
Greedy Sampling for Approximate Clustering in the
Presence of Outliers

Aditya Bhaskara
University of Utah

bhaskaraaditya@gmail.com

Sharvaree Vadgama
University of Utah

sharvaree.vadgama@gmail.com

Hong Xu
University of Utah

hxu.hongxu@gmail.com

Abstract

Greedy algorithms such as adaptive sampling (k-means++) and furthest point
traversal are popular choices for clustering problems. One the one hand, they
possess good theoretical approximation guarantees, and on the other, they are fast
and easy to implement. However, one main issue with these algorithms is the
sensitivity to noise/outliers in the data. In this work we show that for k-means and
k-center clustering, simple modifications to the well-studied greedy algorithms
result in nearly identical guarantees, while additionally being robust to outliers. For
instance, in the case of k-means++, we show that a simple thresholding operation
on the distances suffices to obtain an O(log k) approximation to the objective.
We obtain similar results for the simpler k-center problem. Finally, we show
experimentally that our algorithms are easy to implement and scale well. We also
measure their ability to identify noisy points added to a dataset.

1 Introduction

Clustering is one of the fundamental problems in data analysis. There are several formulations that
have been very successful in applications, including k-means, k-median, k-center, and various notions
of hierarchical clustering (see [19, 12] and references there-in).

In this paper we will consider k-means and k-center clustering. These are both extremely well-studied.
The classic algorithm of Gonzalez [16] for k-center clustering achieves a factor 2 approximation,
and it is NP-hard to improve upon this for general metrics, unless P equals NP. For k-means, the
classic algorithm is due to Lloyd [23], proposed over 35 years ago. Somewhat recently, [4] (see
also [25]) proposed a popular variant, known as “k-means++”. This algorithm remedies one of
the main drawbacks of Lloyd’s algorithm, which is the lack of theoretical guarantees. [4] proved
that the k-means++ algorithm yields an O(log k) approximation to the k-means objective (and also
improves performance in practice). By way of more complex algorithms, [21] gave a local search
based algorithm that achieves a constant factor approximation. Recently, this has been improved
by [2], which is the best known approximation algorithm for the problem. The best known hardness
results rule out polynomial time approximation schemes [3, 11].

The algorithms of Gonzalez (also known as furthest point traversal) and [4] are appealing also
due to their simplicity and efficiency. However, one main drawback in these algorithms is their
sensitivity to corruptions/outliers in the data. Imagine 10k of the points of a dataset are corrupted and
the coordinates take large values. Then both furthest point traversal as well as k-means++ end up
choosing only the outliers. The goal of our work is to remedy this problem, and achieve the simplicity
and scalability of these algorithms, while also being robust in a provable sense.

Specifically, our motivation will be to study clustering problems when some of the input points
are (possibly adversarially) corrupted, or are outliers. Corruption of inputs is known to make even
simple learning problems extremely difficult to deal with. For instance, learning linear classifiers
in the presence of even a small fraction of noisy labels is a notoriously hard problem (see [18, 5]

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

and references therein). The field of high dimensional robust statistics has recently seen a lot of
progress on various problems in both supervised and unsupervised learning (see [20, 14]). The main
difference between our work and the works in robust statistics is that our focus is not to estimate a
parameter related to a distribution, but to instead produce clusterings that are near-optimal in terms of
an objective that is defined solely on inliers.

Formulating clustering with outliers. Let OPTfull(X) denote the k-center or k-means objective
on a set of points X . Now, given a set of points that also includes outliers, the goal in clustering with
outliers (see [7, 17, 22]) is to partition the points X into Xin and Xout so as to minimize OPTfull(Xin).
To avoid the trivial case of setting Xin = ;, we rquire |Xout| z, for some parameter z that is also
given. Thus, we define the optimum OPT of the k-clustering with outliers problem as

OPT := min
|Xout|z

OPTfull(X \Xout).

