
Appendix
A Examples of decomposable target losses

For more generality, following [38], we consider losses L : O × Y → R+, where O is the output
space and Y is the ground-truth space. Typically, O = Y but we give examples below where O 6= Y .
Our affine decomposition (9) now becomes

L(ŷ, y) = 〈ψ(ŷ), V ϕ(y) + b〉+ c(y), (12)

where ψ : O → Rp. We give examples below of possibly non-convex losses L satisfiying decomposi-
tion (12). When not mentioned explicitly, we set V = I , b = 0 and c(y) = 0. For more examples of
decomposable losses, see also [15, 39, 38].

General loss. As noted in [15], any loss L : O × Y → R+ can always be written as (12) if O and
Y are finite sets. Indeed, it suffices to set ψ(y) = ϕ(y) = ey and to define V as the |O| × |Y| loss
matrix, i.e., Vŷ,y = L(ŷ, y) for all ŷ ∈ O and y ∈ Y . This, however, ignores structural information,
essential for large output spaces encountered in structured prediction.

Zero-one loss for multiclass classification. Let O = Y = [k]. The 0-1 loss L(ŷ, y) = 1[ŷ 6= y]
can be written as (12) if we set ψ(y) = ϕ(y) = ey and V = 1− Ik×k, i.e., V is the 0-1 cost matrix.

Hamming loss for multilabel classification. Let O = Y = 2[k] and ϕ(y) =
∑|y|
i=1 eyi . Then,

L(ŷ, y) =

k∑

i=1

1[ŷi 6= yi] = 〈ϕ(ŷ),1〉+ 〈ϕ(y),1〉 − 2〈ϕ(ŷ), ϕ(y)〉.

This can be written as (12) with V = −2I , b = 1 and c(y) = 〈ϕ(y),1〉.

Hamming loss for ranking. Let O = Y be the set of permutations of [k]. If ψ(y) = ϕ(y) is the
permutation matrix associated with permutation y, the Hamming loss is L(ŷ, y) =

∑k
i=1 1[ŷi 6=

yi] = k − 〈ϕ(ŷ), ϕ(y)〉. It can thus be written as (12) with V = −Ik×k and c(y) = k.

Normalized discounted cumulative gain (NDCG). Let O be the permutations of [m] and Y =
[k]m be the relevance scores of m documents. The NDCG loss is L(π, y) = 1− 1

N(y)

∑m
i=1 yiwπi

,
where N(y) = maxπ∈O

∑m
i=1 yiwπi

is a normalization constant. Inspired by [38], we can thus write
L as (12) by defining ψ(π) as the permutation of w according to π, ϕ(y) = y/N(y), V = −I and
c(y) = 1. This shows the importance of learning to predict normalized relevance scores, as also
noted in [45]. For this reason, we suggest using C = Rm+ . Decoding reduces to linear maximization
over the permutahedron.

Precision at k for ranking. LetO be the permutations of [m] and Y = {0, 1}m be binary relevance
scores. Precision at k corresponds to the number of relevant results (e.g., labels or documents) in
the top k results. The corresponding loss can be defined by L(π, y) = 1 − 1

k

∑m
i=1 yiwπi

, where
w1 = · · · = wk = 1 and wk+1 = · · · = wn = 0. If the number of positive labels |y| = ∑m

i=1 yi is
less than k, we replace k with |y|. Similarly as for NDCG, we can therefore write L as (12). Again,
decoding reduces to linear maximization over the permutahedron.

Absolute loss for ordinal regression. Let O = Y = [k] and ψ(y) = ϕ(y) =
∑
i<y ei. Then,

L(ŷ, y) = |ŷ − y| = 〈ϕ(ŷ),1〉+ 〈ϕ(y),1〉 − 2〈ϕ(ŷ), ϕ(y)〉.
This can be written as (12) with V = −2I , b = 1 and c(y) = 〈ϕ(y),1〉. A similar loss decomposition
is derived in [38] in the case of a signed encoding, instead of the zero-one encoding we use. However,
the signed encoding is problematic when using KL projections and does not lead to sparse projections
when using Euclidean projections.

13

B Experiment details and additional empirical results

We discuss in this section our experimental setup and additional empirical results.

