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This supplementary material consists of four parts. First, we prove two theorems about the properties
of classification error rate (used in Section 2.2 and for Eq. (11)). Second, we present the calculation
of distortion and classification error rate for the toy example (used in Section 2.3). Third, we describe
the experimental details (used in Section 4). Fourth, we report more experimental results.

A Properties of the Classification Error Rate

A.1 Bayes Error Rate is Non-Decreasing

In Section 2.2 we mentioned that, if we have known the distribution of the degraded signal Y ,
then signal restoration has no help for classification, because the optimal classifier for X̂ cannot
outperform the optimal classifier for Y . Here we provide the proof.

To begin, it is necessary to define what is the optimal classifier. The optimal classifier is defined
as the classifier that achieves the minimal error rate for a given signal, e.g. c∗X = arg minc ε(X|c).
According to the Bayes decision rule (see [Fuk90] for proof), the optimal classifier shall be

c∗X = c(·|R∗X),whereR∗X = {x|P1pX1(x) ≥ P2pX2(x)} (a)

which leads to the minimal error rate, a.k.a. the Bayes error rate

ε(X) = min
c
ε(X|c) = ε(X|R∗X)

=
∑
x

min[P1pX1(x), P2pX2(x)]

=
1

2
− 1

2

∑
x

|P1pX1(x)− P2pX2(x)|

(b)

Then we are able to prove a quite general theorem, which claims that the Bayes error rate will not
decrease after any data processing step (surely including signal restoration).

Theorem a. Let the process of X → Y be denoted by PY |X , which is characterized by a
conditional mass function p(y|x), then εY ≥ εX . εY = εX if and only if p(y|x) satisfies:
∀x1 ∈ R+,∀x2 ∈ R−,∀y, p(y|x1)p(y|x2) = 0, where R+ = {x|P1pX1(x) > P2pX2(x)}, and
R− = {x|P1pX1(x) < P2pX2(x)}.
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Proof.

εY =
∑
y

min[P1pY 1(y), P2pY 2(y)]

=
1

2
− 1

2

∑
y

|P1pY 1(y)− P2pY 2(y)|

=
1

2
− 1

2

∑
y

∣∣∣∣∣P1

∑
x

p(y|x)pX1(x)− P2

∑
x

p(y|x)pX2(x)

∣∣∣∣∣
=

1

2
− 1

2

∑
y

∣∣∣∣∣∑
x

p(y|x)[P1pX1(x)− P2pX2(x)]

∣∣∣∣∣
≥ 1

2
− 1

2

∑
y

∑
x

p(y|x)|P1pX1(x)− P2pX2(x)|

=
1

2
− 1

2

∑
x

|P1pX1(x)− P2pX2(x)|
∑
y

p(y|x)

=
1

2
− 1

2

∑
x

|P1pX1(x)− P2pX2(x)| = εX

(c)

When εY = εX , for any y, we need to have∣∣∣∣∣∑
x

p(y|x)[P1pX1(x)− P2pX2(x)]

∣∣∣∣∣ =
∑
x

p(y|x)|P1pX1(x)− P2pX2(x)| (d)

which is equivalent to: all the x’s that satisfy p(y|x) 6= 0 shall have either P1pX1(x)−P2pX2(x) ≥ 0
or P1pX1(x)−P2pX2(x) ≤ 0. The condition is further equivalent to: the x’s that satisfy p(y|x) 6= 0
shall be either all in R+ ∪ R0, or all in R− ∪ R0, where R0 = {x|P1pX1(x) = P2pX2(x)}. In
other words, ∀x1 ∈ R+,∀x2 ∈ R−, p(y|x1)p(y|x2) = 0.

