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Abstract

Correlation Clustering is a powerful graph partitioning model that aims to clus-
ter items based on the notion of similarity between items. An instance of the
Correlation Clustering problem consists of a graph G (not necessarily complete)
whose edges are labeled by a binary classifier as “similar” and “dissimilar”. An
objective which has received a lot of attention in literature is that of minimizing
the number of disagreements: an edge is in disagreement if it is a “similar” edge
and is present across clusters or if it is a “dissimilar” edge and is present within
a cluster. Define the disagreements vector to be an n dimensional vector indexed
by the vertices, where the v-th index is the number of disagreements at vertex v.
Recently, Puleo and Milenkovic (ICML ’16) initiated the study of the Correlation
Clustering framework in which the objectives were more general functions of the
disagreements vector. In this paper, we study algorithms for minimizing `q norms
(q ≥ 1) of the disagreements vector for both arbitrary and complete graphs. We
present the first known algorithm for minimizing the `q norm of the disagreements
vector on arbitrary graphs and also provide an improved algorithm for minimizing
the `q norm (q ≥ 1) of the disagreements vector on complete graphs. We also
study an alternate cluster-wise local objective introduced by Ahmadi, Khuller and
Saha (IPCO ’19), which aims to minimize the maximum number of disagreements
associated with a cluster. We also present an improved (2 + ε)-approximation
algorithm for this objective. Finally, we compliment our algorithmic results for
minimizing the `q norm of the disagreements vector with some hardness results.

1 Introduction

A basic task in machine learning is that of clustering items based on the similarity between them.
This task can be elegantly captured by Correlation Clustering, a clustering framework first introduced
by Bansal et al. [2004]. In this model, we are given access to items and the similarity/dissimilarity
between them in the form of a graph G on n vertices. The edges of G represent whether the items
are similar or dissimilar and are labelled as (“+”) and (“−”) respectively. The goal is to produce
a clustering that agrees with the labeling of the edges as much as possible, i.e., to group positive
edges in the same cluster and place negative edges across different clusters (a positive edge that
is present across clusters or a negative edge that is present within the same cluster is said to be in
disagreement). The Correlation Clustering problem can be viewed as an agnostic learning problem,
where we are given noisy examples and the task is to fit a hypothesis as best as possible to these
examples. Co-reference resolution (see e.g., Cohen and Richman [2001, 2002]), spam detection
(see e.g., Ramachandran et al. [2007], Bonchi et al. [2014]) and image segmentation (see e.g., Wirth
[2017]) are some of the applications to which Correlation Clustering has been applied to in practice.

This task is made trivial if the labeling given is consistent (transitive): if (u, v) and (v, w) are similar,
then (u,w) is similar for all vertices u, v, w in G (the connected components on similar edges would
give an optimal clustering). Instead, it is assumed that the given labeling is inconsistent, i.e., it is
possible that (u,w) are dissimilar even though (u, v) and (v, w) are similar. For such a triplet u, v, w,
every possible clustering incurs a disagreement on at least one edge and thus, no perfect clustering
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exists. The optimal clustering is the one which minimizes the disagreements. Moreover, as the
number of clusters is not predefined, the optimal clustering can use anywhere from 1 to n clusters.

Minimizing the total weight of edges in disagreement is the objective that has received the most
consideration in literature. Define the disagreements vector be an n dimensional vector indexed by
the vertices where the v-th coordinate equals the number of disagreements at v. Thus, minimizing the
total number of disagreements is equivalent to minimizing the `1 norm of the disagreements vector.
Puleo and Milenkovic [2016] initiated the study of local objectives in the Correlation Clustering
framework. They focus on complete graphs and study the minimization of `q norms (q ≥ 1) of the
disagreements vector – for which they provided a 48−approximation algorithm. Charikar, Gupta,
and Schwartz [2017] gave an improved 7−approximation algorithm for minimizing `q disagreements
on complete graphs. They also studied the problem of minimizing the `∞ norm of the disagreements
vector (also known as Min Max Correlation Clustering) for arbitrary graphs, for which they provided
a O(
√
n)−approximation.

For higher values of q (particularly q = ∞), a clustering optimized for minimizing the `q norm
prioritizes reducing the disagreements at vertices that are worst off. Thus, such metrics are very
unforgiving in most cases as it is possible that in the optimal clustering there is only one vertex with
high disagreements while every other vertex has low disagreements. Hence, one is forced to infer
the most pessimistic picture about the overall clustering. The `2 norm is a solution to this tension
between the `1 and `∞ objectives. The `2 norm of the disagreements vector takes into account the
disagreements at each vertex while also penalizing the vertices with high disagreements more heavily.
Thus, a clustering optimized for the minimum `2 norm gives a more balanced clustering as it takes
into consideration both the global and local picture.

Recently, Ahmadi, Khuller, and Saha [2019b] introduced an alternative min max objective for
correlation clustering (which we call AKS min max objective). For a cluster C ⊆ V , let us refer
to similar edges with exactly one endpoint in C and dissimilar edges with both endpoints in C as
edges in disagreements with respect to C. We call the weight of all edges in disagreement with C the
cost of C. Then, the AKS min max objective asks to find a clustering C1, . . . , CT that minimizes
the maximum cost Ci. Ahmadi et al. [2019b] gave an O(log n)−approximation algorithm for this
objective. Ahmadi, Galhotra, Khuller, Saha, and Schwartz [2019a] improved the approximation
factor to O(

√
log n ·max{log |E−|, log(k)}).

Our contributions. In this paper, we provide positive and negative results for Correlation Clustering
with the `q objective. We first study the problem of minimizing disagreements on arbitrary graphs.
We present the first approximation algorithm minimizing any `q norm (q ≥ 1) of the disagreements
vector.

Theorem 1.1. There exists a polynomial time O(n
1
2−

1
2q · log

1
2 + 1

2q n)−approximation algorithm for
the minimum `q disagreements problem on general weighted graphs.

For the `2 objective, the above algorithm leads to an approximation ratio of Õ(n1/4), thus providing the
first known approximation ratio for optimizing the clustering for this version of the objective. Note that
the above algorithm matches the best approximation guarantee of O(log n) for the classical objective
of minimizing the `1 norm of the disagreements vector. For the `∞ norm, our algorithm matches the
guarantee of the algorithm by Charikar, Gupta, and Schwartz [2017] up to log factors. Fundamental
combinatorial optimization problems like Multicut, Multiway Cut and s-t Cut can be framed as special
cases of Correlation Clustering. Thus, Theorem 1.1 leads to the first known algorithms for Multicut,
Multiway Cut and s-t Cut with the `q objective when q 6= 1 and q 6=∞. We can also use the algorithm
from Theorem 1.1 to obtain O(n

1
2−

1
2q · log

1
2 + 1

2q n) bi-criteria approximation for Min k-Balanced
Partitioning with the `q objective (we omit details here).

Next, we study the case of complete graphs. For this case, we present an improved 5−approximation
algorithm for minimizing any `q norm (q ≥ 1) of the disagreements vector.

Theorem 1.2. There exists a polynomial time 5−approximation algorithm for the minimum `q
disagreements problem on complete graphs.

We also study the case of complete bipartite graphs where disagreements need to be bounded for
only one side of the bipartition, and not the whole vertex set. We give an improved 5−approximation
algorithm for minimizing any `q norm (q ≥ 1) of the disagreements vector.
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Theorem 1.3. There exists a polynomial time 5−approximation algorithm for the minimum `q
disagreements problem on complete bipartite graphs where disagreements are measured for only one
side of the bipartition.

In this paper, we also consider the AKS min max objective. For this objective, we
give a (2 + ε)−approximation algorithm, which improves the approximation ratio of
O(
√

log n ·max{log |E−|, log(k)}) given by Ahmadi, Galhotra, Khuller, Saha, and Schwartz
[2019a].

Theorem 1.4. There exists a polynomial time (2 + ε)−approximation algorithm for the AKS min
max problem on arbitrary graphs.

Finally, in the full version of this paper (see supplemental materials), we present an integrality gap of
Ω(n

1
2−

1
2q ) for minimum `q s− t cut and prove a hardness of approximation of 2 for minimum `∞

s− t cut.

Previous work. Bansal, Blum, and Chawla [2004] showed that it is NP-hard to find a clustering that
minimizes the total disagreements, even on complete graphs. They give a constant-factor approxima-
tion algorithm to minimize disagreements and a PTAS to maximize agreements on complete graphs.
For complete graphs, Ailon, Charikar, and Newman [2008] presented a randomized algorithm with an
approximation guarantee of 3 to minimize total disagreements. They also gave a 2.5 approximation
algorithm based on LP rounding. This factor was improved to slightly less than 2.06 by Chawla,
Makarychev, Schramm, and Yaroslavtsev [2015]. Since, the natural LP is known to have an integrality
gap of 2, the problem of optimizing the classical objective is almost settled with respect to the natural
LP. For arbitrary graphs, the best known approximation ratio is O(log n) (see Charikar, Guruswami,
and Wirth [2003], Demaine, Emanuel, Fiat, and Immorlica [2006]). Assuming the Unique Games
Conjecture, there is no constant-factor approximation algorithm for minimizing `1 disagreements on
arbitrary graphs (see Chawla et al. [2006]). Puleo and Milenkovic [2016] first studied Correlation
Clustering with more local objectives. For minimizing `q (q ≥ 1) norms of the disagreements vector
on complete graphs, their algorithm achieves an approximation guarantee of 48. This was improved
to 7 by Charikar, Gupta, and Schwartz [2017]. Charikar et al. [2017] also studied the problem of
minimizing the `∞ norm of the disagreements vector on general graphs. They showed that the
natural LP/SDP has an integrality gap of n/2 for this problem and provided a O(

√
n)−approximation

algorithm for minimum `∞ disagreements. Puleo and Milenkovic [2016] also initiated the study of
minimizing the `q norm of the disagreements vector (for one side of the bipartition) on complete
bipartite graphs. The presented a 10−approximation algorithm for this problem, which was improved
to 7 by Charikar, Gupta, and Schwartz [2017]. Recently, Ahmadi et al. [2019b] studied an alternative
objective for the correlation clustering problem. Motivated by creating balanced communities for
problems such as image segmentation and community detection in social networks, they propose
a new cluster-wise min-max objective. This objective minimizes the maximum weight of edges in
disagreement associated with a cluster, where an edge is in disagreement with respect to a cluster if
it is a similar edge and has exactly one end point in the cluster or if it is a dissimilar edge and has
both its endpoints in the cluster. They gave an O(

√
log n ·max{log |E−|, log(k)})−approximation

algorithm for this objective. Moreover, they give a O(r2)−approximation algorithm for graphs that
exclude a Kr,r minor, and a 14−approximation algorithm for complete graphs.