For all datasets, we normalized samples to have zero mean unit variance. We use the train-test split
from the dataset when provided. When not, we use 80% for training data and 20% for test data. We
hold out 25% of the training data for hyperparameter validation purposes. For the regularization
hyper-parameter λ, we used ten log-spaced values between 10−4 and 104. Once we select the best
hyperparameter, we refit the model on the entire training set. We ran all experiments on a machine
with Intel(R) Xeon(R) CPU with 2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking
• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip
• http://mulan.sourceforge.net/datasets-mlc.html
• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Label ranking

In this section, we compare the Birkhoff and permutahedron polytopes for the same label ranking task
as described in the main manuscript. With the Birkhoff polytope, θ = g(x) ∈ Rk×k can be interpreted
as an affinity matrix between classes for the input x. With the permutahedron, θ = g(x) ∈ Rk can
be intepreted as vector, containing the score of each class for input x. Therefore, the two polytopes
have different expressive power. For the model g(x), we compare g(x) = Wx, where W is a matrix
or linear map of proper shape, and a polynomial model g(x) =

∑n
i=1 wiκ(x, xi), where w ∈ Rn,

κ(x, x′) := (〈x, x′〉+ 1)D and D is the polynomial degree. For the Euclidean projection onto the
permutahedron, we use the isotonic regression solver from scikit-learn [43].

Our results, shown in Table 3, indicate that in the case of a linear model, the Birkhoff polytope
outperforms the permutahedron by a large margin. Using a polynomial model closes the gap between
the two, but the model based on the Birkhoff polytope is still slightly better.

Table 3: Test Hamming loss comparison when using the Birkhoff and permutahedron polytopes.

Projection B P P P
Decoding B P P P

Model Linear Linear Poly (D = 2) Poly (D = 3)

Authorship 5.10 10.06 10.50 8.59
Glass 4.65 7.49 7.10 8.14
Iris 2.96 27.41 20.00 5.93

Vehicle 5.88 11.62 8.30 9.26
Vowel 8.76 14.35 11.74 10.21
Wine 1.85 8.02 3.08 6.79

B: Birkhoff polytope, P : permutahedron

14

https://github.com/akorba/Structured_Approach_Label_Ranking
http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip
http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.2 Ordinal regression

In this section, we present our detailed results on ordinal regression. Table 4 below shows the
results for each dataset. For context, the first column indicates a simple baseline in which we always
predict the median label calculated on the train set. The second column indicates classical ridge
regression where we used rounding to the closest integer as decoding. Using the order simplex for
both projections and decoding achieves the best MAE on average.

Table 4: Mean absolute error (MAE) of our losses with Euclidean projections.

Projection Baseline R Rk−1 [0, 1]k−1 M
Decoding Round M M M

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
M: order simplex

15

B.3 Multilabel classification

In this section, we show full empirical results for our multilabel experiment. Dataset statistics are
summarized in Table 5. Empirical results are shown in Tables 6 and 7.

Table 5: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

Table 6: Accuracy comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k M
Decoding [0, 1]k M M M

Birds 90.21 90.61 90.61 90.70
Cal500 85.78 85.76 85.78 85.80

Emotions 77.64 76.32 75.99 75.83
Mediamill 96.90 96.85 96.90 96.82

Scene 90.05 88.34 89.62 90.79
TMC 94.67 94.48 94.65 94.67
Yeast 79.75 79.70 79.75 79.71

M: knapsack polytope

Table 7: F1-score comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k M
Decoding [0, 1]k M M M

Birds 38.87 37.75 39.21 39.43
Cal500 34.62 35.86 34.63 34.61

Emotions 56.60 51.73 53.98 62.57
Mediamill 56.22 55.35 56.22 54.53

Scene 61.06 50.33 58.95 69.01
TMC 60.45 58.61 60.37 60.25
Yeast 60.24 60.20 60.23 60.06

M: knapsack polytope

16

C Proofs

C.1 Proof of strong convexity of Shannon negentropy (Proposition 2)

Let C ⊆ Rd+ and Ψ(u) = 〈u, log u〉. For all u, v ∈ C we have [14, §9.1.2]

Ψ(u) = Ψ(v) +∇Ψ(v)>(u− v) +
1

2
(u− v)>∇2Ψ(w)(u− v),

for some w ∈ C in the line segment [u, v], and where ∇Ψ(u) = log u + 1, ∇2Ψ(u) = diag(u−1).
Recall that Ψ is 1

