
Differentially Private Algorithms for
Learning Mixtures of Separated Gaussians

Gautam Kamath* Or Sheffet† Vikrant Singhal‡ Jonathan Ullman§

October 15, 2019

Abstract

Learning the parameters of Gaussian mixture models is a fundamental and widely
studied problem with numerous applications. In this work, we give new algorithms for
learning the parameters of a high-dimensional, well separated, Gaussian mixture model
subject to the strong constraint of differential privacy. In particular, we give a differentially
private analogue of the algorithm of Achlioptas and McSherry. Our algorithm has two key
properties not achieved by prior work: (1) The algorithm’s sample complexity matches that
of the corresponding non-private algorithm up to lower order terms in a wide range of
parameters. (2) The algorithm does not require strong a priori bounds on the parameters of
the mixture components.
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1 Introduction

The Gaussian mixture model is one of the most important and widely studied models in
Statistics—with roots going back over a century [Pea94]—and has numerous applications in the
physical, life, and social sciences. In a Gaussian mixture model, we suppose that each sample is
drawn by randomly selecting from one of k distinct Gaussian distributions G1, . . . ,Gk in R

d and
then drawing a sample from that distribution. The problem of learning a Gaussian mixture model
asks us to take samples from this distribution and approximately recover the parameters (mean
and covariance) of each of the underlying Gaussians. The past decades have seen tremendous
progress towards understanding both the sample complexity and computational complexity
of learning Gaussian mixtures [Das99, DS00, AK01, VW02, AM05, CR08b, CR08a, KK10, AS12,
RV17, HL18a, DKS18, KSS18, KMV10, MV10, BS10, HK13, ABG+14, BCMV14, HP15, GHK15,
XHM16, DTZ17, ABDH+18, FOS06, FOS08, DK14, SOAJ14, DKK+16, LS17, CDSS14].

In many of the applications of Gaussian mixtures models, especially those in the social
sciences, the sample consists of sensitive data belonging to individuals. In these cases, it is
crucial that we not only learn the parameters of the mixture model, but do so while preserving
these individuals’ privacy. In this work, we study algorithms for learning Gaussian mixtures
subject to differential privacy [DMNS06], which has become the de facto standard for individual
privacy in statistical analysis of sensitive data. Intuitively, differential privacy guarantees that
the output of the algorithm does not depend significantly on any one individual’s data, which
in this case means any one sample. Differential privacy is used as a measure of privacy for
data analysis systems at Google [EPK14], Apple [Dif17], and the U.S. Census Bureau [DLS+17].
Differential privacy and related notions of algorithmic stability are also crucial for statistical
validity even when individual privacy is not a primary concern, as they provide generalization
guarantees in an adaptive setting [DFH+15, BNS+16].

The first differentially private algorithm for learning Gaussian mixtures comes from the work
of Nissim, Raskhodnikova, and Smith [NRS07] as an application of their influential subsample-
and-aggregate framework. However, their algorithm is a reduction from private estimation to
non-private estimation that blows up the sample complexity by at least a poly(d) factor.

The contribution of this work is new differentially private algorithms for recovering the
parameters of an unknown Gaussian mixture provided that the components are sufficiently well-
separated. In particular we give differentially private analogues of the algorithm of Achlioptas
and McSherry [AM05], which requires that the means are separated by a factor proportional to√
k, but independent of the dimension d. Our algorithms have two main features not shared by

previous methods:

• The sample complexity of the algorithm matches that of the corresponding non-private
algorithm up to lower order additive terms for a wide range of parameters.

• The algorithms do not require strong a priori bounds on the parameters of the mixture
components. That is, like many algorithms, we require that the algorithm is seeded
with some information about the range of the parameters, but the algorithm’s sample
complexity depends only mildly (polylogarithmically) on the size of this range.

3



1.1 Problem Formulation

There are a plethora of algorithms for (non-privately) learning Gaussian mixtures, each with
different learning guarantees under different assumptions on the parameters of the underlying
distribution.1 In this section we describe the version of the problem that our work studies and
give some justification for these choices.

We assume that the underlying distribution D is a mixture of k Gaussians in high dimension
d. The mixture is specified by k components, where each componentGi is selected with probability
wi ∈ [0,1] and is distributed as a Gaussian with mean µi ∈Rd and covariance Σi ∈Rd×d . Thus
the mixture is specified by the tuple {(wi ,µi ,Σi)}i∈[k].

Our goal is to accurately recover this tuple of parameters. Intuitively, we would like to
recover a tuple {(ŵi , µ̂i , Σ̂i)}i∈[k], specifying a mixture G̃ such that ‖ŵ−w‖1 is small and ‖µ̂i −µi‖Σi
and ‖Σ̂i −Σi‖Σi are small for every i ∈ [k]. Here, ‖ · ‖Σ is the appropriate vector/matrix norm that
ensuresN (µi ,Σi) andN (µ̂i , Σ̂i) are close in total variation distance and we also compare ŵ and
w in ‖ · ‖1 to ensure that the mixtures are close in total variation distance. Of course, since the
labeling of the components is arbitrary, we can actually only hope to recover the parameters up
to some unknown permutation π : [k]→ [k] on the components. We say that an algorithm learns
a mixture of Gaussian using n samples if it takes n i.i.d. samples from an unknown mixture D and
outputs the parameters of a mixture D̂ satisfies these conditions.2

In this work, we consider mixtures that satisfy the separation condition

∀i , j ‖µi −µj‖2 ≥ Ω̃

√k +

√
1
wi

+
1
wj

 ·max
{
‖Σ1/2

i ‖,‖Σ
1/2
j ‖

}
(1)

Note that the separation condition does not depend on the dimension d, only on the number of
mixture components. However, (1) is not the weakest possible condition under which one can
learn a mixture of Gaussians. We focus on (1) because this is the regime where it is possible to
learn the mixture components using statistical properties of the data, such as the large principal
components of the data and the centers of a good clustering, which makes this regime amenable
to privacy. In contrast, algorithms that learn with separation proportional to k1/4 [VW02],
kε [HL18a, KSS18, DKS18], or even

√
logk [RV17] use algorithmic machinery such as the sum-

of-squares algorithm that has not been studied from the perspective of privacy, or are not
computationally efficient. In particular, a barrier to learning with separation k1/4 is that the
non-private algorithms are based on single-linkage clustering, which is not amenable to privacy
due to its crucial dependence on the distance between individual points. We remark that one
can also learn without any separation conditions, but only with exp(k) many samples from the
distributions [MV10].

In this work, our goal is to design learning algorithms for mixtures of Gaussians that are
also differentially private. An (ε,δ)-differentially private [DMNS06] randomized algorithm A for
learning mixtures of Gaussians is an algorithm that takes a dataset X of samples and:

1We remark that there are also many popular heurstics for learning Gaussian mixtures, notably the EM algo-
rithm [DLR77], but in this work we focus on algorithms with provable guarantees.

2To provide context, one might settle for a weaker goal of proper learning where the goal is merely to learn some
Gaussian mixture, possibly with a different number of components, that is close to the true mixture, or improper
learning where it suffices to learn any such distribution.
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• For every pair of datasets X,X ′ differing on a single sample, the distributions A(X) and
A(X ′) are (ε,δ)-close in a precise sense (Definition 2.7).

• If n is sufficiently large and X1, . . . ,Xn ∼ D for a mixture D satisfying our assumptions,
then A(X) outputs an approximation to the parameters of G.

Note that, while the learning guarantees necessarily rely on the assumption that the data is
drawn i.i.d. from some mixture of Gaussians, the privacy guarantee is worst-case. It is important
for privacy not to rely on distributional assumptions because we have no way of verifying that
the data was truly drawn from a mixture of Gaussians, and if our assumption turns out to be
wrong we cannot recover privacy once it is lost.

Furthermore, our algorithms assume certain boundedness of the mixture components. Specifi-
cally, we assume that there are known quantities R,σmax,σmin such that

∀i ∈ [k] ‖µi‖2 ≤ R and σ2
min ≤ ‖Σi‖2 ≤ σ

2
max. (2)

These assumptions are to some extent necessary, as even the state-of-the-art algorithms for
learning a single multivariate normal [KLSU19] require boundedness.3 However, since R and
σmax/σmin can be quite large—and even if they are not we cannot expect the user of the algorithm
to know these parameter a priori—the algorithm’s sample complexity should depend only mildly
on these parameters so that they can be taken to be quite large.

1.2 Our Contributions

The main contribution of our work is an algorithm with improved sample complexity for
learning mixtures of Gaussians that are separated and bounded.

Theorem 1.1 (Main, Informal). There is an (ε,δ)-differentially private algorithm that takes

n =
(

d2

α2wmin
+

d2

αwminε
+

poly(k)d3/2

wminε

)
·polylog

(
dkR(σmax/σmin)

αβεδ

)
samples from an unknown mixture of k Gaussians D in R

d satisfying (1) and (2), where wmin = miniwi ,
and, with probability at least 1− β, learns the parameters of D up to error α.

We remark that the sample complexity in Theorem 1.1 compares favorably to the sample
complexity of methods based on subsample-and-aggregate. In particular, when ε ≥ α and k is
a small polynomial in d, the sample complexity is dominated by d2/α2wmin, which is optimal
even for non-private algorithms. In Section 6 we give an optimized version of the subsample-
and-aggregate-based reduction from [NRS07] and show that we can learn mixtures of Gaussians
with sample complexity roughly Õ(

√
d/ε) times the sample complexity of the corresponding

non-private algorithm. In contrast the sample complexity of our algorithm does not grow by
dimension-dependent factors compared to the non-private algorithm on which it is based.

