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Abstract

Archetypal analysis represents instances as linear mixtures of prototypes (the
archetypes) that lie on the boundary of the convex hull of the data. Archetypes are
thus often better interpretable than factors computed by other matrix factorization
techniques. However, the interpretability comes with high computational cost due
to additional convexity-preserving constraints. In this paper, we propose efficient
coresets for archetypal analysis. Theoretical guarantees are derived by showing that
quantization errors of k-means upper bound archetypal analysis; the computation
of a provable absolute-coreset can be performed in only two passes over the data.
Empirically, we show that the coresets lead to improved performance on several
data sets.

1 Introduction

Archetypal analysis (Cutler and Breiman, 1994) is an unsupervised learning method that represents
every data point as a convex combination of prototypes, the so-called archetypes. Every data point is
represented as a convex mixture of (a subset of) archetypes and, due to the convexity, these mixtures
are often interpreted probabilistically.

A key property of archetypal analysis is that the archetypes are themselves convex mixtures of data
points. Consequently, archetypes lie on the boundary of the convex hull of the data. Hence, archetypal
analysis approximates the convex hull with a given number of vertices. It follows that this approx-
imation is equivalent to a matrix factorization of the design matrix. Due to the convexity constraints,
archetypal-based factorizations are not only better interpretable but unfortunately also much more
expensive than regular matrix factorization techniques, which hinders usage at even moderate scales.

Several approaches have been proposed to remedy the edacious nature of archetypal analysis,
proposing, e.g., efficient active-set quadratic programming (Chen et al., 2014), projected gradients
(Mørup and Hansen, 2012), or Frank-Wolfe techniques (Bauckhage et al., 2015) for optimization. Ap-
proximate solutions compute archetypes on a precomputed subset of the data, e.g., (Mair et al., 2017).
Although these approaches are useful contributions, they do not mitigate the inherent complexity
of archetypal analysis nor provide theoretical guarantees on the quality of the approximation.

A theoretically sound alternative is offered by coresets. Coresets compactly represent large data sets
by weighted subsets on which models perform provably competitive compared to operations on all
data. Coresets have successfully been leveraged to very different methods, including k-means (Lucic
et al., 2016; Bachem et al., 2018), support vector machines (Tsang et al., 2005), logistic regression
(Munteanu et al., 2018), and Bayesian inference (Huggins et al., 2016; Campbell and Broderick,
2018). The idea is as follows: A small subset of the data is selected (in linear time) according to
a strategy such that the subset approximates the original data very well. A learning algorithm will
then perform similarly on the original data and the subset, but training on the subset is much more
efficient. In this paper, we present coresets for archetypal analysis.

The key contributions of this paper are as follows: (i) We show that the objective function of k-means
upper bounds the objective of archetypal analysis and show that every coreset for k-means is also a
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coreset for archetypal analysis, (ii) we propose a simple and efficient sampling strategy to compute a
coreset with only two passes over the data, so that (iii) a weak ε-absolute-coreset is guaranteed to be
obtained after sampling sufficiently many points where (iv) the error bound does not depend on the
query itself. Finally, (v) we provide empirical results on various data sets to support the theoretical
derivation.

2 Preliminaries

2.1 Archetypal Analysis

Figure 1: Archetypal analysis in two
dimensions with k = 3 archetypes.

Let X = {x1, . . . ,xn}ni=1 be a data set consisting of n ∈ N
d-dimensional data points, X ∈ Rn×d be the design matrix
and k ∈ N be the latent dimensionality. In archetypal analy-
sis (Cutler and Breiman, 1994), every data point xi is repre-
sented as a convex combination of k archetypes z1, . . . , zk,
i.e.,

xi = Z>ai,

d∑
j=1

(ai)j = 1, (ai)j ≥ 0,

where ai ∈ Rk is the weight vector of the ith data point
and Z ∈ Rk×d is the matrix of stacked archetypes. The
archetypes zj (j = 1, . . . , k) themselves are also repre-
sented as convex combinations of data points, i.e.,

zj = X>bj ,

n∑
i=1

(bj)i = 1, (bj)i ≥ 0,

where bj ∈ Rn is the weight vector of the jth archetype. Let A ∈ Rn×k and B ∈ Rk×n be the
matrices consisting of the weights ai (i = 1, . . . , n) and bj (j = 1, . . . , k). Then, archetypal analysis
yields a factorization of the design matrix as follows

