
Near Neighbor: Who is the Fairest of Them All?
(Appendix)

Sariel Har-Peled
University of Illinois at Urbana-Champaign

Champaign, IL 61801
sariel@illinois.edu

Sepideh Mahabadi
Toyota Technological Institute at Chicago

Chicago, IL 60637
mahabadi@ttic.edu

A Omitted Proofs

A.1 Proof of Lemma 2.4

Proof: Build a balanced binary tree T , where the objects of G are stored in the leaves. Every internal
node u of T , also maintains the total weight wpuq of the objects in its subtree. The tree T has height
Oplog tq, and weight updates can be carried out in Oplog tq time, by updating the path from the root
to the leaf storing the relevant object.

Sampling is now done as follows – we start the traversal from the root. At each stage, when being
at node u, the algorithm considers the two children u1, u2. It continues to u1 with probability
wpu1q{wpuq, and otherwise it continues into u2. The object sampled is the one in the leaf that this
traversal ends up at.

A.2 Proof of Lemma 3.1

Proof: Let m �
G. Observe that an element x P

�
G is picked by step (II) with probability

α � dpxq{m. The element x is output with probability β � 1{dpxq. As such, the probability of x to
be output by the algorithm in this round is αβ � 1{

G. This implies that the output distribution is
uniform on all the elements of

�
G.

The probability of success in a round is n{m, which implies that in expectation m{n rounds are
used, and with high probability Oppm{nq log nq rounds. Computing the degree dGpxq takes Op|G|q
time, which implies the first bound on the running time. As for the second bound, observe that
an element can appear only once in each set of G, which readily implies that dpyq ¤ |G|, for all
y P

�
G.

A.3 Proof of Lemma 3.3

Proof: Let m �
G. Since dpxq � |DGpxq|, it follows that we need to approximate the size of

DGpxq in G. Given a set X P G, we can in constant time check if x P X , and as such decide if
X P DGpxq. It follows that we can apply the algorithm of Lemma 2.3, which requires W pxq �
O
�

g
dpxqε

�2 log n
�

time, where the algorithm succeeds with high probability. The query algorithm is
the same as before, except that it uses the estimated degree.

For x P
�

G, let Ex be the event that the element x is picked for estimation in a round, and let
E 1x be the event that it was actually output in that round. Clearly, we have PrE 1x | Exs � 1{d,
where d is the degree estimate of x. Since d �ε dpxq (with high probability), it follows that
PrE 1x | Exs �ε 1{dpxq. Since there are dpxq copies of x in G, and the element for estimation is
picked uniformly from the sets of G, it follows that the probability of any element x P

�
G to be

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

output in a round is

P
�
E 1x
�
� P

�
E 1x

�� Ex�PrExs � P
�
E 1x

�� Ex� dpxq
m

�ε 1{m,

as E 1x � Ex. As such, the probability of the algorithm terminating in a round is α �°
xP
�

G PrE 1xs �ε n{m ¥ n{2m. As for the expected amount of work in each round, observe
that it is proportional to

W �
¸

xP
�

G
PrExsW pxq �

¸
xP
�

G

dpxq

m

g

ε2dpxq
log n � O

�ng
m
ε�2 log n

	
.

Intuitively, since the expected amount of work in each iteration is W , and the expected number of
rounds is 1{α, the expected running time isOpW {αq. This argument is not quite right, as the amount
of work in each round effects the probability of the algorithm to terminate in the round (i.e., the two
variables are not independent). We continue with a bit more care – let Li be the running time in the
ith round of the algorithm if it was to do an ith iteration (i.e., think about a version of the algorithm
that skips the experiment in the end of the iteration to decide whether it is going to stop), and let
Yi be a random variable that is 1 if the (original) algorithm had not stopped at the end of the first i
iterations of the algorithm.

By the above, we have that yi � PrYi � 1s � PrYi � 1 | Yi�1 � 1sPrYi�1 � 1s ¤ p1� αqyi�1 ¤
p1 � αqi, and ErLis � OpW q. Importantly, Li and Yi�1 are independent (while Li and Yi are
dependent). We clearly have that the running time of the algorithm is O

�°8
i�1 Yi�1Li

�
(here, we

define Y0 � 1). Thus, the expected running time of the algorithm is proportional to

E
�¸

i

Yi�1Li

�
�
¸
i

ErYi�1Lis �
¸
i

ErYi�1sErLis ¤W
¸
i

yi�1 ¤W
8̧

i�1

p1 � αqi�1 �
W

α

� Opgε�2 log nq,

because of linearity of expectations, and since Li and Yi�1 are independent.

A.4 Proof of Lemma 3.7

Proof: The main modification of the algorithm is that whenever we encounter an outlier (the as-
sumption is that one can check if an element is an outlier in constant time), then we delete it from
the set X where it was discovered. If we implement sets as arrays, this can be done by moving an
outlier object to the end of the active prefix of the array, and decreasing the count of the active array.
We also need to decrease the (active) size of the set. If the algorithm encounters more than mO
outliers then it stops and reports that the number of outliers is too large.