We can compare Theorem a with the data processing theorem in the information theory: consider
the process of X → Y as a deterministic function Y = f(X), then I(X;Y ) ≤ H(X), and
I(X;Y ) = H(X) if and only if f is invertible [CT12]. That says, the information quantity we have
about the source X is non-increasing after data processing. Similarly, Theorem a claims that the
Bayes error rate is non-decreasing after data processing, because we lose information, at best none.
Moreover, not only invertible function satisfies the condition required in Theorem a, but also a large
group of non-invertible functions as well as probabilistic mappings satisfy the condition, which is
quite different from the data processing theorem. In other words, we may lose information but that
information loss may not affect classification.

Given Theorem a, we conclude that if we are dealing with non-blind restoration, i.e. the distribution
of the degraded signal is known, then we can achieve the optimal classifier for the degraded signal,
and it is not necessary to perform signal restoration prior to classification as it will not improve
the classification performance. However, blind restoration is a more appealing setting in practice
since the degradation process is often unknown. In this paper, we are interested more in the blind
restoration case.

A.2 Classification Error Rate is Linear

During the proof of Theorem 1, we have used the linear property of the classification error rate given
a fixed classifier. This property is ensured by the following theorem.

Theorem b. Let U follow a two-component mixture model: pU (u) = P1pU1(u) + P2pU2(u),
similarly V follow: pV (v) = P1pV 1(v) + P2pV 2(v). Let W be the random variable with pW (w) =
λpU (w) + (1− λ)pV (w) where 0 ≤ λ ≤ 1. Let c0 be a fixed classifier, then

ε(W |c0) = λε(U |c0) + (1− λ)ε(V |c0) (e)
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Proof. As c0 is a fixed classifier, it can be denoted in general by c0 = c(·|R0). Then we have

ε(U |c0) = P2

∑
u∈R0

pU2(u) + P1

∑
u/∈R0

pU1(u) (f)

ε(V |c0) = P2

∑
v∈R0

pV 2(v) + P1

∑
v/∈R0

pV 1(v) (g)

Thus

ε(W |c0) = P2

∑
w∈R0

pW2(w) + P1

∑
w/∈R0

pW1(w)

= P2

∑
w∈R0

[λpU2(w) + (1− λ)pV 2(w)] + P1

∑
w/∈R0

[λpU1(w) + (1− λ)pV 1(w)]

= λ

P2

∑
w∈R0

pU2(w) + P1

∑
w/∈R0

pU1(w)

+ (1− λ)

P2

∑
w∈R0

pV 2(w) + P1

∑
w/∈R0

pV 1(w)


= λε(U |c0) + (1− λ)ε(V |c0)

(h)

B Calculation for the Toy Example

Let us review the settings of the toy example: pX(x) = P1pX1(x) + P2pX2(x), where pX1(x) =

N (−1, 1), pX2(x) = N (1, 1). Y = X + N where N ∼ N (0, σ2
N ). X̂ = aY where a is an

adjustable parameter. we have pX̂(x) = P1pX̂1(x) + P2pX̂2(x), where pX̂1(x) = N [−a, a2(1 +
σ2
N )], pX̂2(x) = N [a, a2(1 + σ2

N )].

Since N is independent from X and E(X2) = P1E(X2
1 ) + P2E(X2

2 ),

MSE(a) = E[(X − X̂)2] = E(X2) + E(X̂2)− 2E(XX̂) = (2 + σ2
N )a2 − 4a+ 2 (i)

According to the Bayes decision rule, the optimal classification plane for the original signal can
be obtained by solving P1pX1(x0) = P2pX2(x0), which leads to x0 = − 1

2 ln P2

P1
. Applying this

classifier on the denoised signal X̂ , the error rate will be

ε(X̂|c0) = P2

∫ x0

−∞
N [a, a2(1 + σ2

N )]dx+ P1

∫ ∞
x0

N [−a, a2(1 + σ2
N )]dx

= P2

∫ x′
0

−∞
N (0, 1)dx+ P1

∫ ∞
x′′
0

N (0, 1)dx

= P2Φ(x′0) + P1Φ(−x′′0)

(j)

where x′0 = x0−a
|a|
√

1+σ2
N

and x′′0 = x0+a

|a|
√

1+σ2
N

. Φ(·) is the integral of standard normal distribution.