This way of defining the objective has also found use for other problems such as PCA with outliers
(also known as robust PCA, see [6] and references therein). For the problems we consider, namely
k-center and k-means, there are many existing works that provide approximation algorithms for OPT
as defined above. The early work of [7] studied the problem of k-median and facility location in this
setup. The algorithms provided were based on linear programming relaxations, and were primarily
motivated by the theoretical question of the power of such relaxations. Recently, [17] gives a more
practical local search based algorithm, with running time quadratic in the number of points (which
can also be reduced to a quadratic dependence on z, in the case z ⌧ n). Both of these algorithms
are bi-criteria approximations (defined formally below). In other words, they allow the algorithm to
discard > z outliers, while obtaining a good approximation to the objective value OPT. In practice,
this corresponds to declaring a small number of the inliers as outliers. In applications where the true
clusters are robust to small perturbations, such algorithms are acceptable.

The recent result of [22] (and the earlier result of [10] for k-median) go beyond bi-criteria approxima-
tion. They prove that for k-means clustering, one can obtain a factor 50 approximation to the value
of OPT, while declaring at most z points as outliers, as desired. While this effectively settles the
complexity of the problem, there are many key drawbacks. First, the algorithm is based on an iterative
procedure that solves a linear programming relaxation in each step, which can be very inefficient in
practice (and hard to implement). Further, in many applications, it may be necessary to improve on
the (factor 50) approximation guarantee, potentially at the cost of choosing more clusters or slightly
weakening the bound on the number of outliers.

Our main results aim to address this drawback. We prove that very simple variants of the classic
Gonzalez algorithm for k-center, and the k-means++ algorithm for k-means result in approximation
guarantees. The catch is that we only obtain bi-criteria results. To state our results, we will define the
following notion.
Definition 1. Consider an algorithm for the k-clustering (means/center) problem that on input X, k, z,

outputs k0 centers (allowed to be slightly more than k), along with a partition X = X 0
in
[X 0

out
that

satisfies (a) |X 0
out
| �z, and (b) the objective value of assigning the points X 0

in
to the output centers

is at most ↵ · OPT.

Then we say that the algorithm obtains an (↵,�) approximation using k0 centers, for the k-clustering

problem with outliers.

Note that while our main results only output k centers, clustering algorithms are also well-studied
when the number of clusters is not strictly specified. This is common in practice, where the application
only demands a rough bound on the number of clusters. Indeed, the k-means++ algorithm is known
to achieve much better approximations (constant as opposed to O(log k)) for the problem without
outliers, when the number of centers output is O(k) instead of k [1, 26].

1.1 Our results.
K-center clustering in metric spaces. For k-center, our algorithm is a variant of furthest point
traversal, in which instead of selecting the furthest point from the current set of centers, we choose a
random point that is not too far from the current set. Our results are the following.
Theorem 1.1. Let z, k, " > 0 be given parameters, and X = Xin [Xout be a set of points in a metric

space with |Xout| z. There is an efficient randomized algorithm that with probability � 3/4 outputs

a (2 + ", 4 log k)-approximation using precisely k centers to the k-center with outliers problem.

2

Remark – guessing the optimum. The additional " in the approximation is because we require
guessing the value of the optimum. This is quite standard in clustering problems, and can be done
by a binary search. If OPT is assumed to lie in the range (c, c�) for some c > 0, then it can be
estimated up to an error of c" in time O(log(�/")), which gets added as a factor in the running time
of the algorithm. In practice, this is often easy to achieve with� = poly(n). We will thus assume a
knowledge of the optimum value in both our algorithms.

Also, note that the algorithm outputs exactly k centers, and obtains the same (factor 2, up to ")
approximation to the objective as the Gonzalez algorithm, but after discarding O(z log k) points as
outliers. Next, we will show that if we allow the algorithm to output > k centers, one can achieve a
better dependence on the number of points discarded.

Theorem 1.2. Let z, k, c, " > 0 be given parameters, and X = Xin [Xout be a set of points in a

metric space with |Xout| z. There is an efficient randomized algorithm that with probability � 3/4
outputs a (2+ ", (1+ c)/c)-approximation using (1+ c)k centers to the k-center w/ outliers problem.

As c increases, note that the algorithm outputs very close to z outliers. In other words, the number of
points it falsely discards as outliers is small (at the expense of larger k).

K-means clustering. Here, our main contribution is to study an algorithm called T-kmeans++, a
variant of D2 sampling (i.e. k-means++), in which the distances are thresholded appropriately before
probabilities are computed. For this simple variant, we will establish robust guarantees that nearly
match the guarantees known for k-means++ without any outliers.