3These boundedness conditions are also provably necessary to learn even a single univariate Gaussian for pure
differential privacy, concentrated differential privacy, or Rényi differential privacy, by the argument of [KV18]. One
could only hope to avoid boundedness using the most general formulation of (ε,δ)-differential privacy.
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At a high level, our algorithm mimics the approach of Achlioptas and McSherry [AM05],
which is to use PCA to project the data into a low-dimensional space, which has the effect of
projecting out much of the noise, and then recursively clustering the data points in that low-
dimensional space. However, where their algorithm uses a Kruskal-based clustering algorithm,
we have to use alternative clustering methods that are more amenable to privacy. We develop
our algorithm in two distinct phases addressing different aspects of the problem:

Phase I. In Section 4 we consider an “easy case” of Theorem 1.1, where we assume that: all
components are spherical Gaussians, such that variances of each component lie in a small, known
range (such that their ratio is bounded by a constant factor) and that the means of the Gaussians
lie in a small ball around the origin. Under these assumptions, it is fairly straightforward to
make the PCA-projection step [VW02, AM05] private. The key piece of the algorithm that needs
to be private is computing the principal components of the data’s covariance matrix. We can
make this step private by adding appropriate noise to this covariance, and the key piece of the
analysis is to analyze the effect of this noise on the principal components, extending the work of
Dwork et al. [DTTZ14] on private PCA. Using the assumptions we make in this easy case, we
can show that the projection shifts each component’s mean by O(

√
kσmax), which preserves the

separation of the data because all variances are within constant factor of one another. Then, we
iteratively cluster the data using the 1-cluster technique of [NSV16, NS18]. Lastly, we apply a
simplified version of [KLSU19] (Appendix C) to learn each component’s parameters.

Phase II. We then consider the general case where the Gaussians can be non-spherical and wildly
different from each other. In this case, if we directly add noise to the covariance matrix to
achieve privacy, then the noise will scale polynomially with σmax/σmin, which is undesirable. To
deal with the general case, we develop a recursive algorithm, which repeatedly identifies an
secluded cluster in the data, and then recurses on this isolated cluster and the points outside of
the cluster. To that end we develop in Section 5.1 a variant of the private clustering algorithm
of [NSV16, NS18] that finds a secluded ball—a set of points that lie inside of some ball Br (p)
such that the annulus B10r (p) \Br (p) is (essentially) empty.4

We obtain a recursive algorithm in the following way. First we try to find a secluded ball
in the unprojected data. If we find one then we can split and recurse on the inside and outside
of the ball. If we cannot find a ball, then we can argue that the diameter of the dataset is
poly(d,k,σmax). In the latter case, we can ensure that with poly(d,k) samples, the PCA-projection
of the data preserves the mean of each component up to O(

√
kσmax), which guarantees that the

cluster with the largest variance is secluded, so we can find the secluded ball and recurse.

1.3 Related Work

There has been a great deal of work on learning mixtures of distribution classes, particularly
mixtures of Gaussians. There are many ways the objective can be defined, including clus-
tering [Das99, DS00, AK01, VW02, AM05, CR08b, CR08a, KK10, AS12, RV17, HL18a, DKS18,
KSS18], parameter estimation [KMV10, MV10, BS10, HK13, ABG+14, BCMV14, HP15, GHK15,
XHM16, DTZ17, ABDH+18], proper learning [FOS06, FOS08, DK14, SOAJ14, DKK+16, LS17],
and improper learning [CDSS14].

4Since [NSV16, NS18] call the ball found by their algorithm a good ball, we call ours a terrific ball.
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Some work on privately learning mixtures of Gaussians includes [NRS07] and [BKSW19].
The former introduced the sample-and-aggregate method to convert non-private algorithms into
private algorithms, and applied it to learning mixtures of Gaussians. Our sample-and-aggregate-
based method can be seen as a modernization of their algorithm, using tools developed over the
last decade to handle somewhat more general settings and importantly, reduce the dependence
on the range of the parameter space. As discussed above, our main algorithm improves upon
this approach by avoiding an increase in the dependence on the dimension, allowing us to
match the sample complexity of the non-private algorithm in certain parameter regimes. The
latter paper (which is concurrent with the present work) provides a general method to convert
from a cover for a class of distributions to a private learning algorithm for the same class. The
work gets a near-optimal sample complexity of Õ

(
kd2

(
1/α2 + 1/αε

))
, but the algorithms have

exponential running time in both k and d and their learning guarantees are incomparable to
ours (the perform proper learning, while we do clustering and parameter estimation).

Other highly relevant works in private distribution learning include [KV18, KLSU19], which
focus on learning a single Gaussian. There are also algorithms for learning structured univariate
distributions in TV-distance [DHS15], and learning arbitrary univariate distributions in Kolo-
mogorov distance [BNSV15]. Upper and lower bounds for learning the mean of a product
distribution over the hypercube in `∞-distance include [BDMN05, BUV14, DMNS06, SU17].
[AKSZ18] focuses on estimating properties of a distribution, rather than the distribution itself.
[Smi11] gives an algorithm which allows one to estimate asymptotically normal statistics with
minimal increase in the sample complexity. There has also been a great deal of work on dis-
tribution learning in the local model of differential privacy [DJW13, WHW+16, KBR16, ASZ19,
DR18, JKMW19, YB18, GRS19].

Within differential privacy, there are many algorithms for tasks that are related to learning
mixtures of Gaussians, notably PCA [BDMN05, KT13, CSS13, DTTZ14] and clustering [NRS07,
GLM+10, NSV16, NS18, BDL+17, SK18, HL18b]. Applying these algorithms naı̈vely to the
problem of learning Gaussian mixtures would necessarily introduce a polynomial dependence
on the range of the data, which we seek to avoid. Nonetheless, private algorithms for PCA and
clustering feature prominently in our solution, and build directly on these works.

2 Preliminaries

2.1 General Preliminaries

Let Sym+
d denote set of all d × d, symmetric, and positive semidefinite matrices. Let G(d) =

{N (µ,Σ) : µ ∈Rd ,Σ ∈ Sym+
d } be the family of d-dimensional Gaussians. We can now define the

class G(d,k) of mixtures of Gaussians as follows.

Definition 2.1 (Gaussian Mixtures). The class of Gaussian k-mixtures in R
d is

G(d,k)B

 k∑
i=1

wiGi : G1, . . . ,Gk ∈ G(d),w1, . . . ,wk > 0,
k∑
i=1

wi = 1

 .
We can specify a Gaussian mixture by a set of k tuples as: {(µ1,Σ1,w1), . . . , (µk ,Σk ,wk)}, where
each tuple represents the mean, covariance matrix, and mixing weight of one of its compo-
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nents. Additionally, for each i, we refer to σ2
i = ‖Σi‖2 as the maximum directional variance of

component i.

We are given n points in d dimensions in the form of a (n× d)-matrix X, and use A to denote
the corresponding matrix of centers. (α,β,ε,δ) are the parameters corresponding to accuracy in
estimation (in total variation distance), failure probability, and privacy parameters, respectively.
R denotes the radius of a ball (centered at the origin) which contains all means, and κ is the ratio
of the upper and the lower bound on the variances (for simplicity, we generally assume the
lower bound is 1). Also, σ2

max and σ2
min are the maximum and minimum variance of any single

component, namely σ2
max = maxi{σ2

i } and σ2
min is defined symmetrically; similarly wmin denotes

a lower bound on the minimum mixing weight. We will use the notational convention that Bdr (~c)
denotes the ball in R

d of radius r centered at ~c ∈ Rd . As d will typically be clear from context,
we will often suppress d and write Br(~c).

In order to (privately) learn a Gaussian mixture, we will need to impose two types of
conditions on its parameters—boundedness, and separation.

Definition 2.2 (Separated and Bounded Mixtures). For s > 0, a Gaussian mixtures D ∈ G(d,k) is
s-separated if

∀1 ≤ i < j ≤ k,
∥∥∥µi −µj∥∥∥2

≥ s ·max{σi ,σj}.

For R,σmax,σmin,wmin > 0, a Gaussian mixture D ∈ G(d,k) is (R,σmin,σmax,wmin)-bounded if

∀1 ≤ i ≤ k, ‖µi‖2 ≤ R, min
i
{σi} ≥ σmin, max

i
{σi} ≤ σmax, and min

i
{wi} = wmin.

We denote the family of separated and bounded Gaussian mixtures by G(d,k,σmin,σmax,R,wmin, s).

We now have now established the necessary definitions to define what it means to “learn” a
Gaussian mixture in our setting.

Definition 2.3 ((α,β)-Learning). LetD ∈ G(d,k) be parameterized by {(µ1,Σ1,w1), . . . , (µk ,Σk ,wk)}.
We say that an algorithm (α,β)-learns D, if on being given sample-access to D, it outputs with
probablity at least 1− β a distribution D̂ ∈ G(d,k) parameterized by {(µ̂1, Σ̂1, ŵ1), . . . , (µ̂k , Σ̂k , ŵk)},
such that there exists a permutation π : [k]→ [k], for which the following conditions hold.

1. For all 1 ≤ i ≤ k, dTV(N (µi ,Σi),N (µ̂π(i), Σ̂π(i))) ≤O(α).

2. For all 1 ≤ i ≤ k,
∣∣∣wi − ŵπ(i)

∣∣∣ ≤O (
α
k

)
.

Note that the above two conditions together imply that dTV(D,D̂) ≤ α.

2.1.1 Labelled Samples

In our analysis, it will be useful to think of sampling from a Gaussian mixture by the
following two-step process: first we select a mixture component ρi where ρi = j with probability
wj , and then we choose a sample Xi ∼ Gρi . We can then imagine that each point Xi in the sample
has a label ρi indicating which mixture component it was sampled from.
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Definition 2.4 (Labelled Sample). For D ∈ G(d,k,σmin,σmax,R,wmin, s), a labelled sample is a set
of tuples XL = ((X1,ρ1), . . . , (Xm,ρm)) sampled from D according to the process above. We will
write X = (X1, . . . ,Xm) to denote the (unlabelled) sample.

We emphasize again that the algorithm does not have access to the labelled sample XL. In
fact given a fixed sample X, any labelling has non-zero probability of occurring, so from the
algorithm’s perspective XL is not even well defined. Nonetheless, the labelled sample is a well
defined and useful construct for the analysis of our algorithm, since it allows us to make sense of
the statement that the algorithm with high probability correctly labels each point in the sample
by which mixture component it came from.

2.1.2 Deterministic Regularity Conditions

In order to analyze our algorithm, it will be useful to establish several regularity conditions
that are satisfied (with high probability) by samples from a Gaussian mixture. In this section we
will state the following regularity conditions.

The first condition asserts that each mixture component is represented approximately the
right number of times.

Condition 2.5. Let XL = ((X1,ρ1), . . . , (Xn,ρn)) be a labelled sample from a Gaussian k-mixture D. For
every label 1 ≤ u ≤ k,

1. the number of points from component u (i.e. |{Xi : ρi = u}|) is in [nwu2 , 3nwu
2 ], and

2. if wu ≥ 4α/9k then the number of points from component u is in [n(wu − α
9k ),n(wu + α

9k )].

