
We thank all reviewers for their comments, and will incorporate suggestions in the final version. Although the goal of1

this paper is theoretical, we perform experiments to resolve reviewers’ concern about practicality of our methods.2

Experiment Setup. We compare the proposed algorithms with baseline algorithms on the U.S. 2000 Census Data3

containing n = 5× 106 rows and d = 11 columns and UCI YearPredictionMSD dataset which has n = 515, 345 rows4

and d = 90 columns. All algorithms are implemented in Python 3.7. To solve the optimization problems induced by5

the regression problems and their sketched versions, we invoke the minimize function in scipy.optimize. Each6

experiment is repeated for 25 times, and the mean of the loss function value is reported. In all experiments, we vary the7

sampling size or embedding dimension from 5d to 20d, and observe their effects on the quality of approximation.8

Experiments on Orlicz norm. We compare our algorithm in Section 2 with uniform sampling and the embedding9

in [2]. We also calculate the optimal solution to verify the approximation ratio. We try Orlicz norms induced by10

two different G functions: Huber with c = 0.1 and “`1 − `2”. See Table 1 in our submission for definitions. Our11

experimental results given below clearly demonstrate the practicality of our algorithm. In both datasets, our algorithm12

outperforms both baseline algorithms by a significant margin, and achieves the best accuracy in almost all settings.
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Experiments on symmetric norm. We compare our algorithm in Section 3 (SymSketch) with the optimal solution to14

verify the approximation ratio. We try two different symmetric norms: top-k norm with k = n/5 and sum-mix of `1 and15

`2 norm (‖x‖1+ ‖x‖2). See Line 58-60 in our submission for definitions of these norms. As shown below, SymSketch16

achieves reasonable approximation ratios with moderate embedding dimension. In particular, the algorithm achieves an17

approximation ratio of 1.25 when the embedding dimension is only 5d.
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(Reviewer #1) Assumption 1. Our sampling algorithm in fact works for `p norms when p > 2. In general, suppose19

the function G : R → R satisfies that for all 0 < x < y, G(y)/G(x) ≤ CG(y/x)
p, for the Orlicz norm induced by20

G, given a well-conditioned basis with condition number κG, our sampling algorithm returns a matrix with roughly21

O((
√
dκG)

p · d/ε2) rows such that Theorem 1 holds. However it is not clear how to calculate well-conditioned bases22

in input-sparsity time when p > 2. Our current method fails since it requires an oblivious subspace with poly(d)23

distortion, and it is known that such embedding does not exist when p > 2 [9]. Since we focus on input-sparsity time24

algorithms in this paper, we did not include the p > 2 case. We will add more discussion on this in the final version.25

(Reviewer #2) Results on symmetric norm. We disagree that this is an incremental improvement. First, the previous26

embedding with d log n distortion only works for Orlicz norms, and in this paper we give the first subspace embedding27

for general symmetric norms. Second, the construction in [7] is only for streaming algorithms. To construct a subspace28

embedding, we need to show that (i) norms of all vectors in a subspace are preserved and (ii) there is a simple estimator29

in the sketch space. Neither of them can be satisfied by the construction in [7].30

Comparison with [11]. First, our definitions for Orlicz norm leverage score and well-conditioned basis, as given in31

Definition 2 and 3, are different from all previous works and are closely related to the Orlicz norm under consideration.32

The algorithm in [11], on the other hand, simply uses `p leverage scores. Under our definition, we can prove that the33

sum of leverage scores is bounded by O(CGdκ
2
G) (Lemma 4), whose proof requires a novel probabilistic argument. In34

contrast, the upper bound on sum of leverage scores in [11] is O(
√
nd) (Lemma 38 in [11]). Thus, the algorithm in35

[11] runs in an iterative manner since in each round the algorithm can merely reduce the dimension from n to O(
√
nd),36

while our algorithm is one-shot. We will of course add a more detailed comparison with [11] in the final version.37

(Reviewer #3) The uniqueness of α follows from the assumption that G is strictly increasing, in which case the two38

definitions are equivalent. The assumption that G is strictly increasing was also implicitly made in Andoni et al. [2].39

It is indeed an interesting problem to generalize our techniques to other problems, e.g., classification problems and40

non-linear regression problems. We leave this as a future work.41