2 Preliminaries

We now formally define the Correlation Clustering with `q objective problem. We will need the
following definition. Consider a set of points V and two disjoint sets of edges on V : positive edges
E+ and negative edges E−. We assume that every edge has a weight wuv. For every partition P of
V , we say that a positive edge is in disagreement with P if the endpoints u and v belongs to different
parts of P; and a negative edge is in disagreement with P if the endpoints u and v belongs to the
same part of P . The vector of disagreements, denoted by disagree(P, E+, E−), is a |V | dimensional
vector indexed by elements of V . Its coordinate u equals

disagreeu(P, E+, E−) =
∑

v:(u,v)∈E+∪E−
wuv1((u, v) is in disagreement with P).
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minimize max
(
‖y‖q,

(∑
u∈V

zu
) 1

q

)
(P)

subject to yu =
∑

v:(u,v)∈E+

wuvxuv +
∑

v:(u,v)∈E−
wuv(1− xuv) for all u ∈ V (P1)

zu =
∑

v:(u,v)∈E+

wquvxuv +
∑

v:(u,v)∈E−
wquv(1− xuv) for all u ∈ V (P2)

xv1v2 + xv2v3 ≥ xv1v3 for all v1, v2, v3 ∈ V (P3)
xuv = xvu for all u, v ∈ V (P4)
xuv ∈ [0, 1] for all u, v ∈ V (P5)

Figure 3.1: Convex relaxation for Correlation Clustering with min `q objective for q <∞.

That is, disagreeu(P, E+, E−) is the weight of disagreeing edges incident to u. We similarly define
a cut vector for a set of edges E:

cutu(P, E) =
∑

v:(u,v)∈E

wuv1(u and v are separated by P).

We use the standard definition for the `q norm of a vector x: ‖x‖q = (
∑
u x

q
u)

1
q and ‖x‖∞ =

maxu xu. For a partition P , we denote by P(u) the piece that contains vertex u.

Definition 1. In the Correlation Clustering problem with `q objective, we are given a graph G on
a set V with two disjoint sets of edges E+ and E− and a set of weights wuv. The goal is find a
partition P that minimizes the `q norm of the disagreements vector, ‖disagree(P, E+, E−)‖q .

In our algorithm for Correlation Clustering on arbitrary graphs, we will use a powerful technique
of padded metric space decompositions (see e.g., Bartal [1996], Rao [1999], Fakcharoenphol and
Talwar [2003], Gupta, Krauthgamer, and Lee [2003]).

Definition 2 (Padded Decomposition). Let (X, d) be a metric space on n points, and let ∆ > 0. A
probabilistic distribution of partitions P of X is called a padded decomposition if it satisfies the
following properties:

• Each cluster C ∈ P has diameter at most ∆.

• For every u ∈ X and ε > 0, Pr(Ball(u, δ) 6⊂ P(u)) ≤ D · δ∆ where Ball(u, δ) = {v ∈
X : d(u, v) ≤ δ}

Theorem 2.1 (Fakcharoenphol, Rao, and Talwar [2004]). Every metric space (X, d) on n points
admits a D = O(log n) separating padded decomposition. Moreover, there is a polynomial-time
algorithm that samples a partition from this distribution.

3 Convex Relaxation

In our algorithms for minimizing `q disagreements in arbitrary and complete graphs, we use a convex
relaxation given in Figure 3.1. Our convex relaxation for Correlation Clustering is fairly standard.
It is similar to relaxations used in the papers by Garg, Vazirani, and Yannakakis [1996], Demaine,
Emanuel, Fiat, and Immorlica [2006], Charikar, Guruswami, and Wirth [2003]. For every pair of
vertices u and v, we have a variable xuv that is equal to the distance between u and v in the “multicut
metric”. Variables xuv satisfy the triangle inequality constraints (P3). They are also symmetric (P4)
and xuv ∈ [0, 1] (P5). Thus, the set of vertices V equipped with the distance function d(u, v) = xuv
is a metric space.

Additionally, for every vertex u ∈ V , we have variables yu and zu (see constraints (P1) and (P2))
that lower bound the number of disagreeing edges incident to u. The objective of our convex
program is to minimize max(‖y‖q, (

∑
u zu)

1
q ). Note that all constraints in the program (P) are linear;

however, the objective function of (P) is not convex as is. So in order to find the optimal solution, we
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raise the objective function to the power of q and find feasible x, y, z that minimizes the objective
max(‖y‖qq,

∑
u zu).

This program has a polynomial number of linear constraints, and its objective function is convex:
This is because the objective function, max(‖y‖qq,

∑
u zu), is the maximum of two convex functions.

The first function, ‖y‖qq is the sum of q-th powers of the variables yu which are positive. Thus, ‖y‖qq
is convex and differentiable. The second function,

∑
u zu is a linear function. Therefore, we can use

off-the-shelf convex solvers (quadratic solvers for `2) to get an optimal solution to (P ).

Let us verify that program (P) is a relaxation for Correlation Clustering. Consider an arbitrary
partitioning P of V . In the integral solution corresponding to P , we set xuv = 0 if u and v are
in the same cluster in P; and xuv = 1 if u and v are in different clusters in P . In this solution,
distances xuv satisfy triangle inequality constraints (P3) and xuv = xvu (P4). Observe that a positive
edge (u, v) ∈ E+ is in disagreement with P if xuv = 1; and a negative edge (u, v) ∈ E− is in
disagreement if xuv = 0. Thus, in this integral solution, yu = disagreeu(P, E+, E−) and moreover,
zu ≤ yqu. Therefore, in the integral solution corresponding to P , the objective function of (P) equals
‖ disagreeu(P, E+, E−)‖q . Of course, the cost of the optimal fractional solution to the problem may
be less than the cost of the optimal integral solution. Thus, (P) is a relaxation for our problem. Below,
we denote the cost of the optimal fraction solution to (P) by LP .

We remark that we can get a simpler relaxation by removing variables z and changing the objective
function to ‖y‖q. This relaxation also works for `∞ norm. We use it in our 5-approximation
algorithm.

4 Overview of Algorithms

We note that some proofs from Subsections 4.1, 4.2 and 4.3 have been deferred to Sections A, B and
C respectively (in the supplementary material). These Lemmas and their proofs have been referrenced
appropriately.

4.1 Correlation Clustering on arbitrary graphs

In this section, we describe our algorithm for minimizing `q disagreements on arbitrary graphs. We
will prove the following main theorem.

Theorem 4.1. There exists a randomized polynomial-time O(n
q−1
2q log

q+1
2q n)−approximation algo-

rithm for Correlation Clustering with the `q objective (q ≥ 1).

We remark that the same algorithm gives O(
√
n log n)−approximation for the `∞ norm. We omit

the details in the conference version of the paper.

Our algorithm relies on a procedure for partitioning arbitrary metric spaces into pieces of small
diameter. In particular, we prove the following theorem,

Theorem 4.2. There exists a polynomial-time randomized algorithm that given a metric space (X, d)
on n points and parameter ∆ returns a random partition P of X such that the diameter of every set
P in P is at most ∆ and for every q ≥ 1 (q 6= ∞) and every weighted graph G = (X,E,w), we
have

E
[
‖ cut(P, E)‖q

]
≤ Cn

q−1
2q log

q+1
2q n ·

[( ∑
u∈X

∑
v:(u,v)∈E

wquv
d(u, v)

∆

)1/q

+

+
(∑
u∈X

( ∑
v:(u,v)∈E

wuv
d(u, v)

∆

)q)1/q]
, (1)

for some absolute constant C.

We defer the proof of the above theorem to Section A.

We now show how to use the above metric space partitioning scheme to obtain an approximation
algorithm for Correlation Clustering. Note that this proves Theorem 4.1.
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Proof of Theorem 4.1. Our algorithm first finds the optimal solution x, y, z to the convex relaxation
(P) presented in Section 3. Then, it defines a metric d(u, v) = xuv on the vertices of the graph. Finally,
it runs the metric space partitioning algorithm with ∆ = 1/2 from Section A (see Theorem 4.2) and
outputs the obtained partitioning P .

Let us analyze the performance of this algorithm. Denote the cost of the optimal solution x, y, z by
LP . We know that the cost of the optimal solution OPT is lower bounded by LP (see Section 3
for details). By Theorem 4.2, applied to the graph G = (V,E+) (note: we ignore negative edges for
now),

E
[
‖ cut(P, E+)‖q

]
≤ C

∆
n

q−1
2q log

q+1
2q n ·

((∑
u∈V

yqu
) 1

q +
(∑
u∈V

zu
) 1

q

)
≤ 4Cn

q−1
2q log

q+1
2q n · LP.

(2)
Recall that a positive edge is not in agreement if and only if it is cut. Hence, disagree(P, E+,∅) =
cut(P, E+), and the bound above holds for E‖ disagree(P, E+,∅)‖q. By the triangle inequality,
E‖ disagree(P, E+, E−)‖q ≤ E‖ disagree(P, E+,∅)‖q + E‖ disagree(P,∅, E−)‖q. Hence, to
finish the proof, it remains to upper bound E‖ disagree(P,∅, E−)‖q .
Observe that the diameter of every cluster returned by the algorithm is at most ∆ = 1/2. For
all disagreeing negative edges (u, v) ∈ E−, we have xuv ≤ 1/2 and 1 − xuv ≥ 1/2. Thus,
disagreeu(P,∅, E−) ≤ 2yu for every u, and E‖disagree(P,∅, E−)‖q ≤ 2‖y‖q ≤ 2LP . This
completes the proof.

4.2 Correlation Clustering on complete graphs

In this section, we present our algorithm for Correlation Clustering on complete graphs and its
analysis. Our algorithm achieves an approximation ratio of 5 and is an improvement over the
approximation ratio of 7 by Charikar, Gupta, and Schwartz [2017].