In Appendix A, we prove the following lemma, which states that if the number of samples is
sufficiently large, then with high probability each of the above conditions is satisfied.

Lemma 2.6. Let XL = ((X1,ρ1), . . . , (Xn,ρn)) be a labelled sample from a Gaussian k-mixtureD ∈ G(d,k)
with parameters {(µ1,Σ1,w1), . . . , (µk ,Σk ,wk)}. If

n ≥max
{

12
wmin

ln(2k/β),
405k2

2α2 ln(2k/β)
}
,

then with probability at least 1− β, XL (alternatively X) satisfies Condition 2.5.

2.2 Privacy Preliminaries

In this section we review the basic definitions of differential privacy, and develop the
algorithmic toolkit that we need.

2.2.1 Differential Privacy

Definition 2.7 (Differential Privacy (DP) [DMNS06]). A randomized algorithm M : X n → Y
satisfies (ε,δ)- differential privacy ((ε,δ)-DP) if for every pair of neighboring datasets X,X ′ ∈ X n
(i.e., datasets that differ in exactly one entry),

∀Y ⊆ Y P [M(X) ∈ Y ] ≤ eε ·P
[
M(X ′) ∈ Y

]
+ δ.
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Two useful properties of differential privacy are closure under post-processing and composi-
tion.

Lemma 2.8 (Post Processing [DMNS06]). If M : X n → Y is (ε,δ)-DP, and P : Y → Z is any
randomized function, then the algorithm P ◦M is (ε,δ)-DP.

Lemma 2.9 (Composition of DP [DMNS06, DRV10]). If M1, . . . ,MT are (ε0,δ0)-DP algorithms, and

M(X) = (M1(X), . . . ,MT (X))

is the composition of these mechanisms, then M is (ε,δ)-DP for

• (basic composition) ε = ε0T and δ = δ0T ;

• (advanced composition) ε = ε0
√

2T log(1/δ′) + ε0(eε0 − 1)T and δ = δ0T + δ′, for any δ′ > 0.

Moreover, this property holds even if M1, . . . ,MT are chosen adaptively.

2.2.2 Basic Differentially Private Mechanisms.

We first state standard results on achieving privacy via noise addition proportional to
sensitivity [DMNS06].

Definition 2.10 (Sensitivity). Let f : X n→ R
d be a function, its `1-sensitivity and `2-sensitivity

are
∆f ,1 = max

X∼X ′∈X n
‖f (X)− f (X ′)‖1 and ∆f ,2 = max

X∼X ′∈X n
‖f (X)− f (X ′)‖2

respectively. Here, X ∼ X ′ denotes that X and X ′ are neighboring datasets (i.e., those that differ
in exactly one entry).

For functions with bounded `1-sensitivity, we can achieve (ε,0)-DP by adding noise from a
Laplace distribution proportional to `1-sensitivity. For functions taking values in R

d for large
d it is more useful to add noise from a Gaussian distribution proportional to the `2-sensitivity,
achieving (ε,δ)-DP.

Lemma 2.11 (Laplace Mechanism). Let f : X n→R
d be a function with `1-sensitivity ∆f ,1. Then the

Laplace mechanism

M(X) = f (X) + Lap
(
∆f ,1

ε

)⊗d
satisfies (ε,0)-DP.

One application of the Laplace mechanism is private counting. The function PCOUNTε(X,T )
is ε-DP, and returns the number of points of X that lie in T , i.e., |X∩T |+ Lap(1/ε). The following
is immediate since the statistic |X ∩ T | is 1-sensitive, and by tail bounds on Laplace random
variables.

Lemma 2.12. PCOUNT is ε-DP, and with probability at least 1 − β, outputs an estimate of |X ∩ T |
which is accurate up to an additive O

( log(1/β)
ε

)
.

10



Lemma 2.13 (Gaussian Mechanism). Let f : X n→R
d be a function with `2-sensitivity ∆f ,2. Then

the Gaussian mechanism

M(X) = f (X) +N

0,

∆f ,2
√

2ln(2/δ)

ε


2

· Id×d


satisfies (ε,δ)-DP.

Now consider a setting where there are multiple queries to be performed on a dataset, but we
only want to know if there is a query whose answer on the dataset lies above a certain threshold.
We introduce a differentially private algorithm from [DR14, DNR+09] which does that.

Theorem 2.14 (Above Threshold). Suppose we are given a dataset X, a sequence of queries f1, . . . , ft ,
with `1-sensitivity ∆, and a threshold T . There exists an ε-differentially private algorithm ABOVETHRESHOLDε
that outputs a stream of answers a1, . . . , at′ ∈ {⊥,>}, where t′ ≤ t, such that if at′ =>, then a1, . . . , at′−1 =
⊥. Then the following holds with probability at least 1− β. If at′ =>, then

ft′ (X) ≥ T − Γ ,

and for all 1 ≤ i ≤ t′, if ai =⊥, then
fi(X) ≤ T + Γ ,

where
Γ =

8∆(log t + log(2/β))
ε

.

2.3 Technical Preliminaries

Lemma 2.15 (Hanson-Wright inequality [HW71]). Let X ∼N (0,Id×d) and let A be a d × d matrix.
Then for all t > 0, the following two bounds hold:

P

[
XTAX − tr(A) ≥ 2‖A‖F

√
t + 2‖A‖2t

]
≤ exp(−t);

P

[
XTAX − tr(A) ≤ −2‖A‖F

√
t
]
≤ exp(−t).

The following are standard concentration results for the empirical mean and covariance of a
set of Gaussian vectors (see, e.g., [DKK+16]).

Lemma 2.16. Let X1, . . . ,Xn be i.i.d. samples fromN (0,Id×d). Then we have that

P


∥∥∥∥∥∥∥∥1
n

∑
i∈[n]

Xi

∥∥∥∥∥∥∥∥
2

≥ t

 ≤ 4exp(c1d − c2nt
2);

P


∥∥∥∥∥∥∥∥1
n

∑
i∈[n]

XiX
T
i − I

∥∥∥∥∥∥∥∥
2

≥ t

 ≤ 4exp(c3d − c4nmin(t, t2)),

where c1, c2, c3, c4 > 0 are some absolute constants.
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We finally have a lemma that translates closeness of Gaussian distributions from one metric
to another. It is a combination of Corollaries 2.13 and 2.14 of [DKK+16].

Lemma 2.17. Let α > 0 be smaller than some absolute constant. Suppose that∥∥∥Σ−1/2(µ− µ̂)
∥∥∥

2
≤O(α) and

∥∥∥I−Σ−1/2Σ̂Σ−1/2
∥∥∥
F
≤O(α),

whereN (µ,Σ) is a Gaussian distribution in R
d , µ ∈Rd , and Σ̂ ∈Rd×d is a PSD matrix. Then

dTV

(
N (µ,Σ),N (µ̂, Σ̂)

)
≤ α.

3 Robustness of PCA-Projection to Noise

One of the main tools used in learning mixtures of Gaussians under separation is Principal
Component Analysis (PCA). In particular, it is common to project onto the top k principal
components (a subspace which will contain the means of the components). In some sense,
this eliminates directions which do not contain meaningful information while preserving the
distance between the means, thus allowing us to cluster with separation based on the “true”
dimension of the data, k, rather than the ambient dimension d. In this section, we show that a
similar statement holds, even after perturbations required for privacy.

Before showing the result for perturbed PCA, we reiterate the (very simple) proof of Achliop-
tas and McSherry [AM05]. Fixing a cluster i, denoting its empirical mean as µ̄i , the mean of the
resulting projection as µ̂i , Π as the k-PCA projection matrix, ui ∈ {0,1}n as the vector indicating
which datapoint was sampled from cluster i, and ni as the number of datapoints which were
sampled from cluster i, we have

‖µ̄i − µ̂i‖2 = ‖ 1
ni

(
XT − (XΠ)T

)
ui‖2 ≤ ‖X −XΠ‖2

‖ui‖2
ni
≤ 1√

ni
‖X −A‖2,

where the last inequality follows from the XΠ being the best k-rank approximation of X whereas
A is any rank-k matrix. In particular, we could choose A to be the matrix where each row of X is
replaced by the (unknown) center of the component which generated it (as we do in Lemma 3.1
below). We now extend this result to a perturbed k-PCA projection as given by the following
lemma.

Lemma 3.1. Let X ∈Rn×d be a collection of n datapoints from k clusters each centered at µ1,µ2, ...,µk .
Let A ∈Rn×d be the corresponding matrix of (unknown) centers (for each j we place the center µc(j) with
c(j) denoting the clustering pointXj belongs to). Let ΠVk ∈R

d×d denote the k-PCA projection ofX’s rows.
Let ΠU ∈Rd×d be a projection such that for some bound B ≥ 0 it holds that ‖XTX− (XΠU )T (XΠU )‖2 ≤
‖XTX − (XΠVk )

T (XΠVk )‖2 +B. Denote µ̄i as the empirical mean of all points in cluster i and denote µ̂i
as the projection of the empirical mean µ̂i = ΠU µ̄i . Then

‖µ̄i − µ̂i‖2 ≤ 1√
ni
‖X −A‖2 +

√
B
ni

Proof. Fix i. Denote ui ∈Rn as the indicating vector of all datapoints in X that belong to cluster i.
Assuming there are ni points from cluster i it follows that ‖ui‖2 = ni , thus 1√

ni
ui is a unit-length

12



vector. Following the inequality tr(AB) ≤ ‖A‖2‖B‖F for PSD matrices, we thus have that

∥∥∥µ̄i − µ̂i∥∥∥2
2

=
∥∥∥∥∥ 1
ni
XT ui −

1
ni

(XΠU )T ui

∥∥∥∥∥2

2
=

1

n2
i

∥∥∥(X(I−ΠU ))T ui
∥∥∥2

2

≤ 1

n2
i

∥∥∥(X(I−ΠU ))T
∥∥∥2

2 ‖ui‖
2
2

(∗)
=

1

n2
i

∥∥∥(X(I−ΠU ))T (X(I−ΠU ))
∥∥∥

2
·ni

≤ 1
ni

(∥∥∥∥(X(I−ΠVk )
)T (

X(I−ΠVk )
)∥∥∥∥

2
+B

)
=

1
ni

(
‖X(I−ΠVk )

(
X(I−ΠVk )

)T
‖2 +B

)
=

1
ni

(∥∥∥XXT −XΠVkΠ
T
Vk
XT

∥∥∥
2

+B
) (∗∗)

=
1
ni

(∥∥∥X −XΠVk

∥∥∥2
2

+B
) (∗∗∗)
≤ 1
ni

(
‖X −A‖22 +B

)
where the equality marked with (∗) follows from the fact that for any matrix M we have
‖MMT ‖2 = ‖MTM‖2 = σ1(M)2 with σ1(M) denoting M’s largest singular value; the equality
marked with (∗∗) follows from the fact that for any matrix M we have ‖MMT −MΠVkM‖2 =
σk+1(M)2 with σk(M) denoting M’s (k + 1)th-largest singular value; and the inequality (∗ ∗ ∗)
follows from the fact that A is a rank-k matrix. In this proof, we also used the fact that Π is a
projection matrix, implying that it is symmetric and equal to its square – these facts allow us to
cancel various “cross terms.” The inequality

√
a+ b ≤

√
a+
√
b concludes the proof.