For the perception we cannot derive a closed-form function, so we use the numerical method to
calculate.

Note that distortion, perception, and error rate are all determined by a. According to the CDP
function, if given a constraint onD (or P ), the feasible domain of a is restricted, and then the minimal
reachable value of the error rate is also restricted, which is essentially the tradeoff.

C Experimental Details

We use TensorFlow for implementation. The network structures used in our experiments are listed in
Table a.

Exp-1. First, we use the clean (i.e. noise-free) MNIST training data to train a logistic regression
classifier. When tested on the clean MNIST test set, the logisitc regression classifier achieves 92.73%
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Table a: Network structures. Conv(kernel size, stride, channel, padding) stands for a convolutional
layer with the corresponding settings (padding s stands for same and v stands for valid). BN is batch
normalization, L-ReLU is Leaky-ReLU with slope 0.2, MP is max pooling where stride is 2, Dropout
is with probability 0.5. For MNIST, H=W=28, C=1; for CIFAR-10, H=W=32, C=3.

Denoiser (Exp-1/2/3)
Input (H×W×C)

Conv(5, 1, 32, s)+ReLU
Conv(5, 1, 64, s)+BN+ReLU
Conv(5, 1, 64, s)+BN+ReLU
Conv(5, 1, 32, s)+BN+ReLU
Conv(5, 1, C, s)+clip to [0,1]

Output (H×W×C)

SR Network (Exp-4/5)
Input (H×W×C)

Conv(9, 1, 64, s)+ReLU
Conv(5, 1, 32, s)+ReLU

Conv(5, 1, C, s)+clip to [0,1]
Output (H×W×C)

Discriminator (All Exps)
Input (H×W×C)

Conv(5, 2, 32, s)+L-ReLU
Conv(5, 2, 64, s)+BN+L-ReLU
Conv(5, 2, 128, s)+BN+L-ReLU

FC (output=1)
Output (1)

CNN-1 Classifier (Exp-2/4)
Input (H×W×C)

Conv(5, 1, 10, v)+MP+ReLU
Conv(5, 1, 20, v)+MP+ReLU

FC (output=50)+Dropout
FC (output=10)

Output (10)

CNN-2(2’) Classifier (Exp-3/5)
Input (H×W×C)

Conv(3, 1, 64, s)+ReLU
Conv(3, 1, 64, s)+ReLU+MP

Conv(3, 1, 64, s)+ReLU
Conv(3, 1, 64, s)+ReLU+MP

Conv(3, 1, 64, s)+ReLU
Conv(3, 1, 64, s)+ReLU+MP

FC (output=256)+ReLU+Dropout
FC (output=10)

Output (10)
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Table b: Loss weight combinations for Exp-1.
γ α β

0

0.9 0.0175, 0.0195
0.95 0.0178

1 0, 0.004, 0.008, 0.0165, 0.017, 0.0172, 0.018,
0.019, 0.024, 0.032, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3

1.1 0.0175

0.005 1 0, 0.016, 0.0188, 0.019, 0.0197, 0.0198, 0.0199,
0.0202, 0.0212, 0.028, 0.032, 0.034, 0.05, 0.2, 0.3

0.01 1 0.0118, 0.0122, 0.013, 0.0138, 0.0142, 0.015, 0.02, 0.0203,
0.0205, 0.021, 0.0212, 0.0213, 0.0264, 0.032, 0.1, 0.2, 0.3

0.02 1
0.015, 0.02, 0.022, 0.024, 0.0244, 0.0248, 0.025,

0.0251, 0.0252, 0.0253, 0.0254, 0.0255, 0.027, 0.0275,
0.028, 0.0295, 0.03, 0.032, 0.038, 0.05, 0.1, 0.2, 0.3