β -strongly convex over C w.r.t. ‖ · ‖ if for all u, v ∈ C

Ψ(u) ≥ Ψ(v) +∇Ψ(v)>(u− v) +
1

2β
‖u− v‖2. (13)

Therefore, letting z = u− v, it suffices to show that for all u, v, w ∈ C
βz>∇2Ψ(w)z ≥ ‖z‖21. (14)

Note that if there exists wi = 0, then (14) clearly holds. Therefore we can focus on showing (14) for
w > 0. This is indeed verified since by the Cauchy–Schwarz inequality

‖z||21 =

(
d∑

i=1

|zi|√
wi

√
wi

)2

≤
d∑

i=1

z2
i

wi

d∑

i=1

wi = z>∇2Ψ(w)z ||w||1.

Therefore Ψ is 1
β -strongly convex over C w.r.t. ‖ · ‖1, with β = supw′∈C ||w′||1.

C.2 Projection onto the knapsack polytope (Proposition 3)

Euclidean case. The Euclidean projection onto the knapsack polytope is

argmin
µ∈Rk

1

2
‖µ− θ‖2 s.t. l ≤ 〈µ,1〉 ≤ u, 0 ≤ µ ≤ 1.

The corresponding Lagrangian is

L =
1

2
‖µ− θ‖2 + τ(〈µ,1〉 − u) + η(l − 〈µ,1〉)− 〈ξ, µ〉+ 〈ζ, µ− 1〉,

where the dual feasibility conditions are τ ≥ 0, η ≥ 0, ξ ∈ Rk+ and ζ ∈ Rk+. From the stationary
conditions, the optimal µ should satisfy

µ = θ + (η − τ)1 + ξ − ζ.
From the complementary slackness conditions,

τ(〈µ,1〉 − u) = 0

η(l − 〈µ,1〉) = 0

ζi(µi − 1) = 0 ∀i ∈ [k]

ξiµi = 0 ∀i ∈ [k].

If 0 < µi < 1, then ξi = ζi = 0 and µi = θi − τ + η. If ξi > 0 then µi = 0. If ζi > 0 then µi = 1.
Altogether, we thus have for all i ∈ [k]

µi = clip[0,1](θi − τ + η) := min{1,max{0, θi − τ + η}}.
Three cases can happen:

• If τ = η = 0, the inequality l ≤ 〈µ,1〉 ≤ u is inactive. Therefore the projection clip[0,1](θ)
onto the unit cube is optimal.
• If τ > 0, then η = 0 and 〈µ,1〉 = u is active. This case happens when 〈clip[0,1](θ),1〉 > u.

• If η > 0, then τ = 0 and l = 〈µ,1〉 is active. This case happens when 〈clip[0,1](θ),1〉 < l.

The second and third cases correspond to a projection onto {µ ∈ Rk : 〈µ,1〉 = m, 0 ≤ µ ≤ 1},
with m = u or m = l. This projection can be computed in O(k) time using Pardalos and Kovoor’s
algorithm [41]. See also [2, Appendix A] for pseudo code. Since that set is a special case of
permutahedron with w ∈ Rk defined by w1 = · · · = wm = 1 and wm+1 = · · · = wk = 0, we can
also use the projection onto the permutahedron. The cost is O(k log k) for sorting θ and O(k) for
isotonic regression via the pool adjacent violators algorithm [30]. Yet another alternative is to search
for τ solving

∑k
i=1 clip[0,1](θi − τ) = m by bisection.

17

KL case. We want to solve (note that the non-negativity constraint on µ is vacuous)

argmin
µ∈Rk

〈µ, logµ〉 − 〈µ, θ〉 s.t. l ≤ 〈µ,1〉 ≤ u, 0 ≤ µ ≤ 1.

As for the Euclidean projection, we consider three cases.

• If the projection ν = min(1, eθ−1) on the unit cube satisfies the constraints, ν is the optimal
solution.

• If 〈ν,1〉 > u, we need to satisfy the constraint 〈µ,1〉 = u.
• If 〈ν,1〉 < l, we need to satisfy the constraint 〈µ,1〉 = l.