4.2.1 Summary of the algorithm

Our algorithm is based on rounding an optimal solution to the convex relaxation (P). Recall that
for complete graphs, we can get a simpler relaxation by removing the variables z in our convex
programming formulation. We start with considering the entire vertex set of unclustered vertices. At
each step t of the algorithm, we select a subset of vertices as a cluster Ct and remove it from the set
of unclustered vertices. Thus, each vertex is assigned to a cluster exactly once and is never removed
from a cluster once it is assigned.

For each vertex w ∈ V , let Ball(w, ρ) = {u ∈ V : xuw ≤ ρ} be the set of vertices within a distance
of ρ from w. For r = 1/5 the quantity r− xuw where u ∈ Ball(w, r) represents the distance from u
to the boundary of the ball of radius 1/5 around w. Let Vt ⊆ V be the set of unclustered vertices at
step t, and define

Lt(w) =
∑

u∈Ball(w,r)∩Vt

r − xuw.

At each step t, we select the vertex wt that maximizes the quantity Lt(w) over all unclustered vertices
w ∈ Vt and select the set Ball(wt, 2r) as a cluster. We repeat this step until all the nodes have
been clustered. A complete description of the algorithm can be found in Figure B.1 (supplementary
material).

4.2.2 Overview of the analysis

Our main result for complete graphs is the following, which proves Theorem 1.3.
Theorem 4.3. Algorithm 2 is a 5−approximation algorithm for Correlation Clustering on complete
graphs.

For an edge (u, v) ∈ E, let LP (u, v) be the LP cost of the edge (u, v): LP (u, v) = xuv if (u, v) ∈
E+ and LP (u, v) = 1− xuv if (u, v) ∈ E−. Let ALG(u, v) = 1((u, v) is in disagreement ).

Define
profit(u) =

∑
(u,v)∈E

LP (u, v)− r
∑

(u,v)∈E

ALG(u, v),
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where r = 1/5. We show that for each vertex u ∈ V , we have profit(u) ≥ 0 (see Lemma 4.4) and,
therefore, the number of disagreeing edges incident to u is upper bounded by 5y(u):

ALG(u) =
∑

v:(u,v)∈E

ALG(u, v) ≤ 1

r

∑
v:(u,v)∈E

LP (u, v) = 5y(u).

Thus, ‖ALG‖q ≤ 5‖y‖q for any q ≥ 1. Consequently, the approximation ratio of the algorithm is at
most 5 for any norm `q .
Lemma 4.4. For every u ∈ V , we have profit(u) ≥ 0.

At each step t of the algorithm, we create a new cluster Ct and remove it from the graph. We also
remove all edges with at least one endpoint in Ct. Denote this set of edges by

∆Et = {(u, v) : u ∈ Ct or v ∈ Ct}.

Now let

profitt(u, v) =

{
LP (u, v)− rALG(u, v), if (u, v) ∈ ∆E

0, otherwise
.

profitt(u) =
∑
v∈Vt

profitt(u, v) =
∑

(u,v)∈∆Et

LP (u, v)− r
∑

(u,v)∈∆Et

ALG(u, v). (3)

As all sets ∆Et are disjoint, profit(u) =
∑
t profitt(u). Thus, to prove Lemma 4.4, it is sufficient to

show that profitt(u) ≥ 0 for all t. Note that we only need to consider u ∈ Vt as profitt(u) = 0 for
u /∈ Vt.
Consider a step t of the algorithm and vertex u ∈ Vt. Let w = wt be the center of the cluster
chosen at this step. First, we show that since the diameter of the cluster Ct is 4r, for all negative
edges (u, v) ∈ E− with u, v ∈ Ct, we can charge the cost of disagreement to the edge itself, that
is, profitt(u, v) is nonnegative for (u, v) ∈ E− (see Lemma B.3). We then consider two cases:
xuw ∈ [0, r] ∪ [3r, 1] and xuw ∈ (r, 3r].

The former case is fairly simple since disagreeing positive edges (u, v) ∈ E+ (with xuw ∈ [0, r] ∪
[3r, 1]) have a “large” LP cost. In Lemma B.4 and Lemma B.5, we prove that the cost of disagreement
can be charged to the edge itself and hence profitt(u) ≥ 0.

We then consider the latter case. For vertices u with xuw ∈ (r, 3r], profitt(u, v) for some disagreeing
positive edges (u, v) might be negative. Thus, we split the profit at step t for such vertices u into the
profit they get from edges (u, v) with v in Ball(w, r) ∩ Vt and from edges with v in Vt \ Ball(w, r).
That is,

profitt(u) =
∑

v∈Ball(w,r)

profitt(u, v)

︸ ︷︷ ︸
Phigh(u)

+
∑

v∈Vt\Ball(w,r)

profitt(u, v)

︸ ︷︷ ︸
Plow(u)

.

Denote the first term by Phigh(u) and the second term by Plow(u). We show that Plow(u) ≥ −Lt(u)
(see Claim B.6 and Lemma B.7) and Phigh ≥ Lt(w) (see Claim B.8 and Lemma B.9) and conclude
that profitt(u) = Phigh(u) + Plow(u) ≥ Lt(w) − Lt(u) ≥ 0 since Lt(w) = maxw′∈Vt

Lt(w
′) ≥

Lt(u).

This finishes the proof of Lemma 4.4.

4.3 Correlation Clustering with AKS Min Max Objective

In this section, we present our improved algorithm for Correlation Clustering with AKS Min Max
Objective. Our algorithm produces a clustering of cost at most (2 + ε)OPT , which improves upon
the bound of O(

√
log n ·max{log |E−|, log(k)})−approximation algorithm studied by Ahmadi,

Galhotra, Khuller, Saha, and Schwartz [2019a].

For a subset S ⊆ V of vertices, we use cost+(S) to refer to the weight of positive edges “associated”
with S that are in disagreement. These are the edges with exactly one end point in S. Thus,
cost+(S) =

∑
(u,v)∈E+,u∈S,v 6∈S wuv . Similarly, we use cost−(S) to refer to the weight of dissimilar

edges “associated” with S that are in disagreement. These are the edges with both endpoints in
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S. Thus, cost−(S) =
∑

(u,v)∈E−,u,v∈S wuv. The total cost of the set S is cost(S) = cost+(S) +

cost−(S).

Similar to the algorithm of Ahmadi et al. [2019b], our algorithm works in two phases. In the first phase,
the algorithm covers all vertices of the graph with (possibly overlapping) sets S1, . . . , Sk such that the
cost of each set Si is at most 2OPT (i.e., cost(Si) ≤ 2OPT for each i ∈ {1, . . . , k}). In the second
phase, the algorithm finds sets P1, . . . , Pk such that: (1) P1, . . . , Pk are disjoint and cover the vertex
set; (2) Pi ⊆ Si (and, consequently, cost−(Pi) ≤ cost−(Si)); (3) cost+(Pi) ≤ (1 + ε) cost+(Si).

The sets P1, . . . , Pk are obtained from S1, . . . , Sk using an uncrossing procedure of Bansal et al.
[2011]. Hence the clustering that is output is P = (P1, . . . , Pk). The improvement in the approxima-
tion factor comes from the first phase of the algorithm.

4.3.1 Summary of the algorithm

At the core of our algorithm is a simple subproblem: For a given vertex z ∈ V , find a subset S ⊆ V
containing z such that cost(S) is minimized. We solve this subproblem using a linear programming
relaxation, which is formulated as follows: The LP has a variable xu for each vertex u ∈ V . In the
intended integral solution, we have xu = 1 if u is in the set S, and xu = 0, otherwise. That is, xu is
the indicator of the event “u ∈ S”. The LP has only one constraint: xz = 1. A complete description
of the LP can be found in Figure C.1. In Claim C.1 we show that this LP is indeed a valid relaxation
for our subproblem.

Moreover we prove that this LP is half-integral, please see section C.1 for details. We now present
our algorithm which gives a 2-approximation to the subproblem.

Rounding algorithm for subproblem. We present a simple rounding algorithm. Let x∗ be an
optimal half-integral LP solution to the problem. We obtain an integral solution x by rouding down
x∗, that is xu = bx∗uc for all u. Thus, µuv ≤ 2 · µ∗uv and ηuv ≤ η∗uv for all positive and negative
edges respectively. Thus, the cost of the rounded solution x is at most 2OPT.

Rounding algorithm for AKS Min Max Correlation Clustering. To obtain a cover of all the
vertices, we pick yet uncovered vertices z ∈ V one by one and for each z, find a set S(z) as described
above. Then, we remove those sets S(z) that are completely covered by other sets. The obtained
family of sets S = {S(z)} satisfies the following properties: (1) Sets in S cover the entire set V ; (2)
cost(S) ≤ 2OPT for each S ∈ S; (3) Each set S ∈ S is not covered by the other sets in S (that is,
for each S ∈ S, S 6⊂ ∪S′∈(S\{S})S

′). However, sets S in S are not necessarily disjoint.

Following Ahmadi et al. [2019b], we then apply an uncrossing procedure developed by Bansal et al.
[2011] to the sets Si in S and obtain disjoint sets Pi such that (1) Pi ⊂ Si and (2) cost+(Pi) ≤
cost+(Si) + εOPT for each i (see Lemma C.3 in Section C.2). We have cost+(Pi) ≤ cost+(Si) +
εOPT and cost−(Pi) ≤ cost−(Si), since Pi is a subset of Si. Thus, cost(Pi) ≤ cost(Si) + εOPT
and, consequently, P1, . . . , Pk is a 2(1 + ε)-approximation for Correlation Clustering with the
AKS Min Max objective. We note that by slightly modifying our algorithm we can obtain a 2-
approximation.