X = ABX = AZ, (1)

where Z = BX ∈ Rk×d is the matrix of archetypes. Due to the convexity constraints, the weight
matrices A and B are row-stochastic. By minimizing the residual sum of squares (RSS), given by

RSS(k) = ‖X−ABX‖2F , (2)

the optimal weight matrices A and B can be found. The objective function can be rewritten as a sum
of projections of the data points to the archetype-induced convex hull as follows

‖X−AZ‖2F =
∑
x∈X

min
q∈conv({z1,...,zk})

‖x− q‖22,

where conv(S) refers to the convex hull of a set S. The minimization over points on the convex hull
of the data renders the optimization infeasible for real sized problems. Although feasible optimization
strategies (Chen et al., 2014; Bauckhage et al., 2015; Mørup and Hansen, 2012) and approximations
(Mair et al., 2017; Mei et al., 2018) have been proposed, they all suffer from large dimensionalities
and/or sample sizes.

2.2 Coresets

Let X be a data set of n points in d dimensions. Consider a learning problem with an objective
function of the form φX (Q) =

∑
x∈X d(x, Q)2. The goal is to learn the so-called query Q ⊂ Rd,

with |Q| = k, and d(x, Q)2 is the minimal squared distance from a data point x to the query
Q. For example, in k-means clustering, Q refers to the set of cluster centers and d(x, Q)2 =
minq∈Q ‖x− q‖22. The objective function is then given by

φX (Q) =
∑
x∈X

d(x, Q)2 =
∑
x∈X

min
q∈Q
‖x− q‖22.

2



Algorithm 1 Lightweight coreset construction for k-means (Bachem et al., 2018)
Input: Set of data points X , coreset size m
Output: Coreset C
µ← mean of X
for x ∈ X do
q(x) = 1

2
1
|X | + 1

2
d(x,µ)2∑
x′ d(x′,µ)2

end for
C ← sample m points from X where each point has weight 1

m·q(x) and is sampled with prob. q(x)

A coreset is a possibly weighted subset C of the full data set X with cardinality m � n, which
performs provably competitive with respect to the performance on X . Using non-negative weights
wi ≥ 0 on the data points, the objective becomes φX (Q) =

∑
x∈X wi · d(x, Q)2. The standard

definition of a coreset is as follows.
Definition 1. Let ε > 0 and k ∈ N. A (weighted) set C is a (ε, k)-coreset of the data X if for any
Q ⊂ Rd of cardinality at most k

|φX (Q)− φC(Q)| ≤ εφX (Q). (3)

The condition in the definition of a coreset is equivalent to (1− ε)φX (Q) ≤ φC(Q) ≤ (1 + ε)φX (Q).
Hence, the performance of the query learned on the coreset is bounded from below and above by
a (1± ε) multiplicative of the query evaluated on the full data set. Note that Definition 1 defines a
strong coreset since the bound holds uniformly for all queries Q. If the condition in Equation (3)
holds only for the optimal query, C is called a weak coreset.

Computing a coreset for k-means may require k sequential passes over the data (Lucic et al., 2016).
Bachem et al. (2018) introduce the notion of lightweight-coresets, which allow for an additional
additive term on the right hand side of the bound in Equation (3) and show that the solution can be
computed in only two passes over the data. The definition of lightweight-coresets is as follows.
Definition 2. (Bachem et al., 2018) Let ε > 0, k ∈ N and X ⊂ Rd be a set of points with mean
µ ∈ Rd. The weighted set C is a (ε, k)-lightweight-coreset of the data X if for any Q ⊂ Rd of
cardinality at most k

|φX (Q)− φC(Q)| ≤ ε

2
φX (Q) +

ε

2
φX ({µ})︸ ︷︷ ︸

additive term

. (4)