The last two cases correspond to solving the problem

argmin
µ∈Rk

〈µ, logµ〉 − 〈µ, θ〉 s.t. 〈µ,1〉 = m, µ ≤ 1.

with m = u or m = l. We can rewrite it as

argmin
α∈Rk

〈α, logα〉 − 〈α, z〉 s.t. 〈α,1〉 = 1, α ≤ 1

m
.

with α := µ
m and z := θ − (logm)1. An O(k log k) algorithm for solving this constrained softmax

(KL projection onto a capped simplex) was derived in [33]. A related projection using a different
entropy is derived in [3].

C.3 Vertices of the order simplex (Proposition 4)

Let us gather the vertices ϕ(y) ∈ {0, 1}k−1 for all y ∈ [k] as columns in a matrix M ∈ {0, 1}k−1×k.
For instance, with k = 4,

M =

[
0 1 1 1
0 0 1 1
0 0 0 1

]
.

Recall that
M = M4k = {Mp : p ∈ Rk, p ≥ 0, 〈p,1〉 = 1} ⊂ Rk−1.

Let µ = Mp. Then for all p ∈ 4k

µ1 = p2 + p3 + · · ·+ pk
µ2 = p3 + p4 + · · ·+ pk
µ3 = p4 + · · ·+ pk

...
µk−1 = pk,

from which we obtain

1− µ1 = p1 ≥ 0

µ1 − µ2 = p2 ≥ 0

µ2 − µ3 = p3 ≥ 0

...
µk−1 = pk ≥ 0.

Notice that 〈p,1〉 = 1 is automatically satisfied for any µ = Mp. Therefore

M = {µ ∈ Rk−1 : 1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µk−1 ≥ 0},
which is known as the order simplex [22].

C.4 Calibration of target and surrogate excess risks (Proposition 5)

We prove Proposition 5, extending a recent analysis [38] to the more general projection losses.

18

C.4.1 Background

In this section, after reviewing the classical notions of pointwise and population excess risks, we
discuss calibration functions for structured prediction, as introduced in [40]. We use the generalized
notation introduced in §A, with output space O and ground truth space Y .

Pointwise and population risks. Given a distribution q ∈ 4|Y|, we define the pointwise risk of
ŷ ∈ O for the loss L and the pointwise risk of θ ∈ Θ for the surrogate S by

`(ŷ, q) := EY∼q L(ŷ, Y) and s(θ, q) := EY∼q S(θ, Y),

respectively. We also define the corresponding excess of pointwise risks, the difference between the
pointwise risks and the pointwise Bayes risk:

δ`(ŷ, q) := `(ŷ, q)− inf
y′∈O

`(y′, q) and δs(θ, q) := s(θ, q)− inf
θ′∈Θ

s(θ′, q).

Given a joint distribution p ∈ 4(X × Y), let us now define the population target risk and the
population surrogate risk by

L(f) := E(X,Y)∼p L(f(X), Y) and S(g) := E(X,Y)∼p S(g(X), Y).

The quality of estimators f and g is measured in terms of the excess of population risks

δL(f) := L(f)− inf
f ′ : X→O

L(f ′) and δS(g) := S(g)− inf
g′ : X→Θ

S(g′).

Note that the population risks can be written in terms of the pointwise ones as

L(f) = EX∼pX `(f(X), p(·|X)) and S(g) = EX∼pX s(g(X), p(·|X)), (15)

where p(·|x) is the conditional distribution over Y , and pX is the marginal distribution over X .
Analogously, when the surrogate is a F-Y loss generated by Ω, we will use sΩ, δsΩ, SΩ and δSΩ.

Calibration functions. Let d : Θ → O be a decoding function, namely a function that turns a
continuous prediction θ = g(x) into a discrete structure in O. A calibration function ζ is a function
relating the excess of pointwise risks δ` and δs for all θ ∈ Θ and q ∈ 4|Y| by

ζ(δ`(d(θ), q)) ≤ δs(θ, q).

It allows to control how much reduction of δs is needed to reduce δ` when using d as a decoder
(larger ζ is better). As shown in [40], ζ can be cast as an optimization problem,

ζ(ε) = inf
θ∈Θ,q∈4|Y|

δs(θ, q) s.t. δ`(d(θ), q) ≥ ε. (16)

It is easy to verify that ζ is positive, non-decreasing, and satisfies ζ(0) = 0. As shown in [40, 38],
any convex lower-bound ξ of ζ allows to in turn calibrate the excess of population risks:

ξ(δL(d ◦ g)) ≤ δS(g), (17)

for all g : X → Θ and d : Θ→ O. This follows from Jensen’s inequality and from (15). If ξ(ε) > 0
for all ε > 0 and ξ(0) = 0, this implies Fisher consistency.