The above is a general statement for any type of clustering problem, which we instantiate in
the following lemma for mixtures of Gaussians.

Lemma 3.2. Let X ∈ Rn×d be a sample from D ∈ G(d,k), and let A ∈ Rn×d be the matrix where each
row i is the (unknown) mean of the Gaussian from which Xi was sampled. For each i, let σ2

i denote the
maximum directional variance of component i, and wi denote its mixing weight. Define σ2 = max

i
{σ2
i }

and wmin = min
i
{wi}. If

n ≥ 1
wmin

(
ξ1d + ξ2 log

(
2k
β

))
,

where ξ1,ξ2 are universal constants, then with probability at least 1− β,

√
nwminσ

4
≤ ‖X −A‖2 ≤ 4

√√√
n

k∑
i=1

wiσ
2
i .

Proof. Let Ci ∈ Rni×d be the matrix formed by concatenating the rows drawn from Gaussian
component i, and let Ai be the corresponding operation applied to A. Let Σi denote the
covariance matrix of Gaussian component i.

We first prove the lower bound on the norm. Let C∗ be the matrix in {C1, . . . ,Ck} with the
largest direction variance (i.e., C∗ = Ci , where i = argmaxi σ

2
i ), let A∗ be the submatrix of A

corresponding to the same rows of C∗, and let Σ be the covariance matrix of the Gaussian

component corresponding to these rows. Then each row of (C∗ −A∗)Σ−
1
2 is an independent

sample fromN (~0,Id×d).

13



We know that the number of rows in C∗ is at least nwmin
2 . Using Cauchy-Schwarz inequality,

Theorem 5.39 of [Ver12], and our bound on n, we get that with probability at least 1− βk .

‖C∗ −A∗‖2
∥∥∥∥Σ− 1

2

∥∥∥∥
2
≥

∥∥∥∥(C∗ −A∗)Σ−
1
2

∥∥∥∥
2

≥
√
nwmin

2
−C1

√
d −C2

√
log

(
2k
β

)
≥
√
nwmin

4
,

where C1 and C2 are absolute constants. Since
∥∥∥∥∥Σ1

2

∥∥∥∥∥
2

= σ , we get,

‖C∗ −A∗‖2 ≥
√
nwminσ

4
.

Since, the spectral norm of X −A has to be at least the spectral norm of C∗ −A∗, the lower bound
holds.

Now, we prove the upper bound. For each i, the number of points in the submatrix Ci is
at most 3nwi

2 . Using Cauchy-Schwarz inequality, Theorem 5.39 of [Ver12], and our bound on n
again, we get the following with probability at least 1− βk .

‖Ci −Ai‖2 =
∥∥∥∥∥(Ci −Ai)Σ

− 1
2

i Σ
1
2
i

∥∥∥∥∥
2

≤
∥∥∥∥∥(Ci −Ai)Σ

− 1
2

i

∥∥∥∥∥
2

∥∥∥∥∥Σ 1
2
i

∥∥∥∥∥
2

≤


√

3nwi
2

+C1

√
d +C2

√
log

(
2k
β

)
∥∥∥∥∥Σ 1

2
i

∥∥∥∥∥
2

≤ 4
√
nwiσi

Now,

‖X −A‖22 =
∥∥∥(X −A)T (X −A)

∥∥∥
2

=

∥∥∥∥∥∥∥
k∑
i=1

(Ci −Ai)T (Ci −Ai)

∥∥∥∥∥∥∥
2

≤
k∑
i=1

∥∥∥(Ci −Ai)T (Ci −Ai)
∥∥∥

2

≤ 16n
k∑
i=1

wiσ
2
i .

The second equality can be seen by noting that each entry of (X −A)T (X −A) is the inner product
of two columns of X −A – by grouping terms in this inner product, it can be be seen as the sum
of inner products of the corresponding columns of Ci −Ai , since the indices form a partition of
the rows. The first inequality is the triangle inequality.

We finally apply the union bound over all i to complete the proof.
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4 A Warm Up: Strongly Bounded Spherical Gaussian Mixtures

We first give an algorithm to learn mixtures of spherical Gaussians, whose means lie in a
small ball, whose variances are within constant factor of one another, and whose mixing weights
are identical. Before we get to that, we formally define such a family of mixtures of spherical
Gaussians. Let

S(d) = {N (µ,σ2
Id×d) : µ ∈Rd ,σ2 > 0}

be the family of d-dimensional spherical Gaussians. As before, we can define the class S(d,k) of
mixtures of spherical Gaussians as follows.

Definition 4.1 (Spherical Gaussian Mixtures). The class of Spherical Gaussian k-mixtures in R
d is

S(d,k)B

 k∑
i=1

wiGi : G1, . . . ,Gk ∈ S(d),
k∑
i=1

wi = 1


Again, we will need to impose two types of conditions on its parameters—boundedness and

separation—that are defined in slightly different ways from our initial definitions in Section 2.1.
We also introduce another condition that says that all mixing weights are equal.

Definition 4.2 (Separated, Bounded, and Uniform (Spherical) Mixtures). For s > 0, a spherical
Gaussian mixture D ∈ S(d,k) is s-separated if

∀1 ≤ i < j ≤ k, ‖µi −µj‖2 ≥ s ·max{σi ,σj}.

For R,σmax,wmin > 0, a Gaussian mixture D ∈ S(d,k) is (R,σmin,κ)-bounded if

∀1 ≤ i ≤ k, ‖µi‖2 ≤ R, min
i
{σi} = σmin, and max

i,j

σ2
i

σ2
j

 ≤ κ.
A Gaussian mixture D ∈ S(d,k) is uniform if

∀1 ≤ i ≤ k, wi =
1
k
.

We denote the family of separated, bounded, and uniform spherical Gaussian mixtures by
S(d,k,σmin,κ, s,R). We can specify a Gaussian mixture in this family by a set of k tuples as:
{(µ1,σ1), . . . , (µk ,σk)}, where each tuple represents the mean and standard deviation of one of its
components.

Definition 4.3. We define the following family of separated, bounded, and uniform mixtures of
spherical Gaussians that have similar variances and lie in a small ball around the origin.

S(d,k,κ, s) ≡
⋃
σmin>0

S(d,k,σmin,κ, s,k
√
dκσmin)

We define the quantity s in the statement of the main theorem of this section. The above
definition could be generalized to have the means lie in a small ball that is not centered at the
origin, but because it is easy to privately find a small ball that would contain all the points, we
can omit that for simplicity.

The following is our main theorem for this sub-class of mixtures, which quantifies the
guarantees of Algorithm 1.
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Algorithm 1: Private Easy Gaussian Mixture Estimator PEGMEε,δ,α,β,κ,σmin
(X)

Input: Samples X1, . . . ,X2n ∈Rd . Ratio of maximum and minimum variances: κ.
Minimum variance of a mixture component: σ2

min. Parameters ε,δ,α,β > 0.
Output: A mixture of Gaussians Ĝ, such that dTV(G,Ĝ) ≤ α.

Set parameters: Λ← 2k
√
dκσmin ∆ε,δ←

2Λ2
√

2ln(1.25/δ)
ε `←max

{
k,O

(
log

(
n
β

))}
Throw away all Xi ∈ X such that ‖Xi‖2 >Λ, and call this new dataset X as well
Let Y ← (X1, . . . ,Xn) and Z← (Xn+1, . . . ,X2n)

// Privately run PCA

Let E ∈Rd×d be a symmetric matrix, where each entry Ei,j for j ≥ i is an independent draw
from fromN (0,∆2

ε,δ)

Let V̂` be the `-dimensional principal singular subspace of Y T Y +E
Project points of Z on to V̂` to get the set Z ′`
Rotate the space to align with the axes of V̂` to get the set Z` from Z ′`

// Privately locate individual components

Let S`← Z` and i = 1
While S` , ∅ and i ≤ k

(ci , r ′i )← PGLOC(S`,
n
2k ; ε

O(
√
k ln(1/δ))

, δ2k ,R+ 8
√
`κσmin,σmin,

√
κσmin)

Let ri ← 4
√

3r ′i and Si ← S` ∩Bri (ci)
S`← S` \ Si
i← i + 1

If |C| < k
Return ⊥

For i← 1, . . . , k
Rotate ci back to get ĉi
Set r̂i ← ri + 10

√
`κσmin + 2ri

√
3d
`

Let Ŝi be points in Z ∩Br̂i (̂ci), whose corresponding points lie in Z` ∩Bri (ci)

// Privately estimate each Gaussian

For i← 1, . . . , k
(µ̂i , σ̂

2
i )← PSGE(Ŝi ; ĉi , r̂i , ε,δ)

Ĝ← Ĝ∪ {(µ̂i , σ̂2
i ,

1
k )}

Return Ĝ

Theorem 4.4. There exists an (ε,δ)-differentially private algorithm, which if given n independent
samples from D ∈ S(d,k,κ,C

√
`), such that C = ξ + 16

√
κ, where ξ,κ ∈ Θ(1) and ξ is a universal
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constant, ` = max{512ln(nk/β), k}, and

n ≥O

dkα2 +
d

3
2 k3

√
ln(1/δ)
ε

+
dk

√
ln(1/δ)
αε

+

√
dk ln(k/β)
αε

+n′ ,

where

n′ ≥O
 k2

α2 ln(k/β) +
`

5
9 k

5
3

ε
10
9

·polylog
(
`,k,

1
ε
,
1
δ
,
1
β

) ,
then it (α,β)-learns D.

