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Abstract

Covariance matrices have attracted attention for machine learning applications due
to their capacity to capture interesting structure in the data. The main challenge
is that one needs to take into account the particular geometry of the Riemannian
manifold of symmetric positive definite (SPD) matrices they belong to. In the con-
text of deep networks, several architectures for these matrices have recently been
proposed. In our article, we introduce a Riemannian batch normalization (batch-
norm) algorithm, which generalizes the one used in Euclidean nets. This novel
layer makes use of geometric operations on the manifold, notably the Riemannian
barycenter, parallel transport and non-linear structured matrix transformations. We
derive a new manifold-constrained gradient descent algorithm working in the space
of SPD matrices, allowing to learn the batchnorm layer. We validate our proposed
approach with experiments in three different contexts on diverse data types: a
drone recognition dataset from radar observations, and on emotion and action
recognition datasets from video and motion capture data. Experiments show that
the Riemannian batchnorm systematically gives better classification performance
compared with leading methods and a remarkable robustness to lack of data.

1 Introduction and related works

Covariance matrices are ubiquitous in any statistical related field but their direct usage as a representa-
tion of the data for machine learning is less common. However, it has proved its usefulness in a variety
of applications: object detection in images [46], analysis of Magnetic Resonance Imaging (MRI)
data [41], classification of time-series for Brain-Computer Interfaces [8] (BCI). It is particularly
interesting in the case of temporal data since a global covariance matrix is a straightforward way
to capture and represent the temporal fluctuations of data points of different lengths. The main
difficulty is that these matrices, which are symmetric positive definite (SPD), cannot be seen as
points in a Euclidean space: the set of SPD matrices is a curved Riemannian manifold, thus tools
from non-Euclidean geometry must be used; see [10] for a plethora of theoretical justifications and
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properties on the matter. For this reason most of classification methods (which implicitly make the
hypothesis of a Euclidean input space) cannot be used successfully.

Interestingly, relatively simple machine learning techniques can produce state-of-art results as soon as
the particular Riemannian geometry is taken into account. This is the case for BCI: [8, 7] use nearest
barycenter (but with Riemannian barycenter) and SVM (but on the tangent space of the barycenter of
the data points) to successfully classify covariances matrices computed on electroencephalography
multivariate signals (EEG); in the same field,[51] propose kernel methods for metric learning on the
SPD manifold . Another example is in MRI, where [41, 4] develop a k-nearest neighbors algorithm
using a Riemannian distance. Motion recognition from motion skeletal data also benefits from
Riemannian geometry, as exposed in [16], [30] and [29]. In the context of neural networks, an
architecture (SPDNet) specifically adapted for these matrices has been proposed [28]. The overall
aspect is similar to a classical (Euclidean) network (transformations, activations and a final stage of
classification) but each layer processes a point on the SPD manifold; the final layer transforms the
feature manifold to a Euclidean space for further classification. More architectures have followed,
proposing alternatives to the basic building blocks: in [23] and [27], a more lightweight transformation
layer is proposed; in [52] and [18], the authors propose alternate convolutional layers, respectively
based on multi-channel SPD representation and Riemannian means; a recurrent model is further
proposed in [19]; in [37] and [36], an approximate matrix square-root layer replaces the final
Euclidean projection to lighten computational complexity. In [15], a SPD neural network is appended
to a fully-convolutional net to improve on performance and robustness to data scarcity. All in all,
most of the developments focus on improving or modifying existing blocks in an effort to converge to
their most relevant form, both theoretically and practically; in this work, we propose a new building
block for SPD neural networks, inspired by the well-known and well-used batch normalization
layer [31]. This layer makes use of batch centering and biasing, operations which need to be
defined on the SPD manifold. As an additional, independent SPD building block, this novel layer
is agnostic to the particular way the other layers are computed, and as such can fit into any of the
above architectures. Throughout the paper we choose to focus on the original architecture proposed
in [28]. Although the overall structure of the original batchnorm is preserved, its generalization to
SPD matrices requires geometric tools on the manifold, both for the forward and backward pass. In
this study, we further assess the particular interest of batch-normalized SPD nets in the context of
learning on scarce data with lightweight models: indeed, many fields are faced with costly, private
or evasive data, which strongly motivates the exploration of architectures naturally resilient to such
challenging situations. Medical imagery data is well-known to face these issues [41], as is the field
of drone radar classification [14], which we study in this work: indeed, radar signal acquisition is
prohibitively expensive, the acquired data is usually of confidential nature, and drone classification
in particular is plagued with an ever-changing pool of targets, which we can never reasonably hope
to encapsulate in comprehensive datasets. Furthermore, hardware integration limitations further
motivate the development of lightweight models based on a powerful representation of the data. As
such, our contributions are the following:

• a Riemannian batch normalization layer for SPD neural networks, respecting the manifold’s
geometry;

• a generalized gradient descent allowing to learn the batchnorm layer;

• extensive experimentations on three datasets from three different fields, (experiments are
made reproducible with our open-source PyTorch library, released along with the article).

Our article is organized as follows: we first recall the essential required tools of manifold geometry;
we then proceed to describe our proposed Riemannian batchnorm algorithm; next, we devise the
projected gradient descent algorithm for learning the batchnorm; finally, we validate experimentally
our proposed architecture.

2 Geometry on the manifold of SPD matrices

We start by recalling some useful geometric notions on the SPD manifold, noted S+∗ in the following.
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2.1 Riemannian metrics on SPD matrices

In a general setting, a Riemannian distance δR(P1, P2) between two points P1 and P2 on a manifold
is defined as the length of the geodesic γP1→P2 , i.e. the shortest parameterized curve ξ(t), linking
them:

δR(P1, P2) = inf
ξ | (ξ(0)=P1,ξ(1)=P2)

∫ 1

0

ds(t)dt

ds(t)2 = ξ̇(t)TFξ(t)ξ̇(t)

(1)

In the equation above, ds is the infinitesimal distance between two close points and F is the metric
tensor, which defines a local metric at each point on the manifold. ξ̇ is the velocity of the curve,
sometimes noted dξ. For manifolds of exponential family distributions, F is none other than the
Fisher information matrix (FIM) (the inverse of which defines well-known Cramer-Rao bound),
which is the Hessian matrix of the entropy. This connection between entropy and differential metrics
was first made in 1945 by C.R. Rao [42] and in 1943 by M. Fréchet [26], and further axiomatized
in 1965 by N.N. Chentsov [17]. Then, in a 1976 confidential report cited in [5], S.T. Jensen derived
the infinitesimal distance between two centered multivariate distributions ds(ξ)2 = 1

2 tr(ξ
−1ξ̇ξ−1ξ̇).

Such distributions being defined entirely by the covariance matrix, they are isomorphic to the SPD
manifold, so the integration of ds along the geodesic leads to the globally-defined natural distance on
S+∗ [38], also called affine-invariant Riemannian metric (AIRM) [41], which can be expressed using
the standard Frobenius norm || · ||F :

δR(P1, P2) =
1

2
||log(P

− 1
2

1 P2P
− 1

2
1 )||F (2)

The interested reader may note that while the above metric is the correct one from the information
geometric viewpoint, it is notoriously computation-heavy. Other metrics or divergences, either closely
approximate it or provide an alternate theoretical apporach, while contributing the highly desirable
property of lightweight computational complexity, especially in the modern context of machine
learning. Notable examples may include the usage of the Fisher-Bures metric [45], the Bregman
divergence [11, 44, 6], and optimal transport [3].

Another matter of importance is the definition of the natural mappings to and from the manifold and
its tangent bundle, which groups the tangent Euclidean spaces at each point in the manifold. At any
given reference point P0 ∈ S+∗ , we call logarithmic mapping LogP0

of another point P ∈ S+∗ at P0

the corresponding vector S in the tangent space TP0 at P0. The inverse operation is the exponential
mapping ExpP0 . In S+∗ , both mappings (not to be confused with the matrix log and exp functions)
are known in closed form [2]:

∀S ∈ TP0
, ExpP0

(S) = P
1
2
0 exp(P

− 1
2

0 SP
− 1

2
0 )P

1
2
0 ∈ S+∗ (3a)

∀P ∈ S+∗ , LogP0
(P ) = P

1
2
0 log(P

− 1
2

0 PP
− 1

2
0 )P

1
2
0 ∈ TP0

(3b)