Finally, we show that AKS Min-Max Correlation Clustering is at least as hard as Vertex Cover (see
C.3 for details). Vertex Cover is NP-hard to approximate within any constant factor better than 2
assuming the Unique Games conjecture (UGC) (see Khot and Regev [2008]). Thus, our algorithm
gives the best possible approximation if UGC holds.
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A Algorithm for Partitioning Metric Spaces

In this section, we will prove the following main theorem,

Theorem A.1. There exists a polynomial-time randomized algorithm that given a metric space (X, d)
on n points and parameter ∆ returns a random partition P of X such that the diameter of every set
P in P is at most ∆ and for every q ≥ 1 (q 6= ∞) and every weighted graph G = (X,E,w), we
have

E
[
‖ cut(P, E)‖q

]
≤ Cn

q−1
2q log

q+1
2q n ·

[( ∑
u∈X

∑
v:(u,v)∈E

wquv
d(u, v)

∆

)1/q

+

+
(∑
u∈X

( ∑
v:(u,v)∈E

wuv
d(u, v)

∆

)q)1/q]
, (4)

for some absolute constant C.

We remark that our algorithm also works for q =∞. Indeed, the behaviour of the algorithm does not
depend on q (in fact, q is not even a part of the algorithm’s input). Hence, inequality (1) holds for any
q <∞. In the limit as q tends to infinity, we get the following result. We provide the details in the
full version of the paper (see supplemental materials for details).

We will need the following definition.

Definition 3. Let (X, d) be a metric space. The ε-neighborhood of a set S ⊂ X is the set of points
at distance at most ε from S:

Nε(S) = {u ∈ X : ∃v ∈ S such that d(u, v) ≤ ε}.

The ε-neighborhood of the boundary of a partition P is the set of points

Nε(∂P) =
⋃
P∈P

(Nε(P ) \ P ) = {u ∈ X : ∃v ∈ X s.t. d(u, v) ≤ ε and P(u) 6= P(v)}.

We first describe an algorithm which succeeds with probability at least 1/2 and fails with probability
at most 1/2. If the algorithm succeeds it outputs a random partition P of X such that the diameter of
every set P in P is at most ∆ and for every q and every weighted graph G = (X,E,w), we have

E
[
‖ cut(P, E)‖q | algorithm succeeds

]
≤ C ′n

q−1
2q log

q+1
2q n ·

(∑
u∈X

∑
v:(u,v)∈E

wquv
d(u, v)

∆

)1/q

+

(∑
u∈X

( ∑
v:(u,v)∈E

wuv
d(u, v)

∆

)q)1/q

. (5)

To obtain a valid partition with probability 1, we repeat our algorithm for at most dlog2 ne iterations
till it succeeds and output the obtained solution. If the algorithm does not succeed after dlog2 ne
iterations (which happens with probability at most 1/n), we partition the graph using a simple
deterministic procedure which we describe in the end of this section.

Our algorithm is based on the procedure for generating bounded padded stochastic decompositions
(see Section 2). First, the algorithm picks a random padded decomposition P of the metric space
X . Then, it finds the ε-neighborhood Nε(∂P) of the boundary of P . Finally, it outputs P if
|Nε(∂P)| ≤ 2Dε/∆ and fails otherwise. We present a pseudo-code for our algorithm in Figure A.1.

A.1 Analysis

Our algorithm is scale invariant i.e., its output does not change if we multiply all distances in the
metric space (X, d) and the parameter ∆ by some positive number λ. Thus, for the sake of analysis,
we assume that ∆ = 1. Algorithm A.1 succeeds when Nε(P) has size at most M . Denote this event
by E . We first show that Pr(E) ≥ 1/2.

Lemma A.2. Algorithm A.1 succeeds with probability at least 1/2.
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Input: metric space (X, d) and parameter ∆ > 0.
Output: a random partition P of X .

1. Let D = O(log n) be the parameter from Theorem 2.1, ε = 1/
√

2Dn and M = 2Dεn/∆.
2. Draw a random padded decomposition P of the metric space (X, d) with parameter ∆ using

Theorem 2.1.
3. Find the neighborhood Nε(∂P) of the partition boundary.
4. If |Nε(P)| ≤M then output P; else fail.

Figure A.1: Metric decomposition algorithm.

Proof. Let Ē be the complement of the event E . We need to show that Pr(Ē) ≤ 1/2. To this end, we
bound the expected size of the set Nε(P) using the second property of padded decompositions:

E[|Nε(∂P)|] =
∑
u∈X

Pr(u ∈ Nε(∂P))

=
∑
u∈X

Pr(Ball(u, ε) 6⊂ P(u))

≤
∑
u∈X

Dε = Dεn.

Here, we used that u ∈ Nε(∂P) if and only if Ball(u, ε) 6⊂ P(u). Now, by Markov’s inequality,

Pr(Ē) = Pr(|Nε(∂P)| > 2Dεn︸ ︷︷ ︸
M

) ≤ Dεn

2Dεn
=

1

2
.

Let Xuv be the indicator of the event {P(u) 6= P(v)} i.e., the event that points u and v are
separated by the partition P . By the second property of padded stochastic decompositions, we have
E(Xuv) = Pr(P(u) 6= P(v)) ≤ D · d(u, v). Since Pr(E) ≥ 1/2, for each (u, v) ∈ E, we have

E[Xuv | E ] ≤ E[Xuv]

Pr(E)
≤ 2E[Xuv] ≤ 2D · d(u, v).

Consequently,

E[wuvXuv | E ] ≤ 2D · wuvd(u, v) and (6)
E[wquvX

q
uv | E ] ≤ 2D · wquvd(u, v). (7)

We split all edges E into two groups: short edges, which we denote by E≤ε, and long edges, which
we denote by E>ε. Short edges are edges of length at most ε; long edges are edges of length greater
than ε. Note that cut(P, E) = cut(P, E≤ε) + cut(P, E>ε).

For every subset E′ ⊂ E (in particular, for E′ = E≤ε and E′ = E>ε), we have

E
[
‖ cut(P, E′)‖qq|E

]
=
∑
u∈X

E
[(∑
v:(u,v)∈E′

wuvXuv

)q|E]. (8)

We separately upper bound E[‖ cut(P, E≤ε)‖qq | E ] and E[‖ cut(P, E>ε)‖qq | E ] using the for-
mula above and inequalities (6), (7) and then use the triangle inequality for `q norms to bound
E[‖ cut(P, E)‖q | E ].
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Long edges. Fix a vertex u and consider long edges incident to u. Their total weight is upper
bounded by ∑

v:(u,v)∈E>ε

wuv ≤
∑

v:(u,v)∈E>ε

wuv
d(u, v)

ε︸ ︷︷ ︸
≥1

.

Thus, ( ∑
v:(u,v)∈E>ε

wuvXuv

)q
≤
( ∑
v:(u,v)∈E>ε

wuv

)q−1( ∑
v:(u,v)∈E>ε

wuvXuv

)
≤
( ∑
v:(u,v)∈E>ε

wuvd(u, v)

ε

)q−1( ∑
v:(u,v)∈E>ε

wuvXuv

)
.

Plugging this expression into formula (8) with E′ = E>ε and using inequality (6), we get the
following upper bound on E

[
‖ cut(P, E>ε)‖qq

∣∣ E]:
∑
u∈X

( ∑
v:(u,v)∈E>ε

wuvd(u, v)

ε

)q−1

E
[∑

v:(u,v)∈E>ε

wuvXuv | E
]
≤ 2D

εq−1

∑
u∈X

( ∑
v:(u,v)∈E>ε

wuvd(u, v)
)q
.

Finally, by Jensen’s inequality, we have

E
[
‖ cut(P, E>ε)‖q | E ] = E

[
(‖ cut(P, E>ε)‖qq)

1
q | E

]
≤
(
E
[
‖ cut(P, E>ε)‖qq | E

]) 1
q

≤
( 2D

εq−1

∑
u∈X

( ∑
v:(u,v)∈E>ε

wuvd(u, v)
)q) 1

q

. (9)

Short edges. To bound || cut(P, Eshort)||q , we will make use of the following lemma.

Lemma A.3. Consider non-negative (dependent) random variables X1, . . . , Xn. Suppose that at
most M of them are non-zero with probability 1. Then, for every q ≥ 1, the following bound holds:

E
[
(X1 + · · ·+Xn)q

]
≤Mq−1

n∑
i=1

E
[
Xq
i

]
.

Proof. Let xi1 , . . . , xim be the non-zero random variables in a certain sampling of X1, . . . , Xn for
some m ≤M . Suppose that m 6= 0. Using Jensen’s inequality, we have(

xi1 + . . .+ xim
m

)q
≤ 1

m

m∑
j=1

xqij ,

and, therefore, (
xi1 + . . .+ xim

)q
≤ mq−1

m∑
j=1

xqij ≤M
q−1

m∑
j=1

xqij .

The inequality above also holds when m = 0. Thus, the expectation of the left hand side is upper
bounded by the expectation of the right hand side. This concludes the proof.

Fix a vertex u. Observe that if (u, v) is a short edge which is cut by P then v must belong to Nε(∂P).
Thus, the number of non-zero random variablesXuv for a given u and (u, v) ∈ E≤ε is upper bounded
by |Nε(∂P)|. If the algorithm succeeds, then |Nε(∂P)| ≤M . Thus, by Lemma A.3,

E
[(∑
v:(u,v)∈E≤ε

wuvXuv

)q | E] ≤Mq−1
∑

v:(u,v)∈E≤ε

E
[
wquvX

q
uv | E

]
.
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Plugging this bound into formula (8) with E′ = E≤ε and using inequality (7), we get the following

upper bound on E
[
‖ cut(P, E≤ε)‖qq

∣∣ E]:∑
u∈X

(
Mq−1

∑
v:(u,v)∈E≤ε

E
[
wquvX

q
uv | E

])
≤ 2DMq−1

∑
u∈X

∑
v:(u,v)∈E≤ε

wquvd(u, v).

Finally, by Jensen’s inequality, we have

E[‖ cut(P, E≤ε)‖q | E ] ≤
(

2DMq−1
)1/q(∑

u∈X

∑
v:(u,v)∈E≤ε

wquvd(u, v)
)1/q

. (10)

To obtain the desired bound (5), we substitute D = O(log n), ε = 1/
√

2Dn, and M = 2Dεn/∆ in
bounds (9) and (10) and then apply the triangle inequality for the `q norm.

To finish the proof of Theorem 4.2, we need to describe what we do in the unlikely event that
Algorithm A.1 fails dlog2 ne times. In this case, we create a new graph on X with edges between
pairs of vertices at distance at most 1/n from each other and partition it into connected components.
We analyze this algorithm in the full version of the paper (see supplemental materials for details).