Otherwise, the algorithm continues as before. The only difference is that once the query process is
done, the active count (i.e., size) of each set needs to be restored to its original size, as is the size of
the set. This clearly can be done in time proportional to the query time.

A.5 Proof of Lemma 4.3

Proof: Let S �
�

GzO; by Lemma 4.2, we know that Npq, rq � S � Npq, crq, and moreover in
expectation mO ¤ L � |G|. We apply the algorithm of Lemma 3.7. The runtime of the algorithm
is in expectation rOp|G| logp1{εqq � rOpL � logp1{εqq � rOpQpn, cq � logp1{εqq, and the algorithm
produces an almost uniform distribution over the points in S.

A.6 Proof of Lemma 4.8

Proof: First note that the algorithm never outputs an outlier, and thus the third item is always satis-
fied. Next, let K be a random variable showing the number of iterations of the algorithm, and for an
iteration k, define the random variable Mk � Npq, crqX

�
Gk as the set of non-outlier points in the

set of active buckets. Conditioned on K � k, by Lemma B.3, we know that the distribution of the
output is almost uniform on Mk. Moreover, we know that for all k we have Mk � Mk�1, and that
by Observation 4.6, Npq, rq �Mk. Therefore, for all points inNpq, rq their probability of being re-
ported as the final output of the algorithm is equal, and moreover, for all points in Npq, crqzNpq, rq,

2

their probability of being reported is lower (as at some iteration, some of these points might go out
of the set of active buckets). This proves the probability condition.

To bound the query time, let us consider the iterations where the sampled point p is an outlier, and
not an outlier, separately. The total number of iterations where an outlier point is sampled is at most
3L � t � rOpLq � rOpQpn, cqq for which we only pay rOp1q cost. For non-outlier points, their total
cost can be bounded using Lemma B.3 (and Remark 3.6) by rOp|G1| � logpg{εqq � rOpL � logp1{εqq �rOpQpn, cq � logp1{εqq.

A.7 Proof of Lemma 4.9

Proof: We run Algorithm of Lemma 4.8, and while its output is outside of Npq, rq, we ignore it and
run the algorithm again. By Lemma 4.8, the output is guaranteed to be almost uniform on Npq, rq.
Moreover, by Lemma 4.8, and because with high probability, we only need to run the algorithmrOp |Npq,crq|

|Npq,rq| q times, we get the desired bound on the query time.

B Almost uniform sampling via simulation

Here, we show how one can avoid the degree approximation stage in the algorithm of Section 3.3,
and achieve only a polylogarithmic dependence on ε�1. To this end, let x be the element picked.
We need to simulate a process that accepts x with probability 1{dpxq.

We start with the following natural idea for estimating dpxq – probe the sets randomly (with re-
placement), and stop in the ith iteration if it is the first iteration where the probe found a set that
contains x. If there are g sets, then the distribution of i is geometric, with probability p � dpxq{g. In
particular, in expectation, Eris � g{dpxq, which implies that dpxq � g{Eris. As such, it is natural
to take g{i as an estimation for the degree of x. As such, since we want to simulate a process that
succeeds with probability 1{dpxq, it would be natural to return 1 with probability i{g and 0 other-
wise. Surprisingly, while this seems like a heuristic, it does work, under the right interpretation as
testified by the following.
Lemma B.1. Assume we have g urns, and exactly d ¡ 0 of them, are non-empty. We can check if
a specific urn is empty in constant time. There is a randomized algorithm, that outputs a number
Y ¥ 0, such that ErY s � 1{d. The expected running time of the algorithm is Opg{dq.
Proof: The algorithm repeatedly probes urns (uniformly at random), until it finds a non-empty urn.
Assume it found a non-empty urn in the ith probe. The algorithm outputs the value i{g and stops.

Setting p � d{g, and let Y be the output of the algorithm. we have that

E
�
Y
�
�

8̧

i�1

i

g
p1 � pqi�1p �

p

gp1 � pq

8̧

i�1

ip1 � pqi �
p

gp1 � pq
�

1 � p

p2
�

1

pg
�

1

d
,

using the formula
°8

i�1 ix
i � x

p1�xq2 .

The expected number of probes performed by the algorithm until it finds a non-empty urn is 1{p �
g{d, which implies that the expected running time of the algorithm is Opg{dq.

The natural way to deploy Lemma B.1, is to run its algorithm to get a number y, and then return
1 with probability y. The problem with this idea is that y can be strictly larger than 1, which is
meaningless for probabilities. Instead, we backoff by using the value y{∆, for some parameter ∆.
If the returned value is larger than 1, we just treat it at zero. If the zeroing never happened, the
algorithm would return one with probability 1{pdpxq∆q – which we can use to our purposes via,
essentially, amplification. Instead, the probability of success is going to be slightly smaller, but
fortunately, the loss can be made arbitrarily small by taking ∆ to be sufficiently large.
Lemma B.2. There are g urns, and exactly d ¡ 0 of them are not empty. Furthermore, assume
one can check if a specific urn is empty in constant time. Let γ P p0, 1q be a parameter. There
is a randomized algorithm, that outputs a number Z ¥ 0, such that Z P r0, 1s, and ErZs P I ��

1
d∆ � γ, 1

d∆

�
, where ∆ � rln γ�1s� 4 � Θplog γ�1q. The expected running time of the algorithm

is Opg{dq.