Theorem 1.3. Let z, k,� be given parameters, and X = Xin [Xout be a set of points in Euclidean

space with |Xout| z. There is an efficient randomized algorithm that with probability � 3/4 gives

an (O(log k), O(log k))-approximation using k centers to the k-means with outliers problem on X .

The algorithm outputs an O(log k) approximation to the objective value (similar to k-means++).
However, the algorithm may discard up to O(z log k) points as outliers. Note also that when z = 0,
we recover the usual k-means++ guarantee. As in the case of k-center, we ask if allowing a bi-criteria
approximation improves the dependence on the number of outliers. Here, an additional dimension
also comes into play. For k-means++, it is known that choosing O(k) centers lets us approximate the
k-means objective up to an O(1) factor (see, for instance, [1, 4, 25]). We can thus ask if a similar
result is possible in the presence of outliers. We show that the answer to both the questions is yes.

Theorem 1.4. Let z, k,�, c be given parameters, and X = Xin [Xout be a set of points in a metric

space with |Xout| z. Let � > 0 be an arbitrary constant. There is an efficient randomized algorithm

that with probability � 3/4 gives a ((�+64), (1+c)(1+�)/c(1��))-approximation using (1+c)k
centers to the k-center with outliers problem on X .

Given the simplicity of our procedure, it is essentially as fast as k-means++ (modulo the step of
guessing the optimum value, which adds a logarithmic overhead). Assuming that this is O(log n),
our running times are all eOkn. In particular, the procedure is significantly faster than local search
approaches [17], as well as linear programming based algorithms [22, 10]. Our run times also
compare well with those of recent, coreset based approaches to clustering with outliers, such as those
of [9, 24] (see also references therein).

1.2 Overview of techniques
To show all our results, we consider simple randomized modifications of classic algorithms, specif-
ically Gonzales’ algorithm and the k-means++ algorithm. Our modifications, in effect, place a
threshold on the probability of any single point being chosen. The choice of the threshold ensures
that during the entire course of the algorithm, only a small number of outlier points will be chosen.
Our analysis thus needs to keep track of (a) the number of points being chosen, (b) the number of
inlier clusters from which we have chosen points (and in the case of k-means, points that are “close
to the center”), (c) number of “wasted” iterations, due to choosing outliers. We use different potential

functions to keep track of these quantities and measure progress. These potentials are directly inspired
by the elegant analysis of the k-means++ algorithm provided in [13] (which is conceptually simpler
than the original one in [4]).

3

2 Warm-up: Metric k-center in the presence of outliers

Let (X, d) be a metric space. Recall that the classic Gonzalez algorithm [16] for k-center works
by maintaining a set of centers S, and at each step finding the point x 2 X that is furthest from S
and adding it to X . After k iterations, a simple argument shows that the S obtained gives a factor 2
approximation to the best k centers in terms of the k-center objective.

As we described earlier, this furthest point traversal algorithm is very susceptible to the presence
of outliers. In particular, if the input X includes z > k points that are far away from the rest of the
points, all the points selected (except possibly the first) will be outliers. Our main idea to overcome
this problem is to ensure that no single point is too likely to be picked in each step. Consider the
simple strategy of choosing one of the 2z points furthest away from S (uniformly at random; we are
assuming n � 2z + k). This ensures that in every step, there is at least a 1/2 probability of picking
an inlier (as there are only z outliers). In what follows, we will improve upon this basic idea and
show that it leads to a good approximation to the objective restricted to the inliers.

The algorithm for proving Theorems 1.1 and 1.2 is very simple: in every step, a center is added to
the current solution by choosing a uniformly random point in the dataset that is at a distance > 2r
from the current centers. As discussed in Section 1.2, our proofs of both the theorems employ an
appropriately designed potential function, adapted from [13].

Algorithm 1 k-center with outliers
Input: points X ✓ Rd, parameters k, z, r; r is a guess for OPT
Output: a set S` ✓ X of size `

1: Initialize S0 = ;
2: for t = 1 to ` do
3: Let Ft be the set of all points that are at a distance > 2r from St�1. I.e.,

Ft := {x 2 X : d(x, St�1) > 2r}

4: Let x be a point sampled u.a.r from Ft

5: St = St�1 [{x}
6: return S`

Notation. Let C1, C2, . . . , Ck be the optimal clusters. So by definition, [iCi = Xin. Let Ft be the
set of far away points at time t, as defined in the algorithm. Thus Ft includes both inliers and outliers.
A simple observation about the algorithm is the following
Observation 1. Suppose that the guess of r is � OPT, and consider any iteration t of the algorithm.

