
A Analysis384

Proof of probabilistic derivation of the xAUC. For the sake of completeness we include the proba-385

bilistic derivation of the xAUC, analogous to similar arguments for AUC [22, 23].386

By a change of variables and observing that d
dvG

�1
(v) = � 1

G0(G�1(v) =
1
�f , if we consider the387

mapping between threshold s that achieves TPR v, s = G�1
(v), we can rewrite the AUC integrated388

over the space of scores s as389

Z 1

�1
Ga

1(s)f
b
0(s)ds

Recalling the conditional score distributions Ra
1 = R | Y = 1, A = a and Rb

0 = R | Y = 0, A = b,390

then the probabilistic interpretation of the AUC follows by observing391

Z 1

�1
Ga

1(s)f
b
0(s)ds =

Z 1

0
Pr[R > s | Y = 1, A = a] Pr[R = s | Y = 0] ds

=

Z 1

0

✓Z 1

0
I(Ra

1 > s) Pr[Ra
1 = t]dt

◆
Pr[Rb

0 = s] ds

=

Z 1

0

Z 1

0
I(Ra

1 > Rb
0)f

a
1 (t)f

b
0(s) ds dt = E[I(Ra

1 > Rb
0)] = Pr[I(Ra

1 > Rb
0)]

392

Proof of Proposition 1. We show this for the decomposition Pr[R1 > R0] =
P

a02A Pr[A = a0 |393

Y = 0]Pr[R1 > Ra0

0 ]; the others follow by applying the same argument.394

X

a02A
Pr[A = a0 | Y = 1]Pr[Ra0

1 > R0] =

X

a02A
Pr[A = a0 | Y = 1]

Z

r
Pr[R > r | A = a0, Y = 1]Pr[R0 = r]dr

=

X

a02A

Z

r
Pr[R > r,A = a0 | Y = 1]Pr[R0 = r]dr

=

Z

r

X

a02A
Pr[R > r,A = a0 | Y = 1]Pr[R0 = r]dr

=

Z

r
Pr[R > r | Y = 1]Pr[R0 = r]dr = Pr[R1 > R0]

395

A.1 Example: same AUCs, different xAUCs396

Again, for the sake of example, we assume normally distributed risk scores within each group and397

outcome condition and re-express the AUC in terms of the cdf of the convolution of the score398

distributions. For Ra
0 ⇠ N(µa0,�2

a0), R
b
1 ⇠ N(µb1,�2

b1), (drawn independently, conditional on399

outcome Y = 1, Y = 0), the xAUC is closed-form, Pr[Ra
1 > Rb

0] = �

✓
µb0�µa1p
�2
a1+�2

b0

◆
. To further400

gain intuition, we consider settings where the score distributions have equivalent within-group xAUC401

scores, and what parameters yield xAUC disparities.402

max

⇢�����
✓

µa0�µb1p
�2
b1+�2

a0

◆
� �

✓
µb0�µa1p
�2
b0+�2

a1

◆���� :
µa0�µa1p
�2
a1+�2

a0

=
µb0�µb1p
�2
b1+�2

b0

�

For the sake of concreteness we fix scalars for the parameters of group a. We then vary group b403

parameters. The constraint of equal AUCs corresponds to the level curve �2
a1 + �2

a0 = �2
b1 + �2

b0.404

Let �2
a1,�

2
a0 = 0.25, and µa0 = 0.25, µa1 = 0.75. We consider constraints µ 2 [0, 1],�2  0.5405

to approximate densities on [0, 1] Assume nontrivial classification performance corresponds with406

µ1 > 0.5, µ1 < 0.5 (the distribution is suitably peaked).407
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Then the remaining d.o.f. on the parameters are those for the A = b group:408

max

������
 

0.25� µb1p
�2
b1 + 0.25

!
� �

 
µb0 � 0.75p
�2
b0 + 0.25

!�����

s.t. 0.5(�2
b1 + �2

b0) = (µb0 � µb1)
2

If we fix variances, �2
b1,�

2
b0 = 0.5, then this disparity depends only on the means, and we can409

maximize the disparity by letting µb0 ! 0, µb1 ! 1. Otherwise if we fix the mean disparity, again410

we achieve maximal disparity by �b1 ! 0 and �b0 ! 0.5 (or vice versa).411

B Additional Empirics412

B.1 Balanced xROC curves and score distributions413

(a) Balanced xROC curves for Framingham (a, b for
female, male)

(b) KDEs of outcome- and group-conditional score dis-
tributions

(c) Balanced xROC curves for German (a, b for black,
white)

(d) KDEs of outcome- and group-conditional score dis-
tributions

(e) Balanced xROC curves for Adult (a, b for black,
white)

(f) KDEs of outcome- and group-conditional score dis-
tributions

Figure 5: Comparison of balanced xROC curves for Framingham, German, and Adult datasets

We compute the similar xROC decomposition for all datasets. For Framingham and German,414

the balanced XROC decompositions do not suggest unequal ranking disparity burden on the in-415

nocent or guilty class in particular. For the Adult dataset, the xAUC0 disparity is higher than416

the xAUC1 disparity, suggesting that the misranking disparity is incurred by low-income whites417

who are spuriously recognized as high-income (and therefore might be disproportionately ex-418

tended economic opportunity via e.g.favorable loan terms). The Framingham data is obtained419

from http://biostat.mc.vanderbilt.edu/DataSets.420
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Framingham, German, and Adult have more peaked distributions (more certain) for the Y = 0 class421

with more uniform distributions for the Y = 1 class; the adult income dataset exhibits the greatest422

contrast in variance between the Y = 0 and Y = 1 class.423

C Standard errors for reported metrics424

Table 2: Standard errors of the metrics (AUC, xAUC, Brier scores for calibration) for different
datasets.