γ β α

0 0.0165 0.92, 0.931, 0.935, 0.937
0.017 0.96, 0.961, 0.962, 0.97, 1.1

Table c: Loss weight combinations for Exp-2.
γ α β

0

0.9 0.0165, 0.0171, 0.0175, 0.0185, 0.019, 0.0195
0.95 0.0167, 0.017, 0.0172, 0.0173

1
0, 0.004, 0.008, 0.0165, 0.017, 0.0172,

0.0174, 0.0178, 0.018, 0.0185, 0.019, 0.0195,
0.02, 0.024, 0.032, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3

1.1 0.017, 0.0175, 0.0185, 0.019, 0.0195
0.000625 1 0, 0.000375

0.005 1 0, 0.016, 0.018, 0.0206, 0.0208, 0.021, 0.0214,
0.0216, 0.022, 0.024, 0.026, 0.028, 0.1, 0.3

0.01

0.95 0.0252, 0.0254

1 0, 0.01, 0.015, 0.02, 0.022, 0.024, 0.0255, 0.0265, 0.027,
0.0275, 0.028, 0.03, 0.032, 0.034, 0.036, 0.038, 0.05, 0.1 ,0.2, 0.3

1.02 0.0261, 0.0262, 0.0263, 0.0264
0.015 1 0, 0.0252, 0.0258, 0.0276, 0.028, 0.0282, 0.03, 0.032, 0.1, 0.3

γ β α

0 0.0165 0.93, 0.931, 0.935, 0.937, 0.94
0.017 0.96, 0.961, 0.962, 0.965, 0.969, 0.97, 0.99

0.005 0.0212 0.92, 0.94, 0.96
0.0214 1.02, 1.04, 1.06

0.01 0.026 0.97, 1.018
0.0262 1.03, 1.07

0.015 0.0294 0.92, 0.94, 0.98

Table d: Loss weight combinations for Exp-3.
α γ β

1

0 0, 0.011, 0.012, 0.014, 0.015, 0.016, 0.01784, 0.01786, 0.01788, 0.0179, 0.01792,
0.01794, 0.01796, 0.018, 0.019, 0.02, 0.03, 0.0362, 0.0366, 0.0368, 0.06, 0.08, 0.1

0.001 0, 0.011, 0.012, 0.013, 0.015, 0.016, 0.017, 0.018, 0.0186,
0.0188, 0.01882, 0.01886, 0.0189, 0.01894, 0.019, 0.02, 0.03, 0.04

0.003 0, 0.021, 0.022, 0.023, 0.02302, 0.02306, 0.02308, 0.02314,
0.02316, 0.0232, 0.0234, 0.024, 0.027, 0.028, 0.03, 0.04

0.005 0.01, 0.02, 0.021, 0.024, 0.025, 0.026, 0.028, 0.029, 0.03, 0.04
0.008 0.0312, 0.0314, 0.033, 0.035
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Table e: Loss weight combinations for Exp-4.
α γ β

1

0 0, 0.001, 0.002, 0.003, 0.004, 0.006, 0.009, 0.01, 0.011, 0.012,
0.013, 0.015, 0.016, 0.018, 0.019, 0.02, 0.03, 0.04, 0.1, 0.15, 0.2

0.001 0, 0.01, 0.03, 0.04, 0.15
0.0025 0, 0.02 , 0.1

0.005 0, 0.001, 0.002, 0.003, 0.004, 0.006, 0.009, 0.01, 0.012,
0.013, 0.014, 0.015, 0.016, 0.018, 0.03, 0.04, 0.1, 0.15, 0.2

0.01 0, 0.001, 0.002, 0.02, 0.024, 0.026, 0.03, 0.04, 0.1, 0.15, 0.2

0.015 0, 0.001, 0.004, 0.006, 0.011, 0.014, 0.016, 0.02, 0.0225,
0.023, 0.024, 0.025, 0.027, 0.03, 0.04, 0.1, 0.15, 0.2