Let u 2 Ci be one of the chosen centers (i.e., u 2 St). Then Ci \ Ft = ;, and thus no other point in

Ci can be subsequently added as a center.

Finally, we denote by E(t)
i the set of points in cluster Ci that are at a distance � 2r from St. I.e., we

define E(t)
i := Ci \ Ft. The observation above implies that E(t)

i = ; whenever St contains some
u 2 Ci. But the converse is not necessarily true (since all the points in Ci could be at a distance < 2r
from points in other clusters, which happened to be picked in St).

Next, let nt denote the number of clusters i such that Ci \ St = ;, i.e., the number of clusters none
of whose points were selected so far. We are now ready to analyze the algorithm.

2.1 Algorithm choosing k-centers

We will now analyze the execution of Algorithm 1 for k iterations, thereby establishing Theorem 1.1.

The key step is to define the appropriate potential function. To this end, let wt denote the number of
times that one of the outliers was added to the set S in the first t iterations. I.e., wt = |Xout \ St|.
The potential we consider is now:

 t :=
wt|Ft \Xin|

nt
. (1)

4

Our main lemma bounds the expected increase in t, conditioned on any choice of St (recall that St

determines nt).
Lemma 1. Let St be any set of centers chosen in the first t iterations, for some t � 0. We have

E
t+1

[t+1 � t | St]
z

nt
.

As usual, Et+1 denotes an expectation only over the (t+ 1)th step. Let us first see how the lemma
implies Theorem 1.1.

Proof of Theorem 1.1. The idea is to repeatedly apply Lemma 1. Since we do not know the values of
nt, we use the simple lower bound nt � k � t, for any t < k.

Along with the observation that 0 = 0 (since w0 = 0), we have

E[k] =
k�1X

t=0

E[t+1 � t]
k�1X

t=0

z

k � t
 zHk,

where Hk is the kth Harmonic number. Thus by Markov’s inequality, Pr[k 4zHk] � 3/4. By
the definition of k, this means that with probability at least 3/4,

wk|Ft \Xin|
nk

 4z ln k.

The key observation is that we always have wk = nk. This is because if the set Sk did not intersect nk

of the optimal clusters, then since Sk cannot include two points from the same cluster (as we observed
earlier), precisely nk of the iterations must have chosen outliers. This means that with probability at
least 3/4, we have |Ft \Xin| 4z ln k. This means that after k iterations, with probability at least
3/4, at most 4z ln k of the inliers are at a distance > 2r away from the chosen set Sk. Thus the total
number of points at a distance > 2r away from Sk is at most z(4 ln k + 1). This completes the proof
of the theorem.

We thus only need to show Lemma 1.

Proof of Lemma 1. For simplicity, let us write ei := |E(t)
i | = |Ci \ Ft|. In other words ei is the

number of points in the ith optimal cluster that are at distance > 2r from St. Let us also write
F =

P
i ei. By definition, we have that F = |Ft \Xin|.

Then, the sampling in the (t+ 1)th iteration samples an inlier with probability F/|Ft|, and an outlier
with probability 1� F

|Ft| . If an inlier is sampled, the value nt reduces by 1, but wt stays the same. If
an outlier is sampled, the value nt stays the same, while wt increases by 1. The value of |Ft \Xin| is
non-increasing. If a point in Ci is chosen (which happens with probability ei/|Ft|), it reduces by at
least ei. Thus, we have

E[t+1]
kX

i=1

ei
|Ft|

wt(F � ei)

nt � 1
+

✓
1� F

|Ft|

◆
(wt + 1)F

nt
. (2)

The first term on the RHS can be simplified as

wt

|Ft|(nt � 1)

X

i

ei(F � ei) =
wt

|Ft|(nt � 1)

F 2 �

X

i

e2i

!

The number of non-zero ei is at most nt, by definition. Thus we have
P

i e
2
i � F 2/nt. Plugging this

into (2) and simplifying, we have

E[t+1]
wtF 2

|Ft|nt
+

✓
1� F

|Ft|

◆
(wt + 1)F

nt
= t +

✓
1� F

|Ft|

◆
F

nt
.