B Correlation Clustering on Complete Graphs

In this section, we present our algorithm for Correlation Clustering on complete graphs and its
analysis. Our algorithm achieves an approximation ratio of 5 and is an improvement over the
approximation ratio of 7 by Charikar, Gupta, and Schwartz [2017].

B.1 The Algorithm

Our algorithm is based on rounding an optimal solution to the convex relaxation (P). Recall that
for complete graphs, we can get a simpler relaxation by removing the variables z in our convex
programming formulation. We start with considering the entire vertex set of unclustered vertices.
At each step t of the algorithm, we select a subset of vertices as a cluster Ct and remove it from
unclustered vertices. Thus, each vertex is assigned to a cluster exactly once and is never removed
from a cluster once it is assigned.

For each vertex w ∈ V , let Ball(w, ρ) = {u ∈ V : xuw ≤ ρ} be the set of vertices within a distance
of ρ from w. For r = 1/5 the quantity r− xuw where u ∈ Ball(w, r) represents the distance from u
to the boundary of the ball of radius 1/5 around w. Let Vt ⊆ V be the set of unclustered vertices at
step t, and define

Lt(w) =
∑

u∈Ball(w,r)∩Vt

r − xuw.

At each step t, we select the vertex wt that maximizes the quantity Lt(w) over all unclustered vertices
w ∈ Vt and select the set Ball(wt, 2r) as a cluster. We repeat this step until all the nodes have been
clustered. A pseudo-code for our algorithm is given in Figure B.1.

B.2 Analysis

In this section, we present an analysis of our algorithm.

Theorem B.1. Algorithm 2 gives a 5-approximation for Correlation Clustering on complete graphs.

For an edge (u, v) ∈ E, let LP (u, v) be the LP cost of the edge (u, v): LP (u, v) = xuv if (u, v) ∈
E+ and LP (u, v) = 1− xuv if (u, v) ∈ E−. Let ALG(u, v) = 1((u, v) is in disagreement ).

Define
profit(u) =

∑
(u,v)∈E

LP (u, v)− r
∑

(u,v)∈E

ALG(u, v),
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Input: Optimal solution x to the linear program (P).
Output: Clustering C.

1. Let V0 = V , r = 1/5, t = 0.
2. while (Vt 6= ∅)

• Find wt = arg max
w∈Vt

Lt(w).

• Create a cluster Ct = Ball(wt, 2r) ∩ Vt.
• Set Vt+1 = Vt \ Ct and t = t+ 1.

3. Return C = (C0, . . . , Ct−1).

Figure B.1: Algorithm for Correlation Clustering on complete graphs.

where r = 1/5. We show that for each vertex u ∈ V , we have profit(u) ≥ 0 (see Lemma B.2 below)
and, therefore, the number of disagreeing edges incident to u is upper bounded by 5y(u):

ALG(u) =
∑

v:(u,v)∈E

ALG(u, v) ≤ 1

r

∑
v:(u,v)∈E

LP (u, v) = 5y(u).

Thus, ‖ALG‖q ≤ 5‖y‖q for any q ≥ 1. Consequently, the approximation ratio of the algorithm is at
most 5 for any norm `q .
Lemma B.2. For every u ∈ V , we have profit(u) ≥ 0.

At each step t of the algorithm, we create a new cluster Ct and remove it from the graph. We also
remove all edges with at least one endpoint in Ct. Denote this set of edges by

∆Et = {(u, v) : u ∈ Ct or v ∈ Ct}.
Now let

profitt(u, v) =

{
LP (u, v)− rALG(u, v), if (u, v) ∈ ∆E

0, otherwise
.

profitt(u) =
∑
v∈Vt

profitt(u, v) =
∑

(u,v)∈∆Et

LP (u, v)− r
∑

(u,v)∈∆Et

ALG(u, v). (11)

As all sets ∆Et are disjoint, profit(u) =
∑
t profitt(u). Thus, to prove Lemma B.2, it is sufficient to

show that profitt(u) ≥ 0 for all t. Note that we only need to consider u ∈ Vt as profitt(u) = 0 for
u /∈ Vt.
Consider a step t of the algorithm and vertex u ∈ Vt. Let w = wt be the center of the cluster
chosen at this step. First, we show that since the diameter of the cluster Ct is 4r, for all negative
edges (u, v) ∈ E− with u, v ∈ Ct, we can charge the cost of disagreement to the edge itself, that
is, profitt(u, v) is nonnegative for (u, v) ∈ E− (see Lemma B.3). We then consider two cases:
xuw ∈ [0, r] ∪ [3r, 1] and xuw ∈ (r, 3r].

The former case is fairly simple since disagreeing positive edges (u, v) ∈ E+ (with xuw ∈ [0, r] ∪
[3r, 1]) have a “large” LP cost. In Lemma B.4 and Lemma B.5, we prove that the cost of disagreement
can be charged to the edge itself and hence profitt(u) ≥ 0.

We then consider the latter case. For vertices u with xuw ∈ (r, 3r], profitt(u, v) for some disagreeing
positive edges (u, v) might be negative. Thus, we split the profit at step t for such vertices u into the
profit they get from edges (u, v) with v in Ball(w, r) ∩ Vt and from edges with v in Vt \ Ball(w, r).
That is,

profitt(u) =
∑

v∈Ball(w,r)

profitt(u, v)

︸ ︷︷ ︸
Phigh(u)

+
∑

v∈Vt\Ball(w,r)

profitt(u, v)

︸ ︷︷ ︸
Plow(u)

.
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Denote the first term by Phigh(u) and the second term by Plow(u). We show that Plow(u) ≥ −Lt(u)
(see Lemma B.9) and Phigh ≥ Lt(w) (see Lemma B.7) and conclude that profitt(u) = Phigh(u) +
Plow(u) ≥ Lt(w)− Lt(u) ≥ 0 since Lt(w) = maxw′∈Vt Lt(w

′) ≥ Lt(u).

In the following claim, we show that we can charge the cost of disagreement of a negative edge to the
edge itself.
Claim B.3. For a negative edge (u, v) ∈ E−, profitt(u, v) is always nonnegative.

Proof. The only case when (u, v) is in disagreement is when both u and v belong to the new cluster.
In this case, they lie in the ball of radius 2r around w (and thus xuw, xvw ≤ 2r). Thus the distance
xuv between them is at most 4r (because xuv ≤ xuw + xvw ≤ 4r). The LP cost of the edge (u, v)
is at least LP (u, v) = 1 − xuv ≥ 1 − 4r = r. Thus, profitt(u, v) = LP (u, v) − rALG(u, v) =
LP (u, v)− r ≥ 0.

In Lemma B.4 and Lemma B.5, we consider the case when xuw ∈ [0, r] ∪ (3r, 1].
Lemma B.4. If xuw ≤ r, then profitt(u, v) ≥ 0 for all v ∈ Vt.

Proof. If xuw ∈ E−, then profitt(u, v) ≥ 0 by Claim B.3. Assume that xuw ∈ E+. Since
xuw ≤ r, u belongs to the cluster Ct. Thus, (u, v) disagrees only if v does not belong to that
cluster. In this case, xwv ≥ 2r and by the triangle inequality xuv ≥ xvw − xuw ≥ r. Therefore,
profitt(u, v) = xu,v − r ≥ 0.

Lemma B.5. If xuw ≥ 3r, then profitt(u, v) ≥ 0 for all v ∈ Vt.

Proof. As in the previous lemma, we can assume that xuw ∈ E+. If xuw ≥ 3r, then u does not
belong to the new cluster Ct. Thus, (u, v) disagrees only if v belongs to Ct. In this case, xwv ≤ 2r
and by the triangle inequality xuv ≥ xuw − xvw ≥ r. Therefore, profitt(u, v) = xu,v − r ≥ 0.

We next consider u such that xuw ∈ (r, 3r]. First, we show that the profit we obtain from every edge
(u, v) with v ∈ Ball(w, r) is at least r − xvw, regardless of whether the edge is positive or negative.
Claim B.6. If xuw ∈ (r, 3r] and v ∈ Ball(w, r) ∩ Vt, then profitt(u, v) ≥ r − xvw.

Proof. First consider u such that xuw ∈ (r, 2r]. Note that xuv ≥ xuw − xvw ≥ r − xvw. Moreover,
xuv ≤ xuw + xvw ≤ 2r + xvw. Thus, if (u, v) ∈ E+, then profitt(u, v) ≥ r − xvw. Otherwise,
profitt(u, v) ≥ (1− 2r − xvw)− r ≥ 2r − xvw.

For u ∈ (2r, 3r], note that xuv ≥ xuw−xvw ≥ 2r−xvw. Moreover, xuv ≤ xuw+xvw ≤ 3r+xvw.
Thus, if (u, v) ∈ E+, then profitt(u, v) ≥ (2r − xvw) − r ≥ r − xvw. Otherwise, profitt(u, v) ≥
(1− 3r − xvw) ≥ 2r − xvw.

Using the above claim, we can sum up the profits from all vertices v in Ball(w, r) and lower bound
Phigh(u) as follows.
Lemma B.7. If xuw ∈ (r, 3r], then Phigh(u) ≥ Lt(w).

Proof. By Claim B.6, we have profitt(u, v) ≥ r − xvw for all v ∈ Vt. Thus,

Phigh(u) =
∑

v∈Ball(w,r)∩Vt

profitt(u, v) ≥
∑

v∈Ball(w,r)∩Vt

r − xvw = Lt(w).

We now lower bound Plow(u). To this end. we estimate each term profitt(u, v) in the definition of
Plow.
Claim B.8. If xuw ∈ (r, 3r] and v ∈ Vt \ Ball(w, r), then profitt(u, v) ≥ min(xuv − r, 0).

Proof. By Claim B.3, if (u, v) is a negative edge, then profitt(u, v) ≥ 0. The profit is 0 if xuv /∈ ∆Et
(i.e., neither u nor v belong to the new cluster). So let us assume that (u, v) is a positive edge in
∆Et. Then, the profit obtained from (u, v) is xuv if (u, v) is in agreement and xuv − r if (u, v) is in
disagreement. In any case, profitt(u, v) ≥ xuv − r ≥ min(xuv − r, 0).
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minimize
∑

(u,v)∈E+

wuv|xu − xv|+
∑

(u,v)∈E−
wuv(xu + xv − 1)+

subject to xz = 1
0 ≤ xu ≤ 1 for all u ∈ V

Here, we use notation (t)+ = max(t, 0).