Alternatively, the algorithm can output a bit X , such that PrX � 1s P I .

3

Proof: We modify the algorithm of Lemma B.1, so that it outputs i{pg∆q instead of i{g. If the
algorithm does not stop in the first g∆�1 iterations, then the algorithm stops and outputs 0. Observe
that the probability that the algorithm fails to stop in the first g∆ iterations, for p � d{g, is p1 �
pqg∆ ¤ exp

�
�d

g g∆
	
¤ expp�d∆q ¤ expp�∆q ! γ.

Let Z be the random variable that is the number output by the algorithm. Arguing as in Lemma B.1,
we have that ErZs ¤ 1{pd∆q. More precisely, we have ErZs � 1

d∆ �
°8

i�g∆�1
i

g∆ p1 � pqi�1p.
Let

gpj�1q¸
i�gj�1

i

g
p1 � pqi�1p ¤ pj � 1q

gpj�1q¸
i�gj�1

p1 � pqi�1p � pj � 1qp1 � pqgj
g�1̧

i�0

p1 � pqip

¤ pj � 1qp1 � pqgj ¤ pj � 1q

�
1 �

d

g

gj

¤ pj � 1q expp�djq

Let gpjq � j�1
∆ expp�djq. We have that ErZs ¥ 1

d∆ � β, where β �
°8

j�∆ gpjq. Furthermore, for
j ¥ ∆, we have

gpj � 1q

gpjq
�
pj � 2q expp�dpj � 1qq

pj � 1q expp�djq
¤

�
1 �

1

∆

e�d ¤

5

4
e�d ¤

1

2
.

As such, we have that

β �
8̧

j�∆

gpjq ¤ 2gp∆q ¤ 2
∆ � 1

∆
expp�d∆q ¤ 4 expp�∆q ¤ γ,

by the value of ∆. This implies that ErZs ¥ 1{pd∆q � β ¥ 1{pd∆q � γ, as desired.

The alternative algorithm takes the output Z, and returns 1 with probability Z, and zero otherwise.
Lemma B.3. The input is a family of sets F that one preprocesses in linear time. Let G � F be
a sub-family and let n � |

�
G|, g � |G|, and let ε P p0, 1q be a parameter. One can sample an

element x P
�

G with almost uniform probability distribution. Specifically, the probability of an
element to be output is �ε 1{n. After linear time preprocessing, the query time is Opg logpg{εqq,
in expectation, and the query succeeds, with high probability (in g).
Proof: The algorithm repeatedly samples an element x using steps (I) and (II) of the algorithm of
Section 3.2. The algorithm returns x if the algorithm of Lemma B.2, invoked with γ � pε{gqOp1q

returns 1. We have that ∆ � Θplogpg{εqq. Let α � 1{pdpxq∆q. The algorithm returns x in this
iteration with probability p, that is in the range rα�γ, αs. Observe that α ¡ 1{pg∆q, which implies
that γ ! pε{4qα, it follows that p �ε 1{pd∆q, as desired. The expected running time of each round
is Opg{dpxqq.

Arguing as in Lemma 3.3., this implies that each round, in expectation takes Opng{mq time, where
m �

G. Similarly, the expected number of rounds, in expectation, is Op∆m{nq. Again, arguing
as in Lemma 3.3, implies that the expected running time is Opg∆q � Opg logpg{εqq.

C Applications

Here are a few examples of applications of a data-structure for sampling from a sub-collection of
sets:

(A) Given a subset X of vertices in the graph, randomly pick (with uniform distribution) a
neighbor to one of the vertices ofX . This can be used in simulating disease spread [KE05].

(B) In this paper, we use a variant of this data-structure to implement the fair ANN.
(C) Uniform sampling for range searching [HQT14, AW17, AP19]. Indeed, consider a set

of points, stored in a data-structure for range queries. Using the above, we can support
sampling from the points reported by several queries, even if the reported answers are not
disjoint.

Being unaware of any previous work on this problem, we believe this data-structure is of independent
interest.

4

References
[AP19] Peyman Afshani and Jeff M. Phillips. Independent range sampling, revisited again. CoRR,

abs/1903.08014, 2019. to appear in SoCG 2019.

[AW17] Peyman Afshani and Zhewei Wei. Independent range sampling, revisited. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 3:1–3:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[HQT14] Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Richard Hull
and Martin Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-
27, 2014, pages 246–255. ACM, 2014.

[KE05] Matt J Keeling and Ken T.D Eames. Networks and epidemic models. Journal of The
Royal Society Interface, 2(4):295–307, September 2005.

5

	Omitted Proofs
	Proof of Lemma 2.4
	Proof of Lemma 3.1
	Proof of Lemma 3.3
	Proof of Lemma 3.7
	Proof of Lemma 4.3
	Proof of Lemma 4.8
	Proof of Lemma 4.9

	Almost uniform sampling via simulation
	Applications