The proof now follows by using the simple facts:
⇣
1� F

|Ft|

⌘
 z

|Ft| (which is true because there are
at most z outliers) and F |Ft| (which is true by definition, because F = |Xin \ Ft|).

This completes the analysis of Algorithm 1 when the number of centers ` is exactly k.

5

2.2 Bi-criteria approximation

Next, we see that running Algorithm 1 for ` = (1 + c)k iterations results in covering more clusters
(thus resulting in fewer outliers). Thus we end up with a tradeoff between the number of centers chosen
and the number of points the algorithm declares as outliers (while obtaining the same approximation
(factor 2) for the objective OPT – Theorem 1.2). The potential function now needs modification. The
details are deferred to Section A.1.

3 k-means via thresholded adaptive sampling

Next we consider the k-means problem when some of the points are outliers. Here we propose
a variant of the k-means++ procedure (see [4]), which we call T-kmeans++. Our algorithm, like
k-means++, is an iterative algorithm that samples a point to be a centroid at each iteration according
to a probability that depends on the distance to the current set of centers. However, we avoid the
problem of picking too many outliers by simply thresholding the distances.

Notation. Let us start with some notation that we use for the remainder of the paper. The points
X are now in a Euclidean space (as opposed to an arbitrary metric space in Section 2). We assume
as before that |X| = n, and X = Xin [Xout, where |Xout| = z, which is a known parameter.
Additioanlly, � will be a parameter that we will control. For the purposes of defining the algorithm,
we assume that we have a guess for the optimum objective value, denoted OPT.

Now, for any set of centers C, we define

⌧(x,C) = min

✓
d(x,C)2,

� · OPT

z

◆
(3)

We follow the standard practice of defining the distance to an empty set to be 1. Next, for any set of
points U , define ⌧(U,C) =

P
x2U ⌧(x,C). Note that the parameter � lets us interpolate between

uniform sampling (� ! 0), and classic D2 sampling (� ! 1). In our results, choosing a higher �
has the effect of reducing the number of points we declare as outliers, at the expense of having a
worse guarantee on the approximation ratio for the objective.

We can now state our algorithm (denoted Algorithm 2)

Algorithm 2 Thresholded Adaptive Sampling – T-kmeans++

Input: a set of points X ✓ Rd, parameters k, z, and a guess for the optimum OPT.
Output: a set S ✓ X of size `.

1: Initialize S0 = ;.
2: for t = 1 . . . ` do
3: sample a point x from the distribution

p(x) =
⌧(x, St�1)P

x2X ⌧(x, St�1)
. (with ⌧ as defined in (3))

4: set St = St�1 [{x}.
5: return S`

The key to the analysis is the following observation, that instead of the k-means objective, it
suffices to bound the quantity

P
x2X ⌧(x, S`).

Lemma 2. Let C be a set of centers, and suppose that ⌧(X,C) ↵ · OPT. Then we can partition

X into X 0
in

and X 0
out

such that

1.
P

x2X0
in

d(x,C)2 ↵ · OPT, and

2. |X 0
out
| ↵z

� .

Proof. The proof follows easily from the definition of ⌧ (Eq. (3)). Let X 0
out be the set of points for

which d(x,C)2 > �OPT/z, and let X 0
in be X \X 0

out. Then by definition (and the bound on ⌧(X,C)),

6

we have X

x2X0
in

d(x,C)2 + |X 0
out|

� · OPT

z
 ↵ · OPT.

Both the terms on the LHS are non-negative. Using the fact that the first term is non-negative gives the
first part of the lemma, and the inequality for the second term gives the second part of the lemma.

3.1 k-means with outliers: an O(log k) approximation

Our first result is an analog of the theorem of [4], for the setting in which we have outliers in the data.
As in the case of k-center clustering, we use a potential based analysis (inspired from [13]).
Theorem 3.1. Running algorithm 2 for k iterations outputs a set Sk that satisfies

E[⌧(X,Sk)] (� +O(1)) log k · OPT.

We note that Theorem 3.1 together with Lemma 2 directly implies Theorem 1.3. Thus the main step
is to prove Theorem 3.1. This is done using a potential function as before, but requires a more careful
argument than the one for k-center (specifically, the goal is not to include some point from a cluster,
but to include a “central” one). Please see the supplement, section A.2 for details.