The algorithm itself is fairly simple to describe. First, we run a private version of PCA,
and project to the top k PCA directions. By Lemma 3.1, this will reduce the dimension from d
to k while (approximately) preserving the separation condition. Next, we repeatedly run an
algorithm which (privately) finds a small ball containing many points (essentially the 1-cluster
algorithm of [NS18]) in order to cluster the points such that all points generated from a single
Gaussian lie in the same cluster. Finally, for each cluster, we privately estimate the mean and
variance of the corresponding Gaussian component.

4.1 Privacy

We will first analyze individual components of the algorithm, and then use composition
(Lemma 2.9) to reason about privacy.

The PCA section of the algorithm is (ε,δ)-DP with respect to Y . This holds because the `2

sensitivity of the function Y T Y is 2Λ2, because all points are guaranteed to lie in a ball of radius
Λ around the origin, and by Lemma 2.13, we know that adding Gaussian noise proportional to
∆ε,δ is enough to have (ε,δ)-DP.

In the second step, we run PGLOC (which is (ε,δ)-differentially private) on Z repeatedly
with parameters (ε/O(

√
k ln(1/δ)),δ/2), after which we only perform computation on the output

of this private algorithm So, the whole process, by advanced composition and post-processing
(Lemmata 2.9 and 2.8), is (ε,δ)-DP with respect to Z.

In the final step, we apply PSGE (which is (ε,δ)-differentially private) with parameters ε,δ
on disjoint datasets Ŝi . Therefore, this step is (ε,δ) private with respect to Z.

Finally, applying the composition lemma again, we have (2ε,2δ)-DP for Z. Combined with
(ε,δ)-DP for Y , and the fact that X is the union of these two disjoint sets, we have (2ε,2δ)-DP for
X. Rescaling the values of ε and δ by 2 gives the desired result.

4.2 Accuracy

As indicated in our outline above, the algorithm is composed of three blocks: private PCA,
isolating individual Gaussians, and learning the isolated Gaussians. We divide the proof of
accuracy in a similar way.
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4.2.1 Deterministic Regularity Conditions for Spherical Gaussians

We first give two regularity conditions for mixtures of spherical Gaussians in the family
mentioned above.

The first condition asserts that each mixture component is represented by points that lie in a
ball of approximately the right radius.

Condition 4.5. Let XL = ((X1,ρ1), . . . , (Xn,ρn)) be a labelled sample from a Gaussian mixture D ∈
S(`,k,κ, s), where ` ≥ 512ln(nk/β) and s > 0. For every 1 ≤ u ≤ k, the radius of the smallest ball
containing the set of points with label u (i.e. {Xi : ρi = u}) is in [

√
`σu/2,

√
3`σu].

The second condition says that if the means of the Gaussians are “far enough”, then the
inter-component distance (between points from different components) would also be large.

Condition 4.6. Let XL = ((X1,ρ1), . . . , (Xn,ρn)) be a labelled sample from a Gaussian mixture D ∈
S(`,k,κ,C

√
`), where ` ≥max{512ln(nk/β), k} and C > 1 is a constant. For every ρi , ρj ,∥∥∥Xi −Xj∥∥∥2

≥ C
2

√
`max{σρi ,σρj }.

The following lemma is immediate from from Lemmata 2.6 and A.3.

Lemma 4.7. Let Y and Z be datasets sampled fromD ∈ S(d,k,κ, (ξ+16
√
κ)
√
`) (with Y L and ZL being

their respective labelled datasets) as defined within the algorithm, such that d ≥ ` ≥max{512ln(nk/β), k}
where ξ,κ ∈Θ(1) and ξ > 1 is a universal contant. If

n ≥O
(
k2

α2 ln(k/β)
)
,

then with probability at least 1− 4β, Y L and ZL (alternatively Y and Z) satisfy Conditions 2.5 and 4.5.

4.2.2 PCA

The following result stated in [DTTZ14], though used in a setting where ∆ε,δ was fixed, holds
for any value of ∆ε,δ.

Lemma 4.8 (Theorem 9 of [DTTZ14]). Let Π̂` be the top ` principal subspace obtained using Y T Y +E
in Algorithm 1. Suppose Π` is the top ` subspace obtained from Y T Y . Then with probability at least
1− β, ∥∥∥Y T Y − (Y Π̂`)

T (Y Π̂`)
∥∥∥

2
≤

∥∥∥Y T Y − (YΠ`)
T (YΠ`)

∥∥∥
2

+O
(
∆ε,δ

√
d
)
.

The main result here is that the PCA step shrinks the Gaussians down in a way that their
means, after being projected upon the privately computed subspace, are close to their original
locations.

Lemma 4.9. Let Y be the dataset, and V̂` be the subspace as defined in Algorithm 1. Suppose µ1, . . . ,µk
are the means of the Gaussians, and µ′1, . . . ,µ

′
k are their respective projections on to V̂`. If

n ≥O

d 3
2 k3

√
ln(1/δ)
ε

+ k ln(k/β)

 ,
and Y satisfies Condition 2.5, then with probability at least 1− 4β,
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1. for every i, we have
∥∥∥µi −µ′i∥∥∥2

≤ 8
√
`σmax, where σmax = max

i
{σi}, and

2. for every i , j,
∥∥∥∥µ′i −µ′j∥∥∥∥2

≥
∥∥∥µi −µj∥∥∥2

− 16
√
`σmax.

Proof. Let µ̃i be the empirical mean of component i using the respective points in Y , and let
µ̇i = Π̂`µ̃i . Using Lemmata 3.1, 3.2, and 4.8, we know that with probability at least 1− β, for all
1 ≤ i ≤ k,

∥∥∥µ̇i − µ̃i∥∥∥2
≤ 4

√√√√
2

k∑
j=1

σ2
i +O


√

∆ε,δ
√
dk

n


≤ 4
√

2kσmax +O


√
d

3
2 k3σ2

min

√
ln(1/δ)

εn

 . (κ ∈Θ(1))

Because n ≥ d
3
2 k3
√

ln(1/δ)
ε and σ2

max

σ2
min
≤ κ ∈Θ(1), we have

O


√
d

3
2 k3σ2

min

√
ln(1/δ)

εn

 ≤O (σmax)

=⇒
∥∥∥µ̇i − µ̃i∥∥∥2

≤ 6
√
kσmax

≤ 6
√
`σmax.

Since n ≥ O
(
dk
` + k ln(k/β)

d + k ln(k/β)
`

)
, using Lemma 2.16, we have that with probability at least

1− 2β, for all 1 ≤ i ≤ k,∥∥∥µ̃i −µi∥∥∥2
≤
√
`σi ≤

√
`σmax and

∥∥∥µ̇i −µ′i∥∥∥2
≤
√
`σi ≤

√
`σmax.

Finally, we get the required results by using triangle inequality.

4.2.3 Clustering

After the PCA step, individual Gaussian components shrink (i.e., the radius decreases from
O(
√
dσ ) to O(

√
`σ )), but the means do not shift a lot. Given the large initial separation, we can

find individual components using the private location algorithm, and learn them separately
using a private learner. In this section, we show that our algorithm is able to achieve the first
goal.

First, we prove that our data is likely to satisfy some of the conditions have have already
defined.

Lemma 4.10. Let Y ,Z,Z` be datasets as defined within the algorithm (with ZL` being the corresponding
labeled dataset of Z`), where Y ,Z are sampled from D ∈ S(d,k,κ, (ξ + 16

√
κ)
√
`), such that d ≥ ` ≥

max{512ln(nk/β), k}, and ξ,κ ∈Θ(1) and ξ > 1 is a universal constant. If

n ≥O

d 3
2 k3

√
ln(1/δ)
ε

+
k2

α2 ln(k/β)

 ,
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and Y and Z satisfy Condition 2.5, then with probability at least 1− 7β, ZL` (alternatively Z`) satisfies
Conditions 2.5, 4.5, and 4.6.

Proof. Let µ1, . . . ,µk be means of the Gaussians in D, and µ′1, . . . ,µ
′
k be their respective projections

onto V̂`, and let σ2
1 , . . . ,σ

2
k be their respective variances. Because Y satisfies Condition 2.5, we

know from Lemma 4.9 that with probability at least 1− 4β, for each 1 ≤ i , j ≤ k∥∥∥∥µ′i −µ′j∥∥∥∥2
≥

∥∥∥µi −µj∥∥∥2
− 16
√
`σmax

≥ (ξ + 16
√
κ)
√
`max{σi ,σj} − 16

√
`σmax

≥ ξ
√
`max{σi ,σj}.

Therefore, points in Z` are essentially points from some D′ ∈ S(`,k,κ,ξ
√
`). Z` clearly satisfies

Condition 2.5. Using Lemmata A.3 and A.4, we have that Z` satisfies the other two conditions
as well. Using the union bound over these three events, we get the required result.

The following theorem guarantees the existence of an algorithm that finds approximately
smallest balls containing almost the specified number of points. This is based off of the 1-cluster
algorithm of Nissim and Stemmer [NS18]. We provide its proof, and state such an algorithm in
Section B.

Theorem 4.11 (Private Location for GMMs, Extension of [NS18]). There is an (ε,δ)-differentially
private algorithm PGLOC(X,t;ε,δ,R,σmin,σmax) with the following guarantee. Let X = (X1, . . . ,Xn) ∈
R
n×d be a set of n points drawn from a mixture of Gaussians D ∈ G(`,k,R,σmin,σmax,wmin, s). Let

S ⊆ X such that |S | ≥ t, and let 0 < a < 1 be any small absolute constant (say, one can take a = 0.1). If
t = γn, where 0 < γ ≤ 1, and

n ≥
(√
`

γε

) 1
1−a

· 9
log∗

(√
`
(
Rσmax
σmin

)`)
·polylog

(
`,

1
ε
,
1
δ

1
β
,

1
γ

)
+O

(
` + log(k/β)

wmin

)
,

then for some absolute constant c > 4 that depends on a, with probability at least 1− β, the algorithm
outputs (r,~c) such that the following hold:

1. Br(~c) contains at least t
2 points in S, that is,

∣∣∣Br(~c)∩ S∣∣∣ ≥ t
2 .