2.2 Riemannian barycenter

The first step of the batchnorm algorithm is the computation of batch means; it may be possible to
use the arithmetic mean 1

N

∑
i≤N Pi of a batch B of N SPD matrices {Pi}i≤N , we will rather use

the more geometrically appropriate Riemannian barycenter G , also known as the Fréchet mean [48] ,
which we note Bar({Pi}i≤N ) or Bar(B). The Riemannian barycenter has shown strong theoretical
and practical interest in Riemannian data analysis [41], which justifies its usage in this context. By
definition, G is the point on the manifold that minimizes inertia in terms of the Riemannian metric
defined in equation 2. The definition is trivially extensible to a weighted Riemannian barycenter, noted
Barw({Pi}i≤N ) or Barw(B), where the weights w := {wi}i≤N respect the convexity constraint:

G = Barw({Pi}i≤N ) := arg min
G∈S+

∗

N∑
i=1

wi δ
2
R(G,Pi) , with

{
wi ≥ 0∑
i≤N wi = 1

(4)
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Figure 1: Illustration of one iteration of the Karcher flow [34].

When N = 2, i.e. when w = {w, 1− w}, a closed-form solution exists, which exactly corresponds
to the geodesic between two points P1 and P2, parameterized by w ∈ [0, 1] [12]:

Bar(w,1−w)(P1, P2) = P
1
2
2

(
P
− 1

2
2 P1P

− 1
2

2

)w
P

1
2
2 , with w ≥ 0 (5)

Unfortunately, when N > 2, the solution to the minimization problem is not known in closed-form:
thus G is usually computed using the so-called Karcher flow algorithm [34, 49] , which we illustrate
in Figure 1 . In short, the Karcher flow is an iterative process in which data points projected using the
logarithmic mapping (equation 3b) are averaged in tangent space and mapped back to the manifold
using the exponential mappings (equation 3a) , with a guaranteed convergence on a manifold with
constant negative curvature, which is the case for S+∗ [34]. The initialization of G is arbitrary, but
a reasonable choice is the arithmetic mean. A key point is that convergence is guaranteed on a
manifold with constant negative curvature, which is the case for the SPD manifold S+∗ [34]. Another
point of interest is that selecting K = 1 (that is, only one iteration of the flow) and α = 1 (unit
step size) in the Karcher algorithm , corresponds exactly to the barycenter from the Log-Euclidean
metric viewpoint [41]. We actually use this setting in the layer: as the batch barycenter is but a noisy
estimation of the true barycenter, a lax approximation is sufficient, and also allows for much faster
inference.

2.3 Centering SPD matrices using parallel transport

The Euclidean batchnorm involves centering and biasing the batch B, which is done via subtraction
and addition. However on a curved manifold, there is no such group structure in general, so these
seemingly basic operations are ill-defined. To shift SPD matrices around their mean G or towards
a bias parameter G, we propose to rather use parallel transport on the manifold [2]. In short, the
parallel transport (PT) operator ΓP1→P2(S) of a vector S ∈ TP1 in the tangent plane at P1, between
P1, P2 ∈ S+∗ defines the path from P1 to P2 such that S remains parallel to itself in the tangent
planes along the path. The geodesic γP1→P2 is itself a special case of the PT, when S is chosen to be
the direction vector γ′P1→P2

(0) from P1 to P2. The expression for PT is known on S+∗ :

∀S ∈ TP1
, ΓP1→P2

(S) = (P2P
−1
1 )

1
2 S (P2P

−1
1 )

1
2 ∈ TP2

(6)

The equation above defines PT for tangent vectors, while we wish to transport points on the manifold.
To do so, we simply project the data points to the tangent space using the logarithmic mapping ,
parallel transport the resulting vector from Eq. 6 which we then map back to the manifold using
exponential mapping . It can be shown (see [47], appendix C for a full proof) that the resulting
operation, which we call SPD transport, turns out to be exactly the same as the formula above,
which is not an obvious result in itself. By abuse of notation, we also use ΓP1→P2 to denote the
SPD transport. Therefore, we can now define the centering of a batch of matrices {Pi}i≤N with
Riemannian barycenter G as the PT from G to the identity Id, and the biasing of the batch towards a
parametric SPD matrix G as the PT from Id to G.
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Batch centering and biasing We now have the tools to define the batch centering and biasing:

Centering from G := Bar(B): ∀i ≤ N, P̄i = ΓG→Id(Pi) = G−
1
2 Pi G

− 1
2 (7a)

Biasing towards parameter G: ∀i ≤ N, P̃i = ΓId→G(P̄i) = G
1
2 P̄i G

1
2 (7b)

3 Batchnorm for SPD data

In this section we introduce the Riemannian batch normalization (Riemannian BN, or RBN) algorithm
for SPD matrices. We first briefly recall the basic architecture of an SPD neural network.