The lightweight-coreset for k-means is constructed via importance sampling, in order to guide the
sampling procedure towards more influential points. The sampling distribution q is a mixture of an
uniform distibution and the squared distances to the mean, i.e.,

q(x) =
1

2

1

n
+

1

2

d(x, µ)2∑n
i=1 d(xi, µ)2

. (5)

The underlying idea is that points that lie far away from the mean µ have a larger impact on the
objective function and should thus be sampled with higher probability. The procedure is shown in
Algorithm 1. After sampling m points, each point is weighted by (m · q(x))−1 such that the sampling
procedure yields an unbiased estimator of the quantization error:

EC [φC(Q)] = EC

[∑
x∈C

1

m · q(x)
d(x, Q)2

]
= E

[
1

q(x)
d(x, Q)2

]
=
∑
x∈X

q(x)
d(x, Q)2

q(x)
= φX (Q).

The following result ensures that after sampling sufficiently many points, a (ε, k)-lightweight-coreset
is obtained.
Theorem 1 (Bachem et al. (2018)). Let ε > 0, δ > 0 and k ∈ N. Let X be a set of points in Rd and
let C be the output of Algorithm 1 with a sample size m of at least

m ≥ c
dk log k + log 1

δ

ε2
,

where c is an absolute constant. Then, with probability of at least 1− δ, C is a (ε, k)-lightweight-
coreset of X .
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Bachem et al. (2018) argue that dropping ε
2φX (Q) from Equation (4) is not possible for the problem

of k-means. Assume, for example, that the cluster centers (query Q) are placed arbitrarily far away
from other data. Equation (4) would show an arbitrary large difference on the left hand side but
the error on the right hand side would be bounded by ε

2φX ({µ(X )}). Hence, C cannot be a coreset
because it does not hold uniformly for all queries.

While this observation applies to k-means, the situation is very different for archetypal analysis. We
assume that the mean µ of X is actually contained in the convex hull of the query, i.e., µ ∈ conv(Q).
Hence, placing some points of the query far away from the data induces a larger convex hull and thus
a lower projection error. In the remainder, we also argue that queries of practical interest always lie
on the border of the convex hulls of either X or C, and that the mean µ is always included.

3 Coreset Construction

In the case of archetypal analysis, the query Q consists of the archetypes z1, . . . , zk. The squared
distance of a point x to the query Q is given by the length of the projection of the point to the convex
set conv(Q), i.e., d(x, Q)2 = minq∈conv(Q) ‖x−q‖22. Hence, the objective function can be rewritten
in the following way:

φX (Q) =
∑
x∈X

d(x, Q)2 =
∑
x∈X

min
q∈conv(Q)

‖x− q‖22.

In the remainder, φX (Q) refers to the above objective of archetypal analysis.

Before introducing and analyzing the coreset construction for archetypal analysis, we show that for
a point x the quantization error of k-means upper bounds the projection of x to the query (i.e., the
archetypes z1, . . . , zk) in archetypal analysis. As a consequence, every coreset that bounds the error
of k-means must also bound the error of archetypal analysis and is thus also a coreset for archetypal
analysis.

Figure 2: Illustration of Lemma 1. The projection of a point x to conv(Q) (left side) is smaller than
or equal to the distance of x to the closest center q ∈ Q (right side).

Lemma 1. Let x ∈ Rd be a data point, d(·, ·) be a distance metric and Q ⊂ Rd be any set of k ∈ N
points, then it holds that

min
q∈conv(Q)

d(x,q) ≤ min
q∈Q

d(x,q).

Proof. First, note that Q ⊂ conv(Q). Assume that q′ ∈ conv(Q) minimizes d(x,q), then q′ is
either in conv(Q) \Q, resulting in a smaller distance than any other q′′ ∈ Q, or q′ is in Q, yielding
the same distance as minq∈Q d(x,q). Hence, the distance of x to the convex set conv(Q) is smaller
or equal to the distance to any q ∈ Q.

A direct consequence of Lemma 1, which is depicted in Figure 2, is that for any choice of Q, the
objective function of archetypal analysis is upper bounded by the objective of k-means, i.e.,∑

x∈X
min

q∈conv(Q)
‖x− q‖22 ≤

∑
x∈X

min
q∈Q
‖x− q‖22.