2. If ropt is the radius of the smallest ball containing at least t points in S, then r ≤ c
(
ropt + 1

4

√
`σmin

)
.

Since the constant a can be arbitrarily small, for simplicity, we fix it to 0.1 for the remainder
of this section.

The first lemma we prove says that individual components are located correctly in the lower
dimensional subspace, which is to say that we find k disjoint balls, such that each ball completely
contains exactly one component.

We first define the following events.

1. EY ,Z : Y and Z satisfy Condition 2.5

2. EZ : Z satisfies Conditions 2.5 and 4.5
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3. EZ` : Z` satisfies Conditions 2.5, 4.5, and 4.6.

Lemma 4.12. Let Z` be the dataset as defined in the algorithm, and let ZL` be its corresponding labelled
dataset. If

n ≥O

d 3
2 k3

√
ln(1/δ)
ε

+
k2

α2 ln(k/β) +
`

5
9 k

5
3

ε
10
9

·polylog
(
`,k,

1
ε
,
1
δ
,
1
β

) ,
and events EY ,Z and EZ` happen, then with probability at least 1− 5β, at the end of the first loop,

1. i = k + 1, that is, the algorithm has run for exactly k iterations;

2. for all 1 ≤ i ≤ k, if u,v ∈ Bri (ci), and (u,ρu), (v,ρv) ∈ ZL` , then ρu = ρv ;

3. for all 1 ≤ i , j ≤ k, if u ∈ Bri (ci), v ∈ Brj
(
cj
)
, and (u,ρu), (v,ρv) ∈ ZL` , then ρu , ρv ;

4. for all 1 ≤ i , j ≤ k, Bri (ci)∩Brj
(
cj
)

= ∅;

5. S1 ∪ · · · ∪ Sk = Z`;

6. for all 1 ≤ i ≤ k, if u ∈ Bri (ci), and (u,ρu) ∈ ZL` , then ri ∈Θ(
√
kσρu ).

Proof. Throughout the proof, we will omit the conditioning on events EY ,Z and EZ` for brevity.
To prove this lemma, we first prove a claim that at the end of iteration i, the balls we have found
so far are disjoint, and that each ball completely contains points from exactly one Gaussian, no
two balls contain the same component, and the radius of each ball is not too large compared to
the radius of the optimal ball that contains the component within it.

Claim 4.13. Let Ei be the event that at the end of iteration i,

1. the number of components found so far is i;

2. for all 1 ≤ a ≤ i, if u,v ∈ Bra (ca), and (u,ρu), (v,ρv) ∈ ZL` , then ρu = ρv ;

3. for all 1 ≤ a , b ≤ i, if u ∈ Bra (ca), v ∈ Brb (cb), and (u,ρu), (v,ρv) ∈ ZL` , then ρu , ρv ;

4. for all 1 ≤ a , b ≤ i, Bra (ca)∩Brb (cb) = ∅;

5. if Bi = Br1 (c1)∪· · ·∪Bri (ci), then for all u ∈ Bi∩Z` and v ∈ Z` \Bi , such that (u,ρu), (v,ρv) ∈ ZL` ,
it holds that ρu , ρv .

6. for all 1 ≤ a ≤ i, if u ∈ Bra (ca), and (u,ρu) ∈ ZL` , then
√
`σρu
2 ≤ ra ≤ 48c

√
3`σρu .

If

n ≥O

d 3
2 k3

√
ln(1/δ)
ε

+
k2

α2 ln(k/β) +
`

5
9 k

5
3

ε
10
9

·polylog
(
`,k,

1
ε
,
1
δ
,
1
β

) ,
then

P [Ei] ≥ 1−
iβ

k
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Proof. We prove this by induction on i. Suppose the claim holds for i − 1. Then it is sufficient to
show the following.

P [Ei |Ei−1] ≥ 1−
β

k
Note that the points are now from ` dimensional Gaussians owing to being projected upon an `
dimensional subspace. Conditioning on Ei−1 entails that at the beginning of iteration i, there
is no label for points in S` that occurs for points in Bi−1 ∩Z`. Therefore, the number of points
having the remaining labels is the same as in the beginning.

For any two labels ρu ,ρv , suppose µ′′ρu ,µ
′′
ρv are the respective means (in the space after

projection and rotation), σ2
ρu ,σ

2
ρv are the respective variances, µρu ,µρv are the original means, and

µ′ρu ,µ
′
ρv are the projected, unrotated means. Then by conditioning on EY ,Z and EZ` , and using

Lemma 4.9, we have ∥∥∥µρu −µρv∥∥∥2
≥ (400c+ 16κ)

√
`max{σρu ,σρv }

=⇒
∥∥∥µ′ρu −µ′ρv∥∥∥2

≥ 400c
√
`max{σρu ,σρv }

=⇒
∥∥∥µ′′ρu −µ′′ρv∥∥∥2

≥ 400c
√
`max{σρu ,σρv },

where the final inequality holds because the `2 norm is rotationally invariant. Therefore by
conditioning on event EZ` again, for any two points with labels ρ1 and ρ2, the distance between
the two is strictly greater than

200c
√
`max{σρ1

,σρ2
}.

Now, conditioning on EZ` , we know that the radii of individual clusters are bounded. Because
the components in this subspace are well-separated, the smallest ball containing at least n

2k
points cannot have points from two different components, that is, the radius of the smallest ball
containing at least n

2k points has to be the radius of the smallest ball that contains at least n
2k

points from a single component. Let that component have label ρ1 (without loss of generality),
and let its radius be ropt . By Theorem 4.11 (by setting S = S`), with probability at least 1− βk , we
obtain a ball of radius at most

c
(
ropt +

1
4

√
`σmin

)
≤ 2cropt ,

that contains at least n
4k points from the component. Since Z` satisifes Condition 4.5, multiplying

this radius by 4
√

3 (to get ri) is enough to cover all points of that component, hence, we have
that

√
`σρ1

2
≤ ropt ≤ ri ≤ 8

√
3cropt ≤ 24c

√
`σρ1

. (3)

We want to show that Bri (ci) contains points from exactly one component among all points
in Z`. There are two cases to consider. First, where the ball contains points that have label ρ1,
that is, the ball returned contains points only from the cluster with the smallest radius. Second,
where the ball returned contains points from some other component that has a different label
ρ2 (without loss of generality), that is, the ball returned does not contain any points from the
smallest cluster, but has points from a different cluster. As we will show later, this can only
happen if the radius of this other cluster is “similar” to that of the smallest cluster.
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In the first case, Bri (ci) completely contains all points with label ρ1. But because this radius
is less than its distance from every other point in Z` with a different label, it does not contain
any points from any other labels in Z`. This proves (1), (2), (3), (5), and (6) for this case. Now,
consider any index a ≤ i − 1. Then Bra (ca) contains exactly one component, which has label
(without loss of generality) ρ3. Let u ∈ Bra (ca) and v ∈ Bri (ci). Then we have the following.

‖ci − ca‖2 = ‖(u − v)− (v − ci)− (ca −u)‖2
≥ ‖u − v‖2 − ‖v − ci‖2 − ‖ca −u‖2
> 200c

√
`max{σρi ,σρa} − 48c

√
3`σρa − 24c

√
`σρi

> ri + ra

This shows that Bra (ca) and Bri (ci) do not intersect. This proves (4) for this case.
In the second case, let rρ2

be the radius of the smallest ball containing points only from the
component with label ρ2. Since ropt is the radius of the component with label ρ1, and Z` satisfies
Condition 4.5, it must be the case that

√
`σρ1

2
≤ ropt ≤ rρ2

≤
√

3`σρ2
=⇒
√

3`σρ2
≥

√
`σρ1

2
=⇒ 2

√
3σρ2

≥ σρ1
,

otherwise the smallest component would have been the one with label ρ2. Combined with
Inequality 3, this implies that ri ≤ 48c

√
3`σρ2

, which proves (6) for this case. The arguments for
other parts for this case are identical to those for the first case.

Since the only randomness comes from running PGLOC, using Theorem 4.11, we get,

P [Ei |Ei−1] ≥ 1−
β

k
.

Therefore, by the inductive hypothesis,

P [Ei] ≥ 1−
iβ

k
.

The argument for the base case is the same, so we omit that for brevity.

We complete the proof by using the above claim by setting i = k.

The next lemma states that given that the algorithm has isolated individual components
correctly in the lower dimensional subspace, it can correctly classify the corresponding points in
the original space. To elaborate, this means that for each component, the algorithm finds a small
ball that contains the component, and is able to correctly label all points in the dataset.

Lemma 4.14. Let Z, Z`, and Ŝi , . . . , Ŝk be datasets as defined in the the algorithm, and let ZL be the
corresponding labelled dataset of Z. If

n ≥O

d 3
2 k3

√
ln(1/δ)
ε

+
k2

α2 ln(k/β) +
`

5
9 k

5
3

ε
10
9

·polylog
(
`,k,

1
ε
,
1
δ
,
1
β

) ,
and events EY ,Z , EZ , and EZ` happen then with probability at least 1− 11β,
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1. for all 1 ≤ i ≤ k, if u,v ∈ Ŝi , and (u,ρu), (v,ρv) ∈ ZL, then ρu = ρv ;

2. for all 1 ≤ i , j ≤ k, if u ∈ Ŝi , v ∈ Ŝj , and (u,ρu), (v,ρv) ∈ ZL, then ρu , ρv ;

3. Ŝ1 ∪ · · · ∪ Ŝk = Z;

4. for all 1 ≤ i ≤ k, if u ∈ Ŝi , and (u,ρu) ∈ ZL, then ri ∈Θ(
√
kσρu ).

Proof. Again for brevity, we will omit conditioning on events EY ,Z , EZ , and EZ` . We will prove
the following claim that says that by the end of iteration i of the second loop, each set formed so
far completely contains exactly one component, and the ball that contains it is small. But before
that, note that: (1) from Lemma 4.9, with probability at least 1 − 4β, for all components, the
distance between the original mean and its respective projection onto V̂` is small; and (2) from
Lemma 4.12, with probability at least 1− 5β, the balls found in the lower dimensional subspace
in the previous step isolate individual components in balls, whose radii are small. We implicitly
condition the following claim on them.