3.1 Basic layers for SPD neural network

The SPDNet architecture mimics that of classical neural networks with a first stage devoted to
compute a pertinent representation of the input data points and a second stage which allows to
perform the final classification. The particular structure of S+∗ , the manifold of SPD matrices, is taken
into account by layers crafted to respect and exploit this geometry. The layers introduced in [28] are
threefold:

The BiMap (bilinear transformation) layer, analogous to the usual dense layer; the induced dimension
reduction eases the computational burden often found in learning algorithms on SPD data:

X(l) = W (l)TP (l−1)W (l) with W (l) semi-orthogonal (8)

The ReEig (rectified eigenvalues activation) layer, analogous to the ReLU activation; it can also be
seen as a eigen-regularization, protecting the matrices from degeneracy:

X(l) = U (l) max(Σ(l), εIn)U (l)T , with P (l) = U (l)Σ(l)U (l)T (9)

The LogEig (log eigenvalues Euclidean projection) layer:

X(l) = vec( U (l) log(Σ(l))U (l)T ) , with again U (l) the eigenspace of P (l) (10)

This final layer has no Eucidean counterpart: its purpose is the projection and vectorization of the
output feature manifold to a Euclidean space, which allows for further classification with a traditional
dense layer. As stated previously, it is possible to envision different formulations for each of the layers
defined above (see [23, 52, 37] for varied examples). Our following definition of the batchnorm can
fit any formulation as it remains an independent layer.

3.2 Statistical distribution on SPD matrices

In traditional neural nets, batch normalization is defined as the centering and standardization of the
data within one batch, followed by the multiplication and addition by parameterized variance and bias,
to emulate the data sampling from a learnt Gaussian distribution. In order to generalize to batches of
SPD matrices, we must first define the notion of Gausian density on S+∗ . Although this definition has
not yet been settled for good, several approaches have been proposed. In [33], the authors proceed
by introducing mean and variance as second- and fourth-order tensors. On the other hand, [43]
derive a scalar variance. In another line of work synthesized in [9], which we adopt in this work,
the Gaussian density is derived from the definition of maximum entropy on exponential families
using information geometry on the cone of SPD matrices. In this setting, the natural parameter of the
resulting exponential family is simply the Riemannian mean; in other words, this means the notion of
variance, which appears in the Eucidean setting, takes no part in this definition of a Gaussian density
on S+∗ . Specifically, such a density p on SPD matrices P of dimension n writes:

p(P ) ∝ det(α G−1)e−tr(α G−1P ) , with α =
n+ 1

2
(11)

In the equation above, G is the Riemannian mean of the distribution. Again, there is no notion of
variance: the main consequence is that a Riemannian BN on SPD matrices will only involve centering
and biasing of the batch.
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3.3 Final batchnorm algorithm

While the normalization is done on the current batch during training time, the statistics used in
inference are computed as running estimations. For instance, the running mean over the training set,
noted GS , is iteratively updated at each batch. In a Euclidean setting, this would amount to a weighted
average between the batch mean and the current running mean, the weight being a momentum typically
set to 0.9. The same concept holds for SPD matrices, but the running mean should be a Riemannian
mean weighted by η, i.e. Bar(η,1−η)(GS ,GB), which amounts to transporting the running mean
towards the current batch mean by an amount (1− η) along the geodesic. We can now write the full
RBN algorithm 1. In practice, Riemannian BN is appended after each BiMap layer in the network.