Here, Q in archetypal analysis refers to the archetypes z1, . . . , zk and in k-means, Q refers to the set
of centroids. Since a coreset bounds the error of a method on the entire set, and due to Lemma 1, any
coreset for k-means is also a coreset for archetypal analysis.
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Algorithm 2 Coreset construction for Archetypal Analysis
Input: Set of data points X , coreset size m
Output: Coreset C
µ← mean of X
for x ∈ X do
q(x) = d(x,µ)2∑

x′ d(x′,µ)2

end for
C ← sample m points from X where each point has weight 1

m·q(x) and is sampled with prob. q(x)

Proposition 1. Every coreset for k-means is also a coreset for archetypal analysis.

The proposition implies that the sampling strategy outlined in Algorithm 1 already yields a lightweight-
coreset for our problem. However, we show in Section 3.1 that the term ε

2φX (Q) can be dropped to ob-
tain a weak ε-absolute-coreset for archetypal analysis, whose bound does not depend on the query Q.

Definition 3. Let ε > 0 and k ∈ N. A (weighted) set C is an ε-absolute-coreset of the data X if for
any Q ⊂ Rd of cardinality at most k

|φX (Q)− φC(Q)| ≤ ε. (6)

The set C is called a weak ε-absolute-coreset if the bound holds only for specific queries Q.

Archetypes are guaranteed to lie on the boundary of the convex hull of the data (Cutler and Breiman,
1994).1 Thus, we are interested in points lying far from the mean µ of X . Such points increase the
convex hull of the archetypes and result in a smaller projections and hence in a lower value of the
objective function. Following the idea of Bachem et al. (2018), we thus discard the uniform term
in Equation (5) and propose the following sampling distribution

q(x) =
d(x, µ)2∑n
i=1 d(xi, µ)2

.

3.1 Analysis

We now provide a bound on the sample size m to show that Algorithm 2 computes a provably
competitive coreset.

Theorem 2. Let ε > 0, δ > 0 and k ∈ N. Let X be a set of points in Rd with mean µ ∈ Rd and let
C be the output of Algorithm 2 with a sample size m of at least

m ≥ c
dk log k + log 1

δ

ε2
,

where c is an absolute constant. Then, with probability of at least 1− δ, the set C fulfills

|φX (Q)− φC(Q)| ≤ εφX ({µ}) (7)

for any query Q ⊂ Rd of cardinality at most k satisfying µ ∈ conv(Q).

A proof of Theorem 2 can be found in the supplementary material. Note that the bound on the right
hand side of Equation (7) is independent of the query Q and corresponds to the scaled variance of the
data. For a normalized data set, Algorithm 2 yields an ε-absolute-coreset as the following corollary
shows.

Corollary 1. Let ε > 0, δ > 0, k ∈ N, and X be a set of points in Rd with mean µ ∈ Rd. Denote by
X̄ the standardized set of points with x̄i = (xi − µ)/φX ({µ}). Let C be the output of Algorithm 2
on X̄ with a sample size m of at least

m ≥ c
dk log k + log 1

δ

ε2
,

1Given that there is more than only a single archetype.
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Figure 3: Relative error η on the full data set as well as computation time in seconds (averages and
standard errors of 50 independent runs).

where c is an absolute constant. Then, with probability of at least 1− δ, C is an ε-absolute-coreset of
X̄ , i.e., it holds that

|φX (Q)− φC(Q)| ≤ ε

for any query Q ⊂ Rd of cardinality at most k satisfying µ ∈ conv(Q).

Corollary 1 can be interpreted in the following way: As we decrease ε, the performance gap of
archetypal analysis on the full (standardized) data set and archetypal analysis on the coreset closes
for a query Q satisfying µ ∈ conv(Q). One might ask whether this restriction on the choice of Q
is a drawback. The assumption within the various definitions of coresets that the bound has to hold
for any choice of Q is very strong. For the problem of k-means this makes sense as the centers could
be anywhere in the space. However, for archetypal analysis, Cutler and Breiman (1994) show that
the archetypes z1, . . . , zk lie on the boundary of the data, i.e., {z1, . . . , zk} ⊂ ∂C for k > 1. Hence,
any meaningful query Q will be on the boundary of the coreset ∂C as well. Such a query will likely
contain the mean µ of X , because C ⊂ X is sampled around µ.