C.4.2 Calibration function of Fenchel-Young losses

We derive the exact expression of the calibration function (16) for general Fenchel-Young losses.

Lemma 1 Calibration function of general Fenchel-Young losses

Let L(ŷ, y) be decomposed as (12) and S(θ, y) = SΩ(θ, ϕ(y)) := Ω∗(θ)+Ω(ϕ(y))−〈θ, ϕ(y)〉,
with ϕ(Y) ⊆ dom(Ω). Then the calibration function (16) with decoder d : Θ→ O reads

ζ(ε) = inf
θ∈Θ,µ∈M

SΩ(θ, µ) s.t. 〈ψ(d(θ))− ψ(ŷL(µ)), V µ+ b〉 ≥ ε.

19

Proof. Let µϕ(q) := EY∼q[ϕ(Y)]. The pointwise surrogate risk reads

sΩ(θ, q) := EY∼q[SΩ(θ, ϕ(Y))]

=
∑

y∈Y
q(y)(Ω∗(θ) + Ω(ϕ(y))− 〈θ, ϕ(y)〉)

= Ω∗(θ) + Ω(µϕ(q))− 〈θ, µϕ(q)〉+ EY∼q[Ω(ϕ(Y))]− Ω(µϕ(q))

=: SΩ(θ, µϕ(q)) + IΩ(ϕ(Y), q),

where we defined IΩ(ϕ(Y), q), the Bregman information [5] of the random variable ϕ(Y) with
generating function Ω. Hence the excess of pointwise surrogate risk reads

δsΩ(θ, q) = sΩ(θ, q)− inf
θ′∈Θ

sΩ(θ′, q)

= SΩ(θ, µϕ(q))− inf
θ′∈Θ

SΩ(θ′, µϕ(q))
︸ ︷︷ ︸

= 0

= SΩ(θ, µϕ(q)),

where in the second line we used [11, Proposition 2]. The pointwise target risk reads

`(ŷ, q) = EY∼q[L(ŷ, Y)]

=
∑

y∈Y
q(y)(〈ψ(ŷ), V ϕ(y) + b〉+ c(y))

= 〈ψ(ŷ), V µϕ(q) + b〉+ EY∼q[c(Y)].

Hence the excess of pointwise target risk reads

δ`(ŷ, q) = `(ŷ, q)− inf
y′∈O

`(y′, q)

= 〈ψ(ŷ), V µϕ(q) + b〉 − inf
y′∈O
〈ψ(y′), V µϕ(q) + b〉

= 〈ψ(ŷ), V µϕ(q) + b〉 − 〈ψ(ŷL(µϕ(q))), V µϕ(q) + b〉
= 〈ψ(ŷ)− ψ(ŷL(µϕ(q))), V µϕ(q) + b〉,

where
ŷL(u) := argmin

y′∈O
〈ψ(y′), V u+ b〉.

Therefore we can rewrite (16) as

ζ(ε) = inf
θ∈Θ,q∈4|Y|

SΩ(θ, µϕ(q)) s.t. 〈ψ(d(θ))− ψ(ŷL(µϕ(q))), V µϕ(q) + b〉 ≥ ε.

Using the change of variable µ = µϕ(q) ∈M = conv(ϕ(Y)) gives the desired result. �

C.4.3 Technical lemma

We give in this section a technical lemma, which will be useful for the rest of the proof.

Lemma 2 Upper-bound on pointwise target risk

Let σ := supŷ∈O ‖V >ψ(ŷ)‖∗, where ‖ · ‖∗ denotes the dual norm of ‖ · ‖. Then,

δ`(ŷL(u), q) ≤ 2σ‖µϕ(q)− u‖ ∀u ∈ Rp, q ∈ 4|Y|.