Algorithm 1 Riemannian batch normalization on S+∗ , training and testing phase

TRAINING PHASE
Require: batch of N SPD matrices {Pi}i≤N , running mean GS , bias G, momentum η

1: GB ← Bar({Pi}i≤N ) // compute batch mean
2: GS ← Barη(GS ,GB) // update running mean
3: for i ≤ N do
4: P̄i ← ΓGB→Id(Pi) // center batch
5: P̃i ← ΓId→G(P̄i) // bias batch
6: end for

return normalized batch {P̃i}i≤N

TESTING PHASE
Require: batch of N SPD matrices {Pi}i≤N , final running mean GS , learnt bias G

1: for i ≤ N do
2: P̄i ← ΓGS→Id(Pi) // center batch using set statistics
3: P̃i ← ΓId→G(P̄i) // bias batch using learnt parameter
4: end for

return normalized batch {P̃i}i≤N

4 Learning the batchnorm

The specificities of a the proposed batchnorm algorithm are the non-linear manipulation of manifold
values in both inputs and parameters and the use of a Riemannian barycenter. Here we present the two
results necessary to correctly fit the learning of the RBN in a standard back-propagation framework.

4.1 Learning with SPD constraint

The bias parameter matrix G of the RBN is by construction constrained to the SPD manifold.
However, noting L the network’s loss function, the usual Euclidean gradient ∂L

∂G , which we note
∂Geucl, has no particular reason to respect this constraint. To enforce it, ∂Geucl is projected to the
tangent space of the manifold at G using the manifold’s tangential projection operator ΠTG, resulting
in the tangential gradient ∂Griem. The update is then obtained by computing the geodesic on the
SPD manifold emanating from G in the direction ∂Griem, using the exponential mapping defined in
equation 3a. Both operators are known in S+∗ [50]:

∀P, ΠTG(P ) = G
P + PT

2
G ∈ TG ⊂ S+ (12)

We illustrate this two-step process in Figure 2, explained in detail in [24], which allows to learn the
parameter in a manifold-constrained fashion. However, this is still not enough for the optimization
of the layer, as the BN involves not simply G and G, but G

1
2 and G−

1
2 , which are structured matrix

functions ofG, i.e. which act non-linearly on the matrices’ eigenvalues without affecting its associated
eigenspace. The next subsection deals with the backpropagation through such functions.
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Figure 2: Illustration of manifold-constrained gradient update. The Euclidean gradient is projected to
the tangent space, then mapped to the manifold.

4.2 Structured matrix backpropagation

Classically, the functions involved in the chain rule are vector functions in Rn [35], whereas we deal
here with structured (symmetric) matrix functions in the S+∗ , specifically the square root (·) 1

2 for the
bias and the inverse square root (·)− 1

2 for the barycenter (in equations 7b 7a). A generalization of the
chain rule to S∗+ is thus required for the backpropagation through the RBN layer to be correct. Note
that a similar requirement applies to the ReEig and LogEig layers, respectively with a threshold and
log function. We generically note f a monotonous non-linear function; both (·) 1

2 and (·)− 1
2 check

out this hypothesis. A general formula for the gradient of f , applied on a SPD matrix’ eigenvalues
(σi)i≤n grouped in Σ’s diagonal, was independently developed by [32] and [13]. In short: given the
function P 7−→ X := f(P ) and the succeeding gradient ∂L

(l+1)

∂X , the output gradient ∂L
(l)

∂P is:

∂L(l)

∂P
= U

(
L� (UT (

∂L(l+1)

∂X
)U)

)
UT (13)

The equation above, also decribed in [39], is called the Daleckĭi-Kreĭn formula and dates back to
1956, (but was translated from Russian 9 years later), predating the other formulation by 60 years.
It involves the eigenspace U of the input matrix P , and the Loewner matrix L, or finite difference
matrix defined by:

Lij =

{
f(σi)−f(σj)

σi−σj
if σi 6= σj

f ′(σi) otherwise
(14)

In the case at hand,
(

(·)− 1
2

)′
= − 1

2 (·)− 3
2 and

(
(·) 1

2

)′
= 1

2 (·)− 1
2 . We credit [25] for first

showing the equivalence between the two cited formulations, of which we expose the most concise.

In summary, the Riemannian barycenter (approximation via the Karcher flow for a batch of matrices,
or exact formulation for two matrices), the parallel transport and its extension on the SPD manifold, the
SPD-constrained gradient descent and the derivation of a non-linear SPD-valued structured function’s
gradient allow for training and inference of the proposed Riemannian batchnorm algorithm.
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Table 1: Accuracy comparison of SPDNet, SPDNetBN and FCNs on NATO radar data, in function of
amount of training data.