COMPAS Framingham German Adult
A = a b a b a b a b

Lo
g

R
eg

. AUC 0.011 0.018 0.016 0.014 0.049 0.029 0.007 0.004
Brier 0.004 0.006 0.007 0.006 0.023 0.012 0.004 0.002
XAUC 0.023 0.018 0.013 0.02 0.048 0.031 0.01 0.004
XAUC

1
0.012 0.015 0.012 0.014 0.044 0.024 0.009 0.003

XAUC
0

0.012 0.019 0.015 0.012 0.032 0.029 0.004 0.004

R
an

kB
oo

st
ca

l. AUC 0.011 0.014 0.015 0.013 0.045 0.027 0.008 0.003
Brier 0.004 0.005 0.005 0.004 0.022 0.009 0.003 0.002
XAUC 0.025 0.016 0.012 0.017 0.044 0.031 0.01 0.004
XAUC

1
0.012 0.013 0.012 0.013 0.041 0.024 0.009 0.003

XAUC
0

0.011 0.019 0.014 0.01 0.03 0.026 0.004 0.003

D Reproducibility checklist425

• Data preprocessing and exclusion: We use the preprocessed datasets from the repository of426

[20] for COMPAS, German, and Adult, and all of the available data from the Framingham427

study.428

• Train/validation/test: We train models on a 70% data split and evaluate xAUC,AUC and429

ROC, xROC on a 30% out of sample split.430

• Hyper-parameters: we use sklearn defaults for the assessed methods.431

• Evaluation runs: 50.432

• Computing infrastructure: MacBook Pro, 16gb RAM.433

• Further discussion on exact evaluation approach in Sec. 5434

E xAUC postprocessing adjustment435

(a) COMPAS (b) Framingham (c) German (d) Adult

Figure 6: XROC curves, before and after adjustment

E.1 Adjusting Scores for Equal xAUC436

We study the possibility of post-processing adjustments of a predicted risk score that yield equal437

xAUC across groups, noting that the exact nature of the problem domain may pose strong barriers438
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(a) COMPAS (b) Framingham (c) German (d) Adult

Figure 7: TPR and FPR curves over thresholds (Ga
y), and adjusted curves for group A = a (G̃a

y)

Table 3: Metrics before and after xAUC parametric adjustment
COMPAS Fram. German Adult

AUC (original) 0.743 0.771 0.798 0.905
AUC (adjusted) 0.730 0.772 0.779 0.902
↵⇤ 4.70 3.20 4.71 4.43
xAUC(a, b) 0.724 0.761 0.753 0.895
xAUC(b, a) 0.716 0.758 0.760 0.898

to the implementability or individual fairness properties of post-processing adjustment. The results439

are intended to illustrate the distortionary extent that would be required to achieve equal xAUC by440

preprocessing.441

Without loss of generality, we consider transformations h : R 7! R on group b. When h is monotonic,442

the within-group AUC is preserved.443

Pr[h(Rb
1)�Ra

0 > 0] = Pr[Ra
1 � h(Rb

0) > 0]

=

Z
Gb

1(h
�1

((Ga
0)

�1
(s)))ds =

Z
Ga

1(h((G
b
0)

�1
(s)))ds

Although solving analytically for the fixed point is difficult, empirically, we can simply optimize444

the xAUC disparity over parametrized classes of monotonic transformations h, such as the logistic445

transformation h(↵,�) = 1
1+exp(�(↵x+�)) . We can further restrict the strength of transformation by446

restricting the range of parameters.447

In Fig. 6 we plot the unadjusted and adjusted xROC curves (dashed) resulting from a transformation448

which equalizes the xAUC; we transform group A = a, the disadvantaged group. We optimize the449

empirical xAUC disparity over the space of parameters ↵ 2 [0, 5], fixing the offset b = �2. In Fig. 7,450

we plot the complementary cdfs Ga
y corresponding to evaluating TPRs and FPRs over thresholds,451

as well as for the adjusted score (red). In table 3, we show the optimal parameters achieving the452

lowest xAUC disparity, which occurs with relatively little impact on the population AUC, although453

it reduces the xAUC(b, a) of the advantaged group.454

E.2 Fair classification post-processing and the xAUC disparity455

One might consider applying the post-processing adjustment of Hardt et al. [24], implementing the456

group-specific thresholds as group-specific shifts to the score distribution. Note that an equalized457

odds adjustment would equalize the TPR/FPR behavior for every threshold; since equalized odds458

might require randomization between two thresholds, there is no monotonic transform that equalizes459

the xROC curves for every thresholds.460

We instead consider the reduction in xAUC disparity from applying the “equality of opportunity” ad-
justment that only equalizes TPR. For any specified true positive rate ⇢, consider group-specific thresh-
olds ✓a, ✓b achieving ⇢. These thresholds satisfy that Ga

1(✓a) = Gb
1(✓b). Then ✓b = (Gb

1)
�1

(Ga
1(✓a)).

The score transformation on R that achieves equal TPRs is:

h(r, A) =

⇢
r if A = a
(Ga

1)
�1

(Gb
1(r)) if A = b
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Proposition 2. The corresponding xAUC under an equality of opportunity adjustment, where461

R̃eqop = h(R), is:462

�xAUC(R̃eqop) = AUC
b �AUC

a

Proof.

�xAUC(R̃eqop) =

Z
Ga

1

�
(Ga

1)
�1

(Gb
1((G

b
0)

�1
(s)))

�
ds

�
Z

Gb
1

�
(Gb

1)
�1

(Ga
1((G

a
0)

�1
(s)))

�
ds

=

Z
(Gb

1((G
b
0)

�1
(s)))ds�

Z
Ga

1((G
a
0)

�1
(s))ds

= AUC
b �AUC

a

463
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