As the following theorem shows, the optimal solution Q?C computed on the coreset C is indeed
provably competitive to the solution Q?X obtained on the full data set.

Theorem 3. Let ε > 0 and X be a set of points in Rd with mean µ ∈ Rd. Denote by Q?X the optimal
solution on X and by Q?C the optimal solution on C. Then it holds that

φX (Q?C) ≤ φX (Q?X ) + 2εφX ({µ}).

A proof of Theorem 3 is provided in the supplementary material.

3.2 Complexity Analysis

Algorithm 2 needs one full pass over the data set X of size n in order to determine the mean µ. Then,
another pass is needed to compute the distance of each point xi to the mean µ which is needed for the
sampling distribution q(·). Hence, the complexity of Algorithm 2 scales in O(nd). In addition, since
q(·) is a discrete distribution on n objects, the space complexity is also inO(nd). The same arguments
apply to the lightweight-coreset construction of (Bachem et al., 2018) as outlined in Algorithm1.
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Figure 4: Relative error η on the full data set as well as computation time in seconds (averages and
standard errors of 50 independent runs).

4 Experiments

We now evaluate the coreset construction for archetypal analysis (abs-cs) and compare it to the
performance of archetypal analysis on the full data set, an uniform sample (uniform), the lightweight-
coresets for k-means (lw-cs, Bachem et al. (2018)), a state-of-the-art coreset construction for k-
means (lucic-cs, Lucic et al. (2016)) as well as an approximate solution that learns archetypes on a
precomputed subset (frame, Mair et al. (2017)).

We initialize the archetypes z1, . . . , zk using the furthest sum procedure (Mørup and Hansen, 2012).
The termination criterion is reached when the relative error between iterations is less than 10−3. We
measure the error in terms of the residual sum of squares (RSS) in Equation (2) and compute the rela-
tive error η = (RSSfull−RSScoreset)/RSSfull with respect to the performance on the full data set. We
report on averages over 50 independent repetitions, error bars show standard error. The code is written
in Python and all experiments run on an Intel Xeon machine with 28×2.60GHz and 256GB memory.2

We evaluate the algorithms on several data sets: Ijcnn1 refers to data from the IJCNN 2001 neural
network competition and has n = 49, 990 instances in d = 22 dimensions.3 We adopt the preprocess-
ing from Chang and Lin (2001). Pose is a subset of the Human3.6M data set (Catalin Ionescu, 2011;
Ionescu et al., 2014) and deals with 3D human pose estimation and is part of the ECCV 2018 Pose-
Track Challenge.4 It consists of n = 35, 832 poses each of which is represented as 3D coordinates of
16 joints resulting in a 48-dimensional problem. Song is a subset of the Million Song Dataset (Bertin-
Mahieux et al., 2011) which has n = 515, 345 data points in d = 90 dimensions where the task is to
predict the year of a song. Covertype (Blackard and Dean, 1999) contains n = 581, 012 examples
in d = 54 dimensions. The task is to predict the forest cover type from cartographic variables.

Figure 3 shows the results for k = 100 archetypes. In the top row, the relative error η of each
approach is evaluated on the full data set and illustrated for subsample sizes ranging from m = 1, 000
to m = 8, 000, depicted on the x-axis. Unsurprisingly, the relative error decreases with an increasing
subsample size for all approaches. The uniform sampling strategy performs almost always worse than
its peers. The coreset construction of Lucic et al. (2016) (lucic-cs) performs in some few cases on par

2https://github.com/smair/archetypalanalysis-coreset
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4http://vision.imar.ro/human3.6m/challenge_open.php
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Table 1: Relative error in percent and speed up compared to the full data set for k = 25 archetypes
(averages and standard errors of 50 independent runs).