Claim 4.15. Let Ei be the event that at the end of iteration i,

1. for all 1 ≤ a ≤ i, if u,v ∈ Ŝi , and (u,ρu), (v,ρv) ∈ ZL, then ρu = ρv ;

2. for all 1 ≤ a , b ≤ i, if u ∈ Ŝi , v ∈ Ŝj , and (u,ρu), (v,ρv) ∈ ZL, then ρu , ρv ;

3. if Ti = Ŝ1 ∪ · · · ∪ Ŝi , then for all u ∈ Ti ∩Z and v ∈ Z \ Ti , such that (u,ρu), (v,ρv) ∈ ZL, it holds
that ρu , ρv .

4. for all 1 ≤ a ≤ i, if u ∈ Ŝa, and (u,ρu) ∈ ZL` , then ra ∈Θ(
√
dσρu ).

If

n ≥O

d 3
2 k3

√
ln(1/δ)
ε

+
k2

α2 ln(k/β) +
`

5
9 k

5
3

ε
10
9

·polylog
(
`,k,

1
ε
,
1
δ
,
1
β

) ,
then

P [Ei] ≥ 1−
2iβ
k
.

Proof. We prove this by induction on i. Suppose the claim holds for i − 1. Then it is sufficient to
show the following.

P [Ei |Ei−1] ≥ 1−
2β
k

From Lemma 4.12, we know that Bri (ci) completely contains exactly one component from Z`.
This implies that the empirical mean of those points (µ̇) also lies within Z`. Suppose the mean
of their distribution in V̂` is µ′ and its variance is σ2. We know from Lemma 2.16, and because
n ≥O

( ln(k/β)
`

)
, that with probability at least 1− β/k,∥∥∥µ̇−µ′∥∥∥

2
≤
√
`σ .

Let µ be the mean of the Gaussian in the original subspace. We know from Lemma 4.9 that,∥∥∥µ−µ′∥∥∥
2
≤ 8
√
`σmax.
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Let the empirical mean of the corresponding points in Z be µ̃. Again, from Lemma 2.16, and
because n ≥O

( ln(k/β)
` + d

`

)
, we know that with probability at least 1− β/k,∥∥∥µ− µ̃∥∥∥

2
≤
√
`σ .

Therefore, by triangle inequality, Bri+10
√
`κσmin

(̂ci) contains µ̃. Now, from the proof of Lemma A.3,

we know that all points of the Gaussian in Z will be at most
√

3dσ away from µ̃. But since Bri (ci)

contains all points from the Gaussian in Z`, we know from conditioning on EZ` that ri ≥
√
`σ
2 ,

which means that the each of the corresponding points in Z is at most 2ri
√

3d
` away from µ̃.

Therefore, by triangle inequality, the distance between ĉi and any of these points in Z can be at
most

ri + 10
√
`κσmin + 2ri

√
3d
` .

Because this is exactly how r̂i is defined, Br̂i (̂ci) completely contains all points from the com-
ponent in Z. Since Si contains all the corresponding points from Z`, it must be the case that Ŝi
contains all the points from the component.

Finally, we prove that the radius of the ball enclosing the component in Z is small enough.

r̂i = ri + 10
√
`κσmin + 2ri

√
3d
`

=⇒ ri + 10
√
`κσmin +Ω(

√
dσ ) ≤r̂i ≤ ri + 10

√
`κσmin +O(

√
dσ ) (ri ∈Θ(

√
`σ ))

=⇒ r̂i ∈Θ(
√
dσ ). (κ ∈Θ(1))

Therefore,

P [Ei |Ei−1] ≥ 1−
2β
k
.

Hence, by the inductive hypothesis,

P [Ei] ≥ 1−
2iβ
k
.

The argument for the base case is identical, so we skip it for brevity.

We complete the proof by setting i = k in the above claim, and using the union bound.

4.2.4 Estimation

Once we have identified individual components in the dataset, we can invoke a differentially
private learning algorithm on each one of them separately. The next theorem establishes the
existence of one such private learner that is tailored specifically for spherical Gaussians, and is
accurate even when the number of points in the dataset constitutes sensitive information. We
provide its proof, and state such an algorithm in Section C.

25



Theorem 4.16. There exists an (ε,δ)-differentially private algorithm PSGE(X;~c, r,αµ,ασ ,β,ε,δ) with

the following guarantee. If Br(~c) ⊆ R
` is a ball, X1, . . . ,Xn ∼N (µ,σ2

I`×`), and n ≥ 6ln(5/β)
ε +nµ +nσ ,

where

nµ =O

 `α2
µ

+
ln(1/β)

α2
µ

+
r ln(1/β)
αµεσ

+
r
√
` ln(1/δ)
αµεσ

 ,
nσ =O

(
ln(1/β)

α2
σ `

+
ln(1/β)
ασε

+
r2 ln(1/β)
ασεσ2`

)
,

then with probability at least 1−β, the algorithm returns µ̂, σ̂ such that if X is contained in Br(~c) (that is,
Xi ∈ Br(~c) for every i) and ` ≥ 8ln(10/β), then

‖µ− µ̂‖2 ≤ αµσ and (1−ασ ) ≤ σ̂
2

σ2 ≤ (1 +ασ ).

With the above theorem in our tookit, we can finally show that the each estimated Gaussian
is close to its respective actual Gaussian to within α in TV-distance.

Lemma 4.17. Suppose µ1, . . . ,µk are the means, and σ2
1 , . . . ,σ

2
k are the variances of the Gaussians of the

target distribution D ∈ S(d,k,κ, (ξ + 16
√
κ)
√
`), where ξ,κ ∈Θ(1) and ξ is a universal constant, and

` = max{512ln(nk/β), k}. Let µ̂1, . . . , µ̂k , and σ̂2
1 , . . . , σ̂

2
k be their respective estimations produced by the

algorithm. If

n ≥ nCLUSTERING +O

dkα2 +
dk

√
ln(1/δ)
αε

+

√
dk ln(k/β)
αε

+
k ln(k/β)
α2

 ,
where

nCLUSTERING ≥O

d 3
2 k3

√
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α2 ln(k/β) +
`

5
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5
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·polylog
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`,k,

1
ε
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,
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) ,
and events EY ,Z and EZ happen, then with probability at least 1− 12β,

∀ 1 ≤ i ≤ k, dTV

(
N (µi ,σ

2
i Id×d),N (µ̂i , σ̂

2
i Id×d)

)
≤ α.

Proof. We know that from Lemma 4.14 that all points in Z get correctly classified as per their
respective labels by the algorithm with probability at least 1−11β, and that we have centers and
radii of private balls that completely contain one unique component each. In other words, for
all 1 ≤ i ≤ k, we have a set Ŝi that contains all points from component i, such that Ŝi ⊂ Br̂i (̂ci),
where r̂i ∈Θ(

√
dσi).

Now, from Theorem 4.16 and our bound on n, since Z satisfies Condition 2.5, we know that
for each 1 ≤ i ≤ k, with probability at least 1− βk , we output µ̂i and σi , such that∥∥∥µi − µ̂i∥∥∥2

≤O(α) and 1−O
(
α
√
d

)
≤
σ̂2
i

σ2
i

≤ 1 +O
(
α
√
d

)
.

This implies from Lemma 2.17 that

dTV

(
N (µ̂i , σ̂

2
i Id×d),N (µi ,σ

2
Id×d)

)
≤ α.

By applying the union bound, finally, we get the required result.
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4.2.5 Putting It All Together

Given all the results above, we can finally complete the proof of Theorem 4.4.

Proof of Theorem 4.4. Let G1, . . . ,Gk be the actual Gaussians in D, and let Ĝ1, . . . , Ĝk be their re-
spective estimations. Now that the individual estimated Gaussians are close to within α in
TV-distance to the actual respective Gaussians, we can say the following about closeness of the
two mixtures.

dTV(Ĝ,D) = max
S∈Rd

∣∣∣Ĝ(S)−D(S)
∣∣∣

=
1
k

max
S∈Rd

∣∣∣∣∣∣∣
k∑
i=1

Ĝi(S)−Gi(S)

∣∣∣∣∣∣∣
≤ 1
k

k∑
i=1

max
S∈Rd

∣∣∣Ĝi(S)−Gi(S)
∣∣∣

=
1
k

k∑
i=1

dTV(Ĝi ,Gi)

≤ α

Here, the last inequality follows with probability at least 1− 12β from Lemma 4.17. Note that
our algorithms and theorem statements along the way required various regularity conditions.
By Lemma 4.7 and 4.10, these events all occur with probability at least 1− 11β, which gives us
the success probability of at least 1− 23β. This completes our proof of Theorem 4.4.

5 An Algorithm for Privately Learning Mixtures of Gaussians

In this section, we present our main algorithm for privately learning mixtures of Gaussians
and prove the following accuracy result.

Theorem 5.1. For all ε,δ,α,β > 0, there exists an (ε,δ)-DP algorithm that takes n samples from
D ∈ G(d,k,σmin,σmax,R,wmin, s), where D satisfies (7), and s is defined by the following separation
condition

∀i, j, ‖µi −µj‖2 ≥ 100(σi + σj )
(√
k log(n) +

1
√
wi

+
1
√
wj

)
and returns a mixture of k Gaussians D̂, such that if

n ≥max
{
Ω̃


√dk log(dk/β) log

3
2 (1/δ) loglog((R+

√
dσmax)/σmin)

wminε


1

1−a
 for an arbitrary constant a > 0,

Ω

(
k9.06d3/2 log(1/δ) log(k/β)

wminε

)
,

Ω

k 3
2 log(k log((R+

√
dσmax)/σmin)/β) log(1/α) log(1/δ)

αεwmin

 , 1
wmin

(n1 +n2)
}
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where,

n1 ≥Ω

 (d2 + log( kβ )) log2(1/α)

α2 +
(d2polylog( dk

αβεδ ))

αε
+
d

3
2 log

1
2 (σmax
σmin

)polylog(dk log(σmax/σmin)
βεδ )

ε


n2 ≥Ω

d log(dkβ ) log2(1/α)

α2 +
d log(dk logR log(1/δ)

βε ) log
1
2 (1
δ ) log2(1/α)

αε
+

√
d log(Rdkβ ) log

1
2 (1
δ )

ε


then it (α,β)-learns D.