Figure C.1: LP relaxation for covering z with a low cost set S.

Lemma B.9 is an immediate corollary of Claim B.8.
Lemma B.9. If xuw ∈ (r, 3r], then Plow(u) ≥ −Lt(u).

Proof. By Claim B.8, we have profitt(u, v) ≥ min(xuv − r, 0) for all v ∈ Vt. Thus,

Plow(u) =
∑

v∈Vt\Ball(w,r)

profitt(u, v)

≥
∑

v∈Vt\Ball(w,r)

min(xuv − r, 0)

a
≥

∑
v∈Vt

min(xuv − r, 0)

b
=

∑
v∈Ball(u,r)∩Vt

xuv − r

= −L(u).

Here we used that (a) all terms min(xuv − r, 0) are nonpositive, and (b) min(xuv − r, 0) = 0 if
v /∈ Ball(u, r).

This finishes the proof of Lemma B.2.

C Correlation Clustering with the AKS Objective

Note that, after linearizing the objective function in C.1, we get the LP in C.2.
Claim C.1. The LP relaxation described in Figure C.2 is a valid relaxation for the subproblem.

Proof. Let us verify that this is a valid relaxation for the problem. As we discussed above, in the
intended integral solution, we have xu = 1 if u is in the set S, and xu = 0, otherwise. That is, xu is
the indicator of the event “u ∈ S”.

Consider a positive edge (u, v) ∈ E+. In the integral solution, |xu − xv| = 1 if and only if one of
the vertices u or v is in S and the other one is not. In this case, the edge (u, v) is in disagreement
with S. Now, consider a negative edge (u, v) ∈ E−. In the integral solution, (xu + xv − 1)+ = 1
if and only if both u and v are in S. Again, in this case, the edge (u, v) is in disagreement with S.
Thus, this LP is a relaxation for our problem.

Note that we can linearize the | · | and (·)+ terms in the objective as follows. We can replace
terms of the type |xu − xv| with variables µuv and introduce the constraints µuv ≥ (xu − xv) and
µuv ≥ (xv − xu). Similarly, we can replace terms of the type (xu + xv − 1)+ with variables ηuv
and introduce the constraints ηuv ≥ (xu + xv − 1) and ηuv ≥ 0. It is easy to see that the minimum
values for the variables µuv and ηuv is attained at |xu − xv| and (xu + xv − 1)+ respectively.

C.1 Half-integrality of Subproblem Polytope

In this subsection, we show that the polytope of the subproblem that we consider is half-integral. First,
we linearize the objective as described in the above subsection to obtain the equivalent relaxation (P-
Cover-z).
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minimize
∑

(u,v)∈E+

wuvµuv +
∑

(u,v)∈E−
wuvηuv

subject to xz = 1
0 ≤ xu ≤ 1 for all u ∈ V
µuv ≥ (xv − xu)
µuv ≥ (xu − xv)
ηuv ≥ 0
ηuv ≥ (xu + xv − 1)

(P-Cover-z)

Figure C.2: LP relaxation for covering z with a low cost set S.

Lemma C.2. The polytope (P-Cover-z) is half-integral.

Proof. We will show that the (P-Cover-z) polytope is half-integral via contradiction, that is, we show
that if an extreme point solution (x, µ, η) is not half-integral, then there exist feasible solution pairs
(x′, µ′, η′) and (x′′, µ′′, η′′) such that x (µ, η) can be written as a convex combination of x′ and x′′
(respectively (µ′, µ′′), (η′, η′′)).

Towards a contradiction assume that an extreme point solution is not integral. Let L = {u : 0 <
xu < 1/2} and R = {u : 1/2 < xu < 1}. For each u ∈ V , define,

∆u
1 =


+ε, if u ∈ L
−ε, if u ∈ R
0, otherwise

∆u
2 =


−ε, if u ∈ L
+ε, if u ∈ R
0, otherwise

Here ε is chosen small enough such that: (1) xu ± ε ∈ (0, 1/2) if u ∈ L, (2) xu ± ε ∈ (1/2, 1) if
u ∈ R, (3) (xu + xv − 1)± 2ε < 0 if (xu + xv − 1) < 0.

For each u ∈ V , we define, x′u = xu + ∆u
1 and x′′u = xu + ∆u

2 . Thus, from definition, we can see
that x′ and x′′ are feasible, more over, x = 1

2 (x′ + x′′).

Consider µ′ and µ′′ defined by x′ and x′′ respectively. Notice that if µuv = 0, then µ′uv = µ′′uv = 0.
Otherwise, without loss of generality, let µuv = xu − xv > 0. If both u, v ∈ L or u, v ∈ R, then
µ′uv = µ′′uv = µuv. Else, u ∈ R and v ∈ L, and µ′uv = µuv + 2ε and µ′′uv = µuv − 2ε. Thus,
µ = 1

2 (µ′ + µ′′).

Consider η′ and η′′ defined by x′ and x′′ respectively. Parameter ε was chosen such that if η < 0,
then η′, η′′ < 0. Moreover, if (xu + xv − 1) = 0, then either u ∈ L and v ∈ R or u ∈ R and
v ∈ L, thus µ′uv = µ′′uv = 0. Finally, if ηuv > 0, then ηuv = (xu + xv − 1). If u ∈ R and v ∈ L,
then η′uv = η′′uv = ηuv. Otherwise, u, v ∈ R and η′uv = ηuv − 2ε and η′′uv = ηuv + 2ε. Thus,
η = 1

2 (η′ + η′′).

This contradicts the fact that (x, µ, η) is an extreme point solution. Thus, the polytope (P-Cover-z) is
half-integral.

C.2 Uncrossing Overlapping Sets

For completeness, we present here a proof of the following lemma from Bansal et al. [2011]. Denote
by δ(S) the set of all positive edges leaving set S in graph G. Then, cost+(S) = w(δ(S)).
Lemma C.3 (Uncrossing argument in Bansal et al. [2011]). There exists a polynomial-time algorithm
that given a weighted graph G = (V,E), a family of sets S1, . . . Sk that covers all vertices in G, and
a parameter ε = 1/poly(n), finds disjoint sets P1, . . . , Pk covering V such that for each i:

1. Pi ⊂ Si; and

2. w(δ(Pi)) ≤ w(δ(Si)) + εmaxj w(δ(Sj)).

Proof. Let us first describe the uncrossing algorithm from the paper Bansal et al. [2011]. Initially,
the algorithm sets P 0

i = Si \ ∪j<iSj for each i ∈ {1, . . . , k}. Then, at every step t, it finds a set P ti
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violating the desired bound

w(δ(P ti )) ≤ w(δ(Si)) + εmax
j
w(δ(Sj)) (12)

and updates all sets as follows: P t+1
i = Si; and P t+1

j = P tj \ Si. The algorithm terminates and
outputs sets P ti when bound (12) holds for all sets P ti .

It easy to see that the following loop invariants hold at every step of the algorithm: (1) each P ti is
a subset of Si; (2) sets P ti are disjoint; (4) sets P ti cover all vertices in V . It is also immediate that
when or if the algorithm terminates sets P ti satisfy (12). We only need to check that the algorithm
stops in polynomial time.

Let B = maxj w(δ(Sj)). Define a potential function ϕ(t) =
∑k
i=1 w(δ(Pi)). Observe that initially

ϕ(0) ≤ 2
∑
i w(δ(Si)), since every edge cut by the partition (P1, . . . , Pk) belongs to some Si. Since,

w(δ(Si)) ≤ B for all i, we have ϕ(0) ≤ 2kB. We will show that at every step of the algorithm ϕ(t)
decreases by at least 2εB and thus the algorithm terminates in at most k/ε steps.

Consider step t of the algorithm. Suppose that at this step of the algorithm, set P ti violated the
constraint and thus it was replaced by Si. Write,

ϕ(t+ 1)− ϕ(t) =
(
w(δ(Si))− w(δ(P ti ))

)
+
∑
j 6=i

(w(δ(P t+1
i ))− w(δ(P ti )))

=
(
w(δ(Si))− w(δ(P ti ))

)
+
∑
j 6=i

(w(δ(P ti \ Si))− w(δ(P ti ))).

Observe that for every two subsets of vertices P and S we have the following inequality:

w(δ(P \ S))− w(δ(P )) =
(
w(E(P \ S, V \ P )) + w(E(P \ S, P ∩ S))

)
−
(
w(E(P \ S, V \ P )) + w(E(P ∩ S, V \ P ))

)
= w(E(P ∩ S, P \ S))− w(E(P ∩ S, V \ P ))

≤ w(E(P ∩ S, P \ S))− w(E(P ∩ S, S \ P ))

=
(
w(E(P ∩ S, P \ S)) + w(E(S \ P, P \ S))

)
−
(
w(E(P ∩ S, S \ P )) + w(E(P \ S, S \ P ))

)
= w(E(S, P \ S))− w(E(P, S \ P )).

Also, note that P ti ⊂ Si \P tj (since P ti ⊂ Si and all P tj are disjoint). Consequently, w(E(P ti , P
t
j )) ≤

w(E(Si \ P tj , P tj )). Therefore,

ϕ(t+ 1)− ϕ(t) =
(
w(δ(Si))− w(δ(P ti ))

)
+
∑
j 6=i

w(E(Si, P
t
j \ Si))− w(E(P tj , Si \ P tj ))

≤
(
w(δ(Si))− w(δ(P ti ))

)
+
∑
j 6=i

w(E(Si, P
t
j \ Si))− w(E(P tj , P

t
i )).