Model SPDNet SPDNetBN FCN MRDRM
# Parameters ∼ 500 ∼ 500 ∼ 10000 ∼ 500 -
Acc. (all data) 72.6%± 0.61 82.3%± 0.80 88.788.788.7%± 0.83 73.4%± 3.66 69.7%± 1.12
Acc. (10% data) 69.1%± 0.97 77.777.777.7%± 0.95 65.6%± 2.74 61.1%± 3.50 67.1%± 2.17

5 Experiments

Here we evaluate the gain in performance of the RBN against the baseline SPDNet on different tasks:
radar data classification, emotion recognition from video, and action recognition from motion capture
data. We call the depth L of an SPDNet the number of BiMap layers in the network, and denote the
dimensions as {n0, · · · , nL}. The vectorized input to the final classification layer is thus of length
n2L. All networks are trained for 200 epochs using SGD with momentum set to 0.9 with a batch size
of 30 and learning rate 5e−3, 1e−2 or 5e−2. We provide the data in a pre-processed form alongside
the PyTorch [40] code for reproducibility purposes. We call SPDNetBN an SPDNet using RBN after
each BiMap layer. Finally, we also report performances of shallow learning method on SPD data,
namely a minimum Riemannian distance to Riemannian mean scheme (MRDRM), described in [7],
in order to bring elements of comparison between shallow and deep learning on SPD data.

5.1 Drones recognition

Our first experimental target focuses on drone micro-Doppler [21] radar classification. First we
validate the usage of our proposed method over a baseline SPDNet, and also compare to state-of-
the-art deep learning methods. Then, we study the models’ robustness to lack of data, a challenge
which, as stated previously, plagues the task of radar classification and also a lot of different tasks.
Experiments are conducted on a confidential dataset of real recordings issued from the NATO
organization 1 . To spur reproducibility, we also experiment on synthetic, publicly available data.

Radar data description A radar signal is the result of an emitted wave reflected on a target; as
such, one data point is a time-series of N values, which can be considered as multiple realizations
of a locally stationary centered Gaussian process, as done in [20]. The signal is split in windows
of length n = 20, the series of which a single covariance matrix of size 20 ∗ 20 is sampled from,
which represents one radar data point. The NATO data features 10 classes of drones, whereas the
synthetic data is generated by a realistic simulator of 3 different classes of drones following the
protocol described in [14]. We chose here to mimick the real dataset’s configuration, i.e. we consider
a couple of minutes of continuous recordings per class, which correspond to 500 data points per class.

Comparison of SPDNetBN against SPDNet and radar state-of-the-art We test the two
SPD-based models in a {20, 16, 8}, 2-layer configuration for the synthetic data, and in a
{20, 16, 14, 12, 10, 8}, 5-layer configuration for the NATO data, over a 5-fold cross-validation, split
in a train-test of 75% − 25%. We also wish to compare the Riemannian models to the common
Euclidean ones, which currently consitute the state-of-the-art in micro-Doppler classification. We
compare two fully convolutional networks (FCN): the first one is used as given in [14]; for the
second one, the number of parameters is set to approximately the same number as for the SPD neural
networks, which amounts to an unusually small deep net. All in all, the SPDNet, SPDNetBN and
small FCN on the one hand, and the full-size FCN on the other hand respectively have approximately
500 and 10000 parameters. Table 1 reports the average accuracies and variances on the NATO data.
We observe a strong gain in performance on the SPDNetBN over the SPDNet and over the small FCN,
which validates the usage of the batchnorm along with the exploitation of the geometric structure
underlying the data. All in all, we reach better performance with much fewer parameters.

Finally, in the interest of convergence analysis, we also report learning curves for the model’s accuracy
with and without Riemannian batchnorm in figure 3.

1We would like to thank the NATO working group SET245 for providing the drone micro-Doppler database
and allowing for publication of classification results.

8



0.6

0.65

0.7

0.75

0.8

0.85

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.