3.2 Bi-criteria approximation

Theorem 3.2. Consider running Algorithm 2 for ` = (1 + c)k iterations, where c > 0 is a constant.

Then for any � > 0, with probability � �, the set S` satisfies

⌧(X,S`)
(� + 64)(1 + c)OPT

(1� �)c
.

Note that this theorem directly implies Theorem 1.4 by repeating the algorithm O(1/�) times. Once
again, we use a slightly different potential function from the one for the O(log k) approximation. We
defer the details of the proof to Section A.3 of the supplementary material.

4 Experiments

In this section, we demonstrate the empirical performance of our algorithm on multiple real and
synthetic datasets, and compare it to existing heuristics. We observe that the algorithm generally
behaves better than known heuristics, both in accuracy and (especially in) the running time. Our real
and sythetic datasets are designed in a manner similar to [17]. All real datasets we use are available
from the UCI repository [15].

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
k

0.0

0.2

0.4

0.6

0.8

1.0

Ce
nt

er
 5

ec
al

l

0ean 5ecall

k-center-aGaptive-sampling
GRnzalez
ranGRm-sampling

Figure 1: Figure showing cluster recall for
the three algorithms, when d = 15, k = 20,
z = 100 and n = 10120. The x axis shows
the number of clusters we pick.

k-center with outliers. We will evaluate Algorithm 1 on
synthetic data sets, where points are generated according
a mixture of d-dimensional Gaussians. The outliers in this
case are chosen randomly in an appropriate bounding box.

Metrics. For k-center, we choose synthetic datasets be-
cause we wish to measure the cluster recall, i.e., the frac-
tion of true clusters from which points are chosen by the
algorithm. (Ideally, if we choose k centers, we wish to
have precisely one point chosen from each cluster, so the
cluster recall is 1). We compute this quantity for three
algorithms: the first is the trivial baseline of choosing k0

random points from the dataset (denoted Random). The
second and third are KC-Outlier and Gonzalez respec-
tively. Figure 1 shows the recall as we vary the number
of centers chosen. Note that when k = 20, even when
roughly k0 = 23 centers are chosen, we have a perfect recall (i.e., all the clusters are chosen) for our
algorithm. Meanwhile Random and Gonzalez take considerably longer to find all the clusters.

7

15 20 25 30 35 40
k

0.0

0.2

0.4

0.6

0.8

1.0

Ce
nt

er
 5

ec
al

l

0ean Center 5ecall

7-kmeans++
7-kmeans++ Lloyd
k-means++
k-means++ Lloyd

15 20 25 30 35 40
k

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

Co
st

0ean Cost

7-kmeans++
7-kmeans++ Lloyd
k-means++
k-means++ Lloyd

Figure 2: Figure showing the empirical cluster recall for the T-kmeans++ algorithm compared to prior
heuristics. Here k = 20, z = 2000, n = 12020. The x axis shows the number of clusters we pick.

k-means with outliers. Once again, we demonstrate the cluster recall on a synthetic dataset. In
this case, we compare our algorithm with a heuristic proposed in [17]: running k-means++ followed
by an iteration of “outlier-senstive Lloyd’s iteration”, proposed in [8]. We also ran the latter procedure
as a post-processing step for our algorithm. Figure 2 reports the cluster recall and the value of
the k-means objective for the algorithms. Unlike the case of k-center, the T-kmeans++ algorithm
can potentially choose points in one cluster multiple times. However, we consistently observe that
T-kmeans++ outperforms the other heuristics.

Finally, we perform experiments on three datasets:

1. NIPS (a dataset from the conference NIPS over 1987-2015): clustering was done on the
rows of a 11463⇥ 50 matrix (the number of columns was reduced via SVD).

2. The MNIST digit-recognition dataset: clustering was performed on the rows of a 60000⇥40
(again, SVD was used to reduce the number of columns).

3. Skin Dataset (available via the UCI database): clustering was performed on the rows of a
245, 057⇥ 3 matrix (original dataset).