5.1 Finding a Secluded Ball

In this section we detail a key building block in our algorithm for learning Gaussian mixtures.
This particular subroutine is an adaptation of the work of Nissim and Stemmer [NS18] (who
in turn built on [NSV16]) that finds a ball that contains many datapoints. In this section we
show how to tweak their algorithm so that it now produces a ball with a few more additional
properties. More specifically, our goal in this section is to privately locate a ball Br (p) that (i)
contains many datapoints, (ii) leaves out many datapoints (i.e., its complement also contains
many points) and (iii) is secluded in the sense that Bcr (p) \Br (p) holds very few (and ideally
zero) datapoints for some constant c > 1. More specifically, we are using the following definition.

Definition 5.2 (Terrific Ball). Given a dataset X and an integer t > 0, we say a ball Br (p) is
(c,Γ )-terrific for a constant c > 1 and parameter Γ ≥ 0 if all of the following three properties hold:
(i) The number of datapoints in Br (p) is at least t − Γ ; (ii) The number of datapoints outside the
ball Bcr (p) is least t − Γ ; and (iii) The number of datapoints in the annulus Bcr (p) \ Br (p) is at
most Γ .

We say a ball is c-terrific if it is (c,0)-terrific, and when c is clear from context we call a ball
terrific. In this section, we provide a differentially private algorithm that locates a terrific ball.

The 1-Cluster Algorithm of Nissim-Stemmer. First, we give an overview of the Nissim-
Stemmer algorithm for locating a ball Br (p) that satisfy only property (i) above, namely a
ball that holds at least t points from our dataset containing n points. Their algorithm is actu-
ally composed of two subroutines that are run sequentially. The first, GoodRadius privately
computes some radius r̃ such that r̃ ≤ 4ropt with ropt denoting the radius of the smallest ball
that contains t datapoints. Their next subroutine, GoodCenter, takes r̃ as an input and pro-
duces a ball of radius γr̃ that holds (roughly) t datapoints with γ denoting some constant > 2.
The GoodCenter procedure works by first cleverly combining locality-sensitive hashing (LSH)
and randomly-chosen axes-aligned boxes to retrieve a poly(n)-length list of candidate centers,
then applying ABOVETHRESHOLD to find a center point p such that the ball Br̃ (p) satisfies the
required condition (holding enough datapoints).

In this section, we detail how to revise the two above-mentioned subprocedures in order
to retrieve a terrific ball, satisfying all three properties (rather than merely holding many
points). The revision isn’t difficult, and it is particularly straight-forward for the GoodCenter

procedure. In fact, we keep GoodCenter as is, except for the minor modification of testing for all
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3 properties together. Namely, we replace the naı̈ve counting query in ABOVETHRESHOLD (i.e.,
“is |{x ∈ X : x ∈ Br (p)}| ≥ t?”) with the query

min
{
|{x ∈ X : x ∈ Br (p)}|, |{x ∈ X : x < Bcr (p)}|, t − |{x ∈ X : x ∈ Bcr (p) \Br (p)}|

} ?
≥ t (4)

Note that this query is the minimum of 3 separate counting queries, and therefore its global
sensitivity is 1. Thus, our modification focuses on altering the first part where we find a good
radius, replacing the GoodRadius procedure with the TerrificRadius procedure detailed below.
Once a terrific radius is found, we apply the revised GoodCenter procedure and retrieve a center.

Remark 5.3. In the work of Nissim-Stemmer [NS18] GoodCenter, the resulting ball has radius
≤ γr̃ since the last step of the algorithm is to average over all points in a certain set of radius ≤ γr̃.
In our setting however it holds that r̃ is a radius of a terrific ball, and in particular, in a setting
where γ < c (which is the application we use, where γ ≈ 2.5 whereas c ≥ 4), this averaging is
such that effectively all points come from Bp (r̃), and so the returned ball is of radius ≈ r̃.

The TerrificRadius procedure. Much like the work of [NSV16], we too define a set of possible
r’s, traverse each possible value of r and associate a score function that measures its ability
to be the sought-after radius. However, we alter the algorithm is two significant ways. The
first is modifying the score function to account for all three properties of a terrific ball, and not
just the one about containing many points; the second is that we do not apply the recursive
algorithm to traverse the set of possible r’s, but rather try each one of these values ourselves
using ABOVETHRESHOLD. The reason for the latter modification stems from the fact that our
terrific radius is no longer upward closed (i.e. it is not true that if r is a radius of a ball satisfying
the above three properties then any r ′ > r is also a radius of a ball satisfying these properties)
and as a result our scoring function is not quasi-concave.

The modification to the scoring function is very similar to the one detailed in Equation (4),
with the exception that rather than counting exact sizes, we cap the count at t. Formally, given a

(finite) set S we denote #tS def= min{|S |, t}, and so we define the counting query

QX(p,r) def= min
{
#t{x ∈ X : x ∈ Br (p)}, #t{x ∈ X : x < Bcr (p)},

t −#t{x ∈ X : x ∈ Bcr (p) \Br (p)}
}

(5)

It is evident that for any dataset X, p and r > 0 it holds that QX(p,r) is an integer between
0 and t. Moreover, for any p and r and any two neighboring datasets X and X ′ it holds
that |QX(p,r)−QX ′ (p,r)| ≤ 1. We now have all ingredients for introducing the Terrific Radius
subprocedure below.

Claim 5.4. Algorithm 2 satisfies (ε,0)-Differential Privacy.

Proof. Much like [NSV16], we argue that LX(r) has `1-sensitivity at most 2. With this sensitivity
bound, the algorithm is just an instantiation of ABOVETHRESHOLD (Theorem 2.14), so it is
(ε,0)-Differentially Private.

Fix two neighboring datasets X and X ′ . Fix r. Let x1
1, ...,x

1
t ∈ X be the t points on which LX(r)

is obtained and let x2
1, ...,x

2
t ∈ X ′ be the t points on which LX ′ (r) is obtained. Since X and X ′ differ
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Algorithm 2: Find Terrific Radius (X,t,c, largest;ε,U,L)

Input: Dataset X ∈Rn×d . Privacy parameters ε,δ > 0; failure probability β > 0; candidate
size t > 0. Upper- and lower-bounds on the radius L < U . Boolean flag largest.

Output: A radius of a terrific ball.

Denote LX(r) = 1
t max

distinct x1,x2,...,xt∈X

t∑
j=1
QX(xj , r).

Denote T = dlog2(U/L)e+ 1 and Γ
def= 16

ε (log(T ) + log(2/β)).
Set r0 = L,r1 = 2L,r2 = 4L, ..., ri = 2iL, ..., rT =U .
If largest =TRUE

reverse the order of ri ’s.

Run ABOVETHRESHOLD on queries LX(ri) for all 0 ≤ i ≤ T , with threshold t − Γ and
sensitivity 2, and output the ri for which ABOVETHRESHOLD returns >.

on at most 1 datapoint, then at most one point from each t-tuple can be a point that doesn’t
belong to X ∩X ′. Without loss of generality, if such a point exists then it is x1

1 and x2
1. For all

other points it follows that |QX(x,r)−QX ′ (x,r)| ≤ 1 as mentioned above. Thus we have

LX(r) =
1
t

t∑
i=1

QX(x1
i , r) =

1
t
QX(x1

1, r) +
1
t

t∑
i=2

QX(x1
i , r)

≤ t
t

+
1
t

t∑
i=2

(
QX ′ (x

1
i , r) + 1

)
≤ 1 +

1
t
QX ′ (x

2
1, r) +

1
t

t∑
i=2

QX ′ (x
1
i , r)

+ 1 ≤ 2 +LX ′ (r)

based on the fact that 0 ≤ Q(x,r) ≤ t for any x and any r and the definition of LX as a max-
operation. The inequality LX ′ (r) ≤ LX(r) + 2 is symmetric.

Claim 5.5. Fix β > 0 and denote Γ as in Algorithm 2. With probability ≥ 1−β, if Algorithm 2 returns a
radius r (and not ⊥), then there exists a ball Br (p) which is (c,2Γ )-terrific.

Proof. Let T + 1 = (dlog2(U/L)e + 1) be the number of queries posed to ABOVETHRESHOLD.
From Theorem 2.14, we know that with probability at least 1− β, if radius r is returned, then
LX(r) ≥ t − Γ − Γ = t − 2Γ , where Γ = 16

ε (log(T ) + log(2/β)). It follows that one of the t distinct
datapoints on which LX(r) is obtained must satisfy Q(xi , r) ≥ t − 2Γ . Thus, the ball Br (xi) is the
sought-after ball.

Next we argue that if the data is such that it has a terrific ball, our algorithm indeed returns
a ball of comparable radius. Note however that the data could have multiple terrific balls.
Furthermore, given a c-terrific ball, there could be multiple different balls of different radii that
yield the same partition. Therefore, given dataset X which has a c-terrific ball Br (p), denote
A = X ∩Br (p) and define rA as the minimal terrific radius of a c-terrific ball forming A, i.e., for
any other c-terrific Br ′ (p′) such that A = X ∩Br ′ (p′), we have that r ′ ≥ rA. Let Rc be the set of all
minimal terrific radii of c-terrific balls forming subsets of X.
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Claim 5.6. Fix c > 1 and assume we apply Algorithm 2 with this c as a parameter. Given X such
that R4c+1 is not empty, then with probability ≥ 1− β it holds that Algorithm 2 returns r such that if
largest = TRUE then r ≥max{r ′ ∈ R4c+1} and if largest = FALSE then r ≤ 4 ·min{r ′ ∈ R4c+1}.

Proof. Given T + 1 = (dlogc(U/L)e+ 1) queries and threshold t − Γ (using the same definition of Γ
as in Algorithm 2), from Theorem 2.14, it holds with probability ≥ 1−β that ABOVETHRESHOLD

must halt by the time it considers the very first r for which LX(r) ≥ t. We show that for any
r ∈ R4c+1 there exists a query among the queries posed to ABOVETHRESHOLD over some r ′

such that (a) r ≤ r ′ ≤ 4r and (b) LX(r ′) = t. Since the order in which the ABOVETHRESHOLD

mechanism iterates through the queries is determined by the boolean flag largest the required
follows.

Fix r ∈ R4c+1