Using again that the sets P tj partition V into disjoint pieces, we get

ϕ(t+ 1)− ϕ(t) ≤
(
w(δ(Si))− w(δ(P ti ))

)
+
∑
j 6=i

w(E(Si, P
t
j \ Si))− w(E(P tj , P

t
i ))

=
(
w(δ(Si))− w(δ(P ti ))

)
+ w(E(Si,∪j 6=iP tj \ Si))− w(E(∪j 6=iP tj , P ti ))

=
(
w(δ(Si))− w(δ(P ti ))

)
+ w(E(Si, V \ Si))︸ ︷︷ ︸

=δ(Si)

−w(E(V \ P ti , P ti ))︸ ︷︷ ︸
=δ(P t

i )

= 2
(
w(δ(Si))− w(δ(P ti ))

)
≤ −2εB.

This concludes the proof.
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C.3 Hardness

We show that AKS problem is at least as hard as the vertex cover problem unless P = NP . This can
be seen as follows.
Theorem C.4. The AKS problem Min-Max objective is NP-Hard to approximate within a factor of
2− ε.

Proof. We prove the above theorem by reducing the AKS problem to vertex cover.

Reduction: Let G = (V,E) be the vertex cover instance. We reduce it to an instance of the AKS
problem G′ = (V ′, E+, E−) as follows. We define the new vertex set V ′ as V ′ = V ∪ {z} and the
set of positive edges as the ones that connect z to the vertices in V . That is, E+ = {(z, u) : u ∈ V }.
We assign each positive edge a weight of 1. Finally, the set of negative edges are the edges E, that is,
E− = E. We assign each negative edge a weight of∞.

OPTAKS ≤ OPTV C Let S be an optimal vertex cover in G, that is OPTV C = |S|. We will use S
to construct a partitioning P of the vertex set of G′, such that the cost of P under the AKS objective
is |S|. We define the partitioning P as follows: For every vertex v ∈ S, we form a singleton cluster
{v}. We also form a cluster {z} ∪ (V \ S) consisting of all the vertices in V \ S and z. For every
singleton cluster {v}, the only edge in disagreement is the similar edge connecting v to z of weight 1.
Thus, the cost of every singleton cluster is 1.

Consider the cluster {z} ∪ (V \ S). There are no negative edges (u, v) within this cluster, since for
every edge (u, v) ∈ E− = E, one of its endpoints must belong to the vertex cover S. Thus, the cost
of the set {z} ∪ (V \ S) equals the number of positive edges which are cut which are exactly the
edges connecting z to S. Thus, OPTAKS ≤ cost(P) = |S| = OPTV C .

OPTV C ≤ OPTAKS Let P be an optimal partitioning of V ′ of cost OPTAKS . Consider the cluster
P ∈ P containing the vertex z. Since P is an optimal partitioning, there can be no negative edges
present within P . Thus the cost of the cluster P equals the number of positive edges which are cut,
which is exactly |V ′| − |P | = |V | + 1 − |P |. We define the vertex cover for the graph G to be
T = V \ (P \ {z}). The set T is a feasible set cover because every edge (u, v) ∈ E is a negative
edge of infinite weight and thus both vertices u and v cannot belong to the cluster P . Therefore, at
least one of them – u or v – must belong to T . The cost of T equals |T | = |V | − (|P | − 1). Hence,
OPTV C ≤ cost(P ) ≤ OPTAKS .

D Integrality gap

In this section, we present an integrality gap example for the convex program (P). We describe an
instance of the `q s− t cut problem on Θ(n) vertices that has an integrality gap of Ω(n

1
2−

1
2q ). In our

integrality gap example, we describe a layered graph with Θ(n
1
2 ) layers, with each layer consisting

of a complete bipartite graph on Θ(n
1
2 ) vertices. Between each layer i and i+ 1, there is a terminal

si which connects these two layers. Finally, the terminals s and t are located at opposite ends of
this layered graph. We will observe that for any integral cut separating s and t, there will be at least
one vertex such that a large fraction of the edges incident to it are cut. We will show that there is
a corresponding fractional solution that is cheaper compared to any integral cut as the fractional
solution can “spread” the cut equally across the layers, thus not penalizing any individual layer too
harshly. In doing so, we will prove the following theorem,

Theorem D.1. The integrality gap for the convex relaxation (P) is Ω(n
1
2−

1
2q ).

Proof. We now give a more formal description of the layered graph discussed above. The construction
has two parameters a and b, so we will call such a graph Ga,b. The graph consists of b layers with
each layer consisting of the complete bipartite graph Ka,a. We refer to layer i of the graph as Gia,b
and refer to the left and right hand of the bipartition as L(Gia,b) and R(Gia,b) respectively. In addition
to these layers, the graph consists of b+ 1 terminals {s, t, s1, . . . , sb−1} (we will refer to s as s0 and
t as sb interchangeably). For each i ∈ {1, . . . , b− 1}, the vertex si is connected to all the vertices in
R(Gia,b) and L(Gi+1

a,b ). Finally, s is connected to all the vertices in L(G1
a,b) and t is connected to all

the vertices in R(Gba,b).
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Figure D.1: Integrality gap example.

Consider any integral cut separating s and t in the graph Ga,b. Any such cut must disconnect at
least one pair of consecutive terminals (if all pairs of consecutive terminals are connected, then s
is still connected to t). Thus let j ∈ {0, 1, . . . , b} be such that sj−1 is disconnected from sj and
consider the subgraph induced on {sj−1 ∪ sj ∪ Gja,b}. We will show that this induced subgraph
contains a vertex such that Ω(a

1
2 ) of its incident edges are cut. Intuitively, since sj−1 is separated

from sj , if the majority of the edges incident to sj−1 and sj are not cut, then sj−1 and sj have many
neighbors in L(Gja,b) and R(Gja,b) respectively. As Gja,b is highly connected, in order for sj−1 to
be separated from sj , there must be a vertex in Gja,b with many incident edges which are cut. If
cut(sj−1) or cut(sj) is at least a/2, then we are done. Otherwise, sj is connected to at least a/2
vertices in R(Gja,b), so every u adjacent to sj−1 must have at least a/2 incident edges which are cut.
Therefore, OPT q ≥ Ω(aq).

We now present a fractional cut separating s and t. If an edge e connects si to a vertex in R(Gia,b) for
some i ∈ {1, . . . , b}, set the length of the edge to be 1/b; otherwise set the edge length to be 0. We
let xuv be the shortest path metric in this graph. It is easy to see that such a solution is feasible. We
now analyze the quality of this solution. For each i ∈ {1, . . . , b}, we have ysi = a/b and for each
u ∈ R(Gia,b), we have yu = 1/b. Thus

LP q = ab
(1

b

)q
+ b
(a
b

)q
.

If b > a, then

LP q ≤ ab
(1

b

)
+ b
(a
b

)
= 2a

and if b > a, then

LP q ≤ ab
(1

b

)
+ b
(a
b

)q
≤ aq

(
a−(q−1) + b−(q−1)

)
.

Setting a = b = Ω(n
1
2 ) gives

OPT q

LP q
= Ω

(
n

q
2−

1
2

)
,

so the integrality gap is OPT
LP = Ω(n

1
2−

1
2q ).
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E Hardness of approximation

In this section, we prove the following hardness result.
Theorem E.1. It is NP-hard to approximate the min `∞ s-t cut problem within a factor of 2− ε for
every positive ε.

Proof. The proof follows a reduction from 3SAT. We will describe a procedure that reduces every
instance of a 3CNF formula φ to a graph Gφ such that the minimum `∞ s-t cut for Gφ has a certain
value if and only if the formula φ is satisfiable.

Reduction from 3SAT: Given a 3CNF instance φ with n literals and m clauses, we describe a graph
Gφ with (2 + 4n+ 5m) vertices and (6n+ 8m) edges. We refer to the vertex and edge set of Gφ
as V (Gφ) and E(Gφ). For every literal xi, i ∈ {1, . . . , n}, we have four nodes, xTi , xFi , x†i and x̄†i .
Additionally, we have a “False” and a “True” node. For every i ∈ {1, . . . , n}, we connect “False”
with xFi and “True” with xTi using an infinite weight edge. Both xFi and xTi are connected to x†i and
x̄†i using edges of weight 1.

For every clause C in φ, we will create a gadget in Gφ consisting of five nodes. We will refer to the
subgraph induced by these nodes as Gφ[C]. Let the clause C = (y1 ∨ y2 ∨ y3). We have a node in
the gadget for each yi, i ∈ {1, 2, 3}, and two additional nodes Ca and Cb. We connect y2 and y3 to
Cb, and y1 and Cb to Ca, all using unit weight edges.

We connect the gadget Gφ[C] for clause C = (y1 ∨ y2 ∨ y3) to the main graph as follows. For each
i ∈ {1, 2, 3}, connect the vertex for the literal yi to the vertex y†i with a unit weight edge. Finally
connect the node Ca to the “True” vertex using an infinite weight edge. An example of a 3CNF
formula φ and the corresponding Gφ is given in Figure E.1.

Fact 1. Consider the gadget Gφ[C] for the clause C = (y1 ∨ y2 ∨ y3). If all three nodes y1, y2, and
y3 need to be disconnected from Ca, then either | cutCa

| = 2 or cutCb
= 2. If at most two of the

three nodes y1, y2 and y3 need to be disconnected from Ca, then there is a cut that separates those
nodes from Ca such that both cutCa

and cutCb
are at most 1.

Lemma E.2. Given a 3CNF formula φ, consider the graphGφ constructed according to the reduction
described above. The formula φ is satisfiable if and only if the minimum `∞ True-False cut P for the
graph Gφ has value 1, that is, || cutP ||∞ = 1.