In order to simulate corruptions, we randomly choose 2.5% of the points in the datasets and corrupt
all the coordinates by adding independent noise in a pre-defined range. The following table outlines
the results. We report the outlier recall, i.e., the number of true outliers designated as outliers by
the algorithm. For fair comparison, we make all the algorithms output precisely z outliers. Our
results indicate slightly better recall values for T-kmeans++. For some data sets (e.g. Skin), the
k-means objective value is worse for T-kmeans++. Thus in this case, the outliers are not “sufficiently
corrupting” the original clustering.1

Dataset k KM recall TKM recall KM objective TKM objective
NIPS 10 0.960 0.977 4173211 4167724

20 0.939 0.973 4046443 4112852
30 0.924 0.978 3956768 4115889

Skin 10 0.619 0.667 7726552 7439527
20 0.642 0.690 5936156 5637427
30 0.630 0.690 5164635 4853001

MNIST 10 0.985 0.988 1.546 ⇥108 1.513 ⇥108

20 0.982 0.989 1.475 ⇥108 1.449 ⇥108

30 0.977 0.986 1.429 ⇥108 1.412 ⇥108

Table showing outlier recall for KM (k-means++) and TKM (T-kmeans++) along with the k-means cost.

5 Conclusion
We proposed simple variants of known greedy heuristics for two popular clustering settings (k-center
and k-means clustering) in order to deal with outliers/noise in the data. We proved approximation
guarantees, comparing to the corresponding objectives on only the inliers. The algorithms are also
easy to implement, run in eO(kn) time, and perform well on both real and synthetic datasets.

1An anonymous reviewer suggested experiments on the kddcup-1999 dataset (as in [9]). However, we
observed that treating certain labels as outliers as done in the prior work is not meaningful: the outliers turn out
to be closer to one of the cluster centers than many points in that cluster.

8

References
[1] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means cluster-

ing. In Proceedings of the 12th International Workshop and 13th International Workshop on

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX ’09 / RANDOM ’09, pages 15–28, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-
means and euclidean k-median by primal-dual algorithms. 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), pages 61–72, 2017.

[3] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009.

[4] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathe-
matics.

[5] Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. The power of localization for
efficiently learning linear separators with noise. J. ACM, 63(6):50:1–50:27, January 2017.

[6] Aditya Bhaskara and Srivatsan Kumar. Low rank approximation in the presence of outliers.
CoRR, abs/1804.10696, 2018.

[7] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the Twelfth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA ’01, pages 642–651, Philadelphia, PA, USA, 2001. Society for
Industrial and Applied Mathematics.

[8] Sanjay Chawla and Aristides Gionis. k-means-: A unified approach to clustering and outlier
detection. In SDM, 2013.

[9] Jiecao Chen, Erfan Sadeqi Azer, and Qin Zhang. A practical algorithm for distributed clustering
and outlier detection. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 2248–
2256. Curran Associates, Inc., 2018.

[10] Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pages 826–835, Philadelphia, PA, USA, 2008. Society for Industrial and Applied
Mathematics.

[11] Sanjoy Dasgupta. The hardness of k-means clustering. In The hardness of k-means clustering,
2008.

[12] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of

the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 118–127,
New York, NY, USA, 2016. ACM.

[13] Sanjoy Dasgupta and Mohan Paturi. Lecture notes in geometric algorithms, 2013.

[14] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Zheng Li, Ankur Moitra, and
Alistair Stewart. Robust estimators in high dimensions without the computational intractability.
CoRR, abs/1604.06443, 2016.

[15] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[16] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Computer Science, 38:293 – 306, 1985.

[17] Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin Moseley, and Sergei Vassilvitskii. Local
search methods for k-means with outliers. Proc. VLDB Endow., 10(7):757–768, March 2017.

9

[18] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces with noise.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’06, pages 543–552, Washington, DC, USA, 2006. IEEE Computer Society.

[19] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:

data mining, inference and prediction. Springer, 2 edition, 2009.

[20] Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics, 2nd Edition. Wiley, 2009.

[21] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Compu-

tational Geometry, 28(2):89 – 112, 2004. Special Issue on the 18th Annual Symposium on
Computational Geometry - SoCG2002.

[22] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median and
k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2018, pages 646–659, New York, NY, USA, 2018.
ACM.

[23] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Trans. Information Theory, 28:129–
136, 1982.

[24] Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate clustering.
Mach. Learn., 56(1-3):35–60, June 2004.

[25] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness
of lloyd-type methods for the k-means problem. J. ACM, 59(6):28:1–28:22, January 2013.

[26] Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. CoRR,
abs/1605.04986, 2016.

10