Proof. The proof is a slight modification of [38, Lemma D.3] and is included for completeness. In
that work, V = I and b = 0, or put differently, they are absorbed into ϕ. In this work, we keep V and
b explicitly to decouple the label encoding from the loss decomposition. This is important in order to
keep MAP and projection algorithms unchanged. Following [38], let us decompose δ`(ŷL(u), q) into
two terms A and B:
δ`(ŷL(u), q) = 〈ψ(ŷL(u))− ψ(ŷL(µϕ(q))), V µϕ(q) + b〉

= 〈ψ(ŷL(u)), V µϕ(q) + b− V u− b〉︸ ︷︷ ︸
A

+ 〈ψ(ŷL(u)), V u+ b〉 − 〈ψ(ŷL(µϕ(q)), V µϕ(q) + b〉︸ ︷︷ ︸
B

.

20

Clearly, A ≤ supŷ∈O |〈ψ(ŷ), V µϕ(q)− V u〉|.
Using |minz η(z) −minz η

′(z)| ≤ supz |η(z) − η′(z)|, an inequality also used in [15, Thm. 12],
we also get B ≤ supŷ∈O |〈ψ(ŷ), V µϕ(q)− V u〉|.
Therefore, in both cases, we see that b cancels out. Combining the two, we obtain

δ`(ŷL(u), q) ≤ 2 sup
ŷ∈O

|〈ψ(ŷ), V µϕ(q)− V u〉| = 2 sup
ŷ∈O

|〈V >ψ(ŷ), µϕ(q)− u〉|.

By definition of the dual norm, we have the (generalized) Cauchy-Shwarz inequality 〈x, y〉 ≤
‖x‖ ‖y‖∗. Therefore,

δ`(ŷL(u), q) ≤ 2 sup
ŷ∈O
|〈V >ψ(ŷ), µϕ(q)− u〉| ≤ 2 sup

ŷ∈O
‖V >ψ(ŷ)‖∗‖µϕ(q)− u‖.

�

C.4.4 Convex lower bound on the calibration function of projection-based losses

Since ζ above could be non-convex and difficult to compute, we next derive a convex lower bound for
a particular subset of Fenchel-Young losses (namely, projection-based losses SΨ

C) and for a particular
decoder d : Θ→ O (namely, d = ŷL ◦ PΨ

C).

Lemma 3 Convex lower bound on the calibration function of SΨ
C

Let L(ŷ, y) be decomposed as (12) and S(θ, y) = SΨ
C (θ, y) be defined as in (6). Assume

Ψ is 1
β -strongly convex over C w.r.t. ‖ · ‖, Legendre-type, and C is a convex set such that

ϕ(Y) ⊆ C ⊆ dom(Ψ). Let σ := supŷ∈O ‖V >ψ(ŷ)‖∗, where ‖ · ‖∗ is the dual norm of ‖ · ‖.
Then, the calibration function defined (11) with d = ŷL ◦ PΨ

C is lower bounded as

ζ(ε) ≥ ε2

8βσ2
.

Proof. Let us set Ω = Ψ + IC , where Ψ is Legendre-type. Note that this does not imply that Ω itself
is Legendre-type. Using Lemma 2, we have for all u ∈ Rp and all q ∈ 4|Y|

δ`(ŷL(u), q) ≤ 2σ‖µϕ(q)− u‖.
Let us set the decoder to d = ŷL ◦ ∇Ω∗. With u = ∇Ω∗(θ), we thus get for all θ ∈ Θ and q ∈ 4|Y|:

ε ≤ δ`(d(θ), q) ≤ 2σ‖µϕ(q)−∇Ω∗(θ)‖.
From (13), Ψ is 1

β -strongly convex over C w.r.t. ‖ · ‖ if and only if for all u, v ∈ C

DΨ(u, v) ≥ 1

2β
‖u− v‖2.

Combining this with [11, Proposition 3], we have for all θ ∈ Θ and all u ∈ C
SΩ(θ, u) ≥ DΨ(u,∇Ω∗(θ)) ≥ 1

2β
‖u−∇Ω∗(θ)‖2.

Altogether, we thus get for all θ ∈ Θ and q ∈ 4|Y|
δsΩ(θ, q) = SΩ(θ, µϕ(q))

≥ DΨ(µϕ(q),∇Ω∗(θ))

≥ 1

2β
‖µϕ(q)−∇Ω∗(θ)‖2

≥ 1

8βσ2
δ`(d(θ), q)2

≥ ε2

8βσ2
.

�

C.5 Finalizing the proof

We simply combine (17) and Lemma 3. �

21