SDPNet with RBN

SPDNet without RBN

Validation
accuracy

Time (hours)
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time overall, but reaches better accuracy much faster, allowing to reduce the number of epochs.

100020003000
Number of training examples

70

80

90

A
cc

u
ra

cy
(%

)

Reference amount of data (1500)

SPDNet

SPDNetBN

FCN

Figure 4: Performance of all models in function of the amount of synthetic radar data. The SPDNetBN
model outperforms the other ones and continues to work even with a little fraction of the train data.

Robustness to lack of data As stated previously, it is of great interest to consider the robustness of
learning algorithms when faced with a critically low amount of data. The last line in table 1 shows
that when given only 10% of available training data, the SPD-based models remain highly robust to
the lack of data while the FCNs plummet. Further, we study robustness on synthetic data, artificially
varying the amount of training data while comparing performance over the same test set. As the
simulator is unbounded on potential training data, we also increase the initial training set up to double
its original size. Results are reported in Figure 4. We can conclude from these that the SPDNetBN
both exhibits higher robustness to lack of data and performs much better than the state-of-the-art
deep method with much fewer parameters. When the available training data allowed skyrockets,
we do observe that the FCN comes back to par with the SPDNetBN to the point of outperforming
it by a small margin in the extremal scenario; in the meantime, the SPDNet lags behind by a large
margin to the SPDNetBN, which thus seems to benefit strongly from the normalization. In any case,
the manifold framework seems well suited in a scarce data learning context, especially considering
the introduced normalization layers, which again pinpoints the interest of taking into account the
geometric structure of the data, all the while without introducing prior knowledge during training.

5.2 Other experiments

Here we validate the use of the RBN on a broader set of tasks. We first clarify we do not necessarily
seek state-of-the-art in the general sense for the following tasks, but rather in the specific case of
the family of SPD-based methods. Our own implementation (as an open PyTorch library) of the
SPDNet’s performances match that in [28], ensuring a fair comparison.
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Table 2: Accuracy comparison of SPDNet with and without Riemannian BN on the AFEW dataset.
Model architecture {400, 50} {400, 100, 50} {400, 200, 100, 50} {400, 300, 200, 100, 50}
SPDNet 29.9% 31.2% 34.5% 33.7%
SPDNetBN (ours) 34.934.934.9% 35.235.235.2% 36.236.236.2% 37.137.137.1%

Table 3: Accuracy comparison of SPDNet with and without Riemannian BN on the HDM05 dataset.
Model architecture SPDNet SPDNetBN (ours)
{93, 30} 61.6%±1.35 65.265.265.2%± 1.15

Emotion recognition In this section we experiment on the AFEW dataset [22], which consists
of videos depicting 7 classes of emotions; we follow the setup and protocol in [28]. Results for
4 architectures are summarized in table 2. In comparison, the MRDRM yields a 20.5% accuracy.
We observe a consistent improvement using our normalization scheme. This dataset being our
largest-scale experiment, we also report the increase in computation time using the RBN, specifically
for the deepest net: one training lasted on average 81s for SPDNet, and 88s (+8.6%) for SPDNetBN.

Action recognition In this section we experiment on the HDM05 motion capture dataset. We use
the same experimental setup as in [28] results are shown in table 3. Note that all tested models
exhibit noticeable variance depending on the weights initialization and the initial random split of
the dataset; the results displayed were obtained by setting a fixed seed of 0 for both. In comparison,
the MRDRM yields a 27.3% ± 1.06 accuracy. Again, we validate a better performance using the
batchnorm.

Conclusion

We proposed a batch normalization algorithm for SPD neural networks, mimicking the orginal
batchnorm in Euclidean neural networks. The algorithm makes use of the SPD Riemannian manifold’s
geometric structure, namely the Riemannian barycenter, parallel transport, and manifold-constrained
backpropagation through non-linear structured functions on SPD matrices. We demonstrate a
systematic, and in some cases considerable, performance increase across a diverse range of data
types. An additional observation is the better robustness to lack of data compared to the baseline
SPD neural network and to a state-of-the-art convolutional network, as well as better performance
than a well-used, more traditional Riemannian learning method (the closest-barycenter scheme). The
overall performances of our proposed SPDNetBN makes it a suitable candidate in learning scenarios
where data is structured, scarce, and where model size is a relevant issue.
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