0.02 0.0225, 0.0235, 0.024, 0.025, 0.03

Table f: Loss weight combinations for Exp-5.
α γ β

1

0 0.008, 0.009, 0.011, 0.012, 0.014, 0.015,
0.017, 0.019, 0.02, 0.03, 0.05, 0.06, 0.1

0.00001 0.008, 0.009, 0.01, 0.011, 0.012, 0.013, 0.015, 0.016,
0.017, 0.018, 0.019, 0.02, 0.03, 0.04, 0.05, 0.07, 0.08, 0.1

0.0002 0.008, 0.009, 0.011, 0.014, 0.016
0.0003 0.007, 0.009, 0.011, 0.013, 0.017, 0.019

0.0005 0.006, 0.007, 0.008, 0.009, 0.01, 0.011, 0.012, 0.013,
0.016, 0.017, 0.019, 0.03, 0.04, 0.06, 0.07, 0.08, 0.1

0.0006 0.007, 0.008, 0.009, 0.01, 0.011, 0.013, 0.016, 0.017, 0.019, 0.03, 0.04, 0.05

accuracy, which we think is satisfactory on MNIST. Then, we fix the classifier and train the denoiser
and discriminator in an adversarial manner as suggested in [ACB17]. Note that the training images are
already corrupted by noise N (0, 1). For denoiser, the loss is `denoiser = α`MSE + β`adv + γ`class,
where `MSE is the MSE loss, `adv is the adversarial loss [ACB17], and `class is the classification
loss (i.e. cross entropy calculated by the pretrained classifier). α, β, γ are the weights and we have
tried many different combinations of weights as listed in Table b. We use the ADAM optimizer
with hyper-parameters β1 = 0.5, β2 = 0.9. The initial learning rate of denioser/discriminator is
10−3/10−4, and the learning rate of denoiser decreases to 1/5 every 10,000 iterations. Batch size
is 50 and training stops at 40,000 iterations. Model selection is performed by using the MNIST
validation set.

Exp-2. Different from Exp-1, we use a CNN-based classifier, namely CNN-1 in Table a. We use
the clean MNIST training data and the SGD optimizer with a constant learning rate 0.01 to train
CNN-1. Batch size is 100 and training stops at 140 epoch. As a result, we achieve 99.19% accuracy
on the clean MNIST test set. Then, we fix the classifier and train the denoiser and discriminator. Loss
function is the same, but the cross entropy is calculated by the CNN-1 classifier. Combinations of
weights are listed in Table c.

Exp-3. Almost identical to Exp-2, but using another CNN-based classifier, namely CNN-2 in Table a.
Learning rate is set as 0.1/0.01/0.002/0.001/0.0001 at the beginning of 1/101/201/501/1501 epoch
and training stops at 2000 epoch. On the clean MNIST test set, CNN-2 performs slightly better
than CNN-1, i.e. the accuracy is 99.38%. Then we fix the classifier and train the denoiser and
discriminator. Combinations of weights are listed in Table d.

Exp-4. The classifier is CNN-1 which is already trained in Exp-2. We fix the classifier and train the
SR network and discriminator. Combinations of weights are listed in Table e.

Exp-5. We use CNN-2’, whose structure is almost identical to CNN-2 but input image size is different.
We use the raw CIFAR-10 training data to train CNN-2’ (with data augmentation such as horizontal
flipping and padding + random cropping), achieving 85.18% accuracy on the raw CIFAR-10 test set.
Then we fix the classifier and train the SR network and discriminator. Combinations of weights are
listed in Table f.
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Figure a: Profiles of the CDP functions. Top: Exp-3, middle: Exp-5, bottom: Exp-4 displayed in
another style, where the size of each point indicates the corresponding value (quantized).

D More Experimental Results

Profiles of the CDP functions of Exp-3/4/5 are shown in Fig. a. Some visual examples of Exp-4 and
Exp-5 are shown in Fig. b.
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Figure b: Visual results. Top: Exp-4, bottom: Exp-5.
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