

))
, gθ̃ (f0 (xi, θ0))

))
· ∇f0

(
gθ̃(f0(xi + ηj,0i , θ0))

)
,

i = 1, 2, · · · , B
for s = 0 to n− 1 do
ηj,s+1
i ← ηj,si + α1 · pi · ∇ηf0(xi + ηj,si , θ0), i = 1, 2, · · · , B

end for
ηj+1,0
i = ηj,ni , i = 1, 2, · · · , B

end for
θ ← θ − α2

∑B
i=1∇θ [` (fθ (xi) , yi) + L (fθ (xi) , fθ (xi + ηm,ni )) /λ] /B.

until Convergence

We name this algorithm as TRADES-YOPO-m-n. With less than half time of TRADES-10, TRADES-
YOPO-3-4 achieves even better result than its baseline. Quantitative results is demonstrated in Table
3. The mini-batch size is 256. All the experiments run for 105 epochs and the learning rate set to
2e− 1 initially, and is lowered by 10 times at epoch 70, 90 and 100. The weight decay coefficient is
5e− 4 and momentum coefficient is 0.9. We also test our model’s robustness under CW attack [? ]
with c = 5e2 and lr = 5e− 4. Experiments are taken on idle NVIDIA Tesla P100 GPUs.

Training Methods Clean Data PGD-20 Attack CW Attack Training Time (mins)
TRADES-10[42] 86.14% 44.50% 58.40% 633

TRADES-YOPO-3-4 (Ours) 87.82% 46.13% 59.48% 259
TRADES-YOPO-2-5 (Ours) 88.15% 42.48% 59.25% 218

Table 3: Results of "TRADES" training with PreAct-Res18 for CIFAR10
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