Proof. 3SAT⇒minimum `∞ True-False cut: If the 3CNF formula φ is satisfiable, then the graph
Gφ has a minimum `∞ s-t cut of value exactly 1. This can be seen as follows. Given a satisfying
assignment x∗, we will construct a cut EP (and corresponding partition P) such that for every vertex
u ∈ V (Gφ), cutP(u) ≤ 1. For every i ∈ {1, . . . , n}, if x∗i is True, then include (x†i , x

F
i ) and

(x̄†i , x
T
i ) as part of the cut EP , else include (x†i , x

T
i ) and (x̄†i , x

F
i ) as part of the cut EP . Note that

this cuts exactly one edge incident to each vertex x†i , x
F
i , x̄

†
i and xTi for i ∈ {1, . . . , n}. Since φ has

a satisfiable assignment, each clause C has at least one literal which is True, and hence the node
corresponding to this literal is not connected to the vertex False in Gφ−EP . Thus, each clause C has
at most two literals that are False, and thus there are at most two False-True paths that go through this
gadget. From Fact 1, we can know that we can include edges from E(Gφ[C]) in EP such that both
cutP(Ca) and cutP(Cb) are at most 1 and the False-True paths through this gadget are disconnected.
Thus, cut EP disconnects True from False such that || cutP(Gφ)||∞ = 1.

minimum `∞ True-False cut⇒ 3SAT: Let Gφ be the graph constructed for the 3CNF formula φ
such that there is a cut EP ⊆ E(Gφ) (and corresponding partition P) such that P separates True
from False and || cutP(Gφ)||∞ = 1. We will construct a satisfying assignment x∗ from the formula
φ. Since cutP(u) ≤ 1 for every u ∈ V (Gφ), none of the (True, xTi ), (xFi , False) edges are part of
the cut P for i ∈ {1, . . . , n}. In order for True to be separated from False, either the edges (x†i , x

F
i )

and (x̄†i , x
T
i ) are part of the cut EP , or the edges (x†i , x

T
i ) and (x̄†i , x

F
i ) are part of the cut EP . This

gives us our assignment; for each i ∈ {1, . . . , n}, if (xTi , x
†
i ) ∈ E \ EP , then assign x∗i as True and

x̄∗ as False. Otherwise (xFi , x
†
i ) ∈ E \EP , so assign x∗i as False and x̄∗ as True. Now, we show that

x∗ is a satisfiable assignment for φ. To see this, note that for each clause C, there exists at least one
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Figure E.1: Gφ for the 3CNF formula φ = (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄4 ∨ x̄5) ∧ (x̄1 ∨ x4 ∨ x5).

literal yi such that the node corresponding to yi is still connected to Ca. As the cut EP separates True
and False, (y†i , y

T
i ) ∈ E \ E(Gφ) and hence y∗i = True. Thus, the assignment x∗ is satisfiable for φ.

Thus, we can conclude Theorem 5.1 from the reduction procedure provided and Lemma 5.2.

F Correlation Clustering on Complete Bipartite Graphs

Let (V = L ∪R,E) be a complete bipartite graph with L and R being the bipartition of the vertex
set. In this section, we provide and analyze an algorithm for correlation clustering on complete graphs
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Input: Optimal solution x to the linear program (P).
Output: Clustering C.

1. Let V0 = V , r = 1/5, t = 0.
2. while (Vt ∩ L 6= ∅)

• Find wt = arg max
w∈L

LRt (w).

• Create a cluster Ct = BallL∪R(wt, 2r) ∩ Vt.
• Set Vt+1 = Vt \ Ct and t = t+ 1.

3. Let CL = (C0, . . . , Ct−1).
4. if (R ∩ Vt 6= ∅)

• Let CR = R ∩ Vt.
5. Return C = CL ∪ {CR}.

Figure F.1: Algorithm for Correlation Clustering on complete bipartite graphs.

with an approximation guarantee of 5 for minimizing the mistakes on one side of the bipartition
(which without loss of generality will be L). The algorithm and analysis for complete bipartite graphs
is very similar to the algorithm and analysis for complete graphs. At each step t of our algorithm,
we select a cluster center wt ∈ L and a cluster Ct ⊆ (L ∪ R) and remove it from the graph. This
clustering step is repeated until all vertices in L are part of some cluster. If there are any remaining
vertices in R which are unclustered, we put them in a single cluster.

Similar to the definition of Ball(w, ρ) in Section B, we define BallS(w, ρ) = {u ∈ S : xuw ≤ ρ}.
We select the cluster centerswt in step t as follows. Let Vt ⊆ V be the set of unclustered vertices at the
start of step t. We redefine LSt (w) =

∑
u∈BallVt∩S(w,r) r − xuw. We select wt as the vertex w ∈ L

that maximizes Lt(w). We then select BallL∪R(w, 2r) as our cluster and repeat. A pseudocode for
the above algorithm is provided in Figure F.1.

F.1 Analysis

In this section, we present an analysis of our algorithm.
Theorem F.1. Algorithm 3 gives a 5-approximation for Correlation Clustering on complete biparite
graphs where disagreements are measured on only one side of the bipartition.

The proof of this theorem is almost identical to the proof of Theorem B.1. We define LP (u, v),
ALG(u, v), profitt(u, v) for every edge (u, v) and profit(u), profitt(u) for every vertex u as in
Section B. We then show that for each vertex u ∈ L, we have profit(u) ≥ 0 and, therefore, the
number of disagreeing edges incident to u is upper bounded by 5y(u):

ALG(u) =
∑

v:(u,v)∈E

ALG(u, v) ≤ 1

r

∑
v:(u,v)∈E

LP (u, v) = 5y(u).

Thus, ‖ALG‖q ≤ 5‖y‖q for any q ≥ 1. Consequently, the approximation ratio of the algorithm is at
most 5 for any norm `q .
Lemma F.2. For every u ∈ L, we have profit(u) ≥ 0.

As in Lemma 4.4, we need to show that profitt(u) ≥ 0 for all t. Note that we only need to consider
u ∈ Vt ∩ L as profitt(u) = 0 for u /∈ Vt.
Consider a step t of the algorithm and vertex u ∈ Vt ∩ L. Let w = wt be the center of the cluster
chosen at this step. First, we show that since the diameter of the cluster Ct is 4r, for all negative
edges (u, v) ∈ E− with u, v ∈ Ct, we can charge the cost of disagreement to the edge itself, that
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is, profitt(u, v) is nonnegative for (u, v) ∈ E− (see Lemma B.3). We then consider two cases:
xuw ∈ [0, r] ∪ [3r, 1] and xuw ∈ (r, 3r].

The former case is fairly simple since disagreeing positive edges (u, v) ∈ E+ (with xuw ∈ [0, r] ∪
[3r, 1]) have a “large” LP cost. In Lemma B.4 and Lemma B.5, we prove that the cost of disagreement
can be charged to the edge itself and hence profitt(u) ≥ 0.

We then consider the latter case. Similarly to Lemma 4.4, we split the profit at step t for vertices u
with xuw ∈ (r, 3r] into the profit they get from edges (u, v) with v in BallR(w, r) ∩ Vt and from
edges with v in Vt \ BallR(w, r). That is,

profitt(u) =

=
∑

v∈BallR(w,r)∩Vt

profitt(u, v)

︸ ︷︷ ︸
Phigh(u)

+
∑

v∈Vt\BallR(w,r)

profitt(u, v)

︸ ︷︷ ︸
Plow(u)

.

Denote the first term by Phigh(u) and the second term by Plow(u). We show that Plow(u) ≥ −LRt (u)
(see Lemma F.6 ) and Phigh ≥ LRt (w) =

∑
v∈BallR w,r∩Vt

r − xvw (see Lemma F.4 ) and conclude
that profitt(u) = Phigh(u)+Plow(u) ≥ LRt (w)−LRt (u) ≥ 0 since LRt (w) = maxw′∈Vt

LRt (w′) ≥
LRt (u).

Consider u such that xuw ∈ (r, 3r]. First, we show that the profit we obtain from every edge (u, v)
with v ∈ BallR(w, r) is at least r − xvw, regardless of whether the edge is positive or negative.
Claim F.3. If xuw ∈ (r, 3r] and v ∈ BallR(w, r) ∩ Vt, then profitt(u, v) ≥ r − xvw.

Proof. First consider u such that xuw ∈ (r, 2r]. Note that xuv ≥ xuw − xvw ≥ r − xvw. Moreover,
xuv ≤ xuw + xvw ≤ 2r + xvw. Thus, if (u, v) ∈ E+, then profitt(u, v) ≥ r − xvw. Otherwise,
profitt(u, v) ≥ (1− 2r − xvw)− r ≥ 2r − xvw.

For u ∈ (2r, 3r], note that xuv ≥ xuw−xvw ≥ 2r−xvw. Moreover, xuv ≤ xuw+xvw ≤ 3r+xvw.
Thus, if (u, v) ∈ E+, then profitt(u, v) ≥ (2r − xvw) − r ≥ r − xvw. Otherwise, profitt(u, v) ≥
(1− 3r − xvw) ≥ 2r − xvw.

Using the above claim, we can sum up the profits from all vertices v in BallR(w, r) and lower bound
Phigh(u) as follows.

Lemma F.4. If xuw ∈ (r, 3r], then Phigh(u) ≥ LRt (w).

Proof. By Claim , we have profitt(u, v) ≥ r − xvw for all v ∈ R ∩ Vt. Thus,

Phigh(u) =
∑

v∈BallR(w,r)∩Vt

profitt(u, v)

≥
∑

v∈BallR(w,r)∩Vt

r − xvw = LRt (w).

We now lower bound Plow(u). To this end. we estimate each term profitt(u, v) in the definition of
Plow.
Claim F.5. If xuw ∈ (r, 3r] and v ∈ Vt \ BallR(w, r), then profitt(u, v) ≥ min(xuv − r, 0).

Proof. By Claim B.3, if (u, v) is a negative edge, then profitt(u, v) ≥ 0. The profit is 0 if xuv /∈ ∆Et
(i.e., neither u nor v belong to the new cluster). So let us assume that (u, v) is a positive edge in
∆Et. Then, the profit obtained from (u, v) is xuv if (u, v) is in agreement and xuv − r if (u, v) is in
disagreement. In any case, profitt(u, v) ≥ xuv − r ≥ min(xuv − r, 0).

Lemma F.6 is an immediate corollary of Claim F.5.
Lemma F.6. If xuw ∈ (r, 3r], then Plow(u) ≥ −LRt (u).
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Proof. By Claim B.8, we have profitt(u, v) ≥ min(xuv − r, 0) for all v ∈ Vt. Thus,

Plow(u) =
∑

v∈Vt\BallR(w,r)

profitt(u, v)

≥
∑

v∈Vt\BallR(w,r)

min(xuv − r, 0)

a
≥

∑
v∈Vt

min(xuv − r, 0)

b
=

∑
v∈BallR(u,r)∩Vt

xuv − r

= −LRt (u).

Here we used that (a) all terms min(xuv − r, 0) are nonpositive, and (b) min(xuv − r, 0) = 0 if
v /∈ Ball(u, r).
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