m = 1000 m = 5000

Data Method Relative Error Speedup Relative Error Speedup

Covertype uniform 181.7%± 5.2% 468× 94.6%± 2.9% 126×
lw-cs 150.8%± 4.1% 553× 80.6%± 2.5% 119×
lucic-cs 162.7%± 4.8% 10× 85.4%± 2.6% 9×
abs-cs 148.9%± 4.8% 601× 79.1%± 2.9% 111×

Song uniform 54.4%± 0.6% 430× 31.7%± 0.4% 78×
lw-cs 35.8%± 0.7% 480× 17.7%± 0.4% 68×
lucic-cs 35.6%± 0.6% 2× 17.5%± 0.5% 2×
abs-cs 32.1%± 0.6% 486× 12.4%± 0.3% 39×

Pose uniform 20.9%± 0.8% 9× 5.6%± 0.4% 3×
lw-cs 14.2%± 0.5% 10× 5.6%± 0.5% 3×
lucic-cs 14.4%± 0.5% 5× 6.0%± 0.6% 3×
abs-cs 15.7%± 0.6% 14× 5.5%± 0.5% 4×

Ijccn1 uniform 7.9%± 0.5% 17× 4.5%± 0.5% 5×
lw-cs 8.9%± 0.7% 21× 3.9%± 0.5% 5×
lucic-cs 9.4%± 0.8% 5× 5.1%± 0.6% 3×
abs-cs 8.5%± 0.6% 21× 4.0%± 0.6% 6×

with our proposed approach (abs-cs), see for example Ijcnn1. In most other cases, the proposed coreset
construction yields the best results and outperforms its competitors, especially on the Song data.

The bottom row in Figure 3 also depicts the relative error η, however, with respect to the average
runtime of a single run. Theoretically, the lightweight-coreset (lw-cs) as well as the proposed coreset
construction realize complexities in O(nd). In practice, however, the proposed approach yields
consistently lower relative errors in shorter time. We credit this finding to a better selection of coreset
points resulting in a faster convergence of archetypal analysis. The method of Lucic et al. (2016)
(lucic-cs) is consistently the slowest as it requires k passes over the data for constructing the coreset.

Figure 4 shows the same as evaluation scenario as Figure 3 but for only k = 25 archetypes. Once
again, our proposed coreset construction either outperforms its peers or performs on par with
the lightweight-coreset construction of Bachem et al. (2018) while being more efficient. Table 1
summarizes the achieved speed-ups. On Covertype, for example, the computation of 25 archetypes
with abs-cs and m = 1, 000 is 601 times faster than computing the archetypes on the full data set.
Although, the error is 148.9% higher than the error using archetypes learned on the full data set, all
other competitors are consistently outperformed. Increasing the size of the coreset to m = 5, 000
yields a much lower relative error of 79.1% while still being 111 times faster to compute. Similar
results with less speed-up but also much less relative errors are obtained for the other data sets.

The remaining competitor frame (Mair et al., 2017) precomputes all data points lying on the boundary
of the convex hull of the data set (the frame). We were not able to compute the frame within a
reasonable amount of time for Covertype and Song.5 On Pose, every data point lies on the boundary,
hence the performance is identical to the performance on all data. For Ijcnn1, the number of points
on the frame is about 0.57n and the relative error η is about 0.03 for k = 100 archetypes. While this
error is much lower, the subset size is also much larger. In addition, m is not chosen but implicitly
given by the data set.

5 Conclusion

We introduced coresets for archetypal analysis. The derivation was grounded on the observation that
the quantization error of k-means serves as an upper bound on the projection error of archetypal
analysis; hence, every coreset for k-means is also a coreset for archetypal analysis. We devised an
algorithm based on importance sampling that computes a coreset in linear time with only two passes

5Computations take about 2,000 and 4,000 hours for Covertype and Song, respectively.
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over the data. A theoretical analysis showed that the proposed coreset performed competitive for a
sufficiently large sample size. The theoretical results are supported by empiricism. The proposed
algorithm outperformed its competitors on various data sets in terms of relative error and computation
time. For some setups, we observed improved run-times. In sum, our contribution rendered archetypal
analysis feasible for state-of-the-art-sized data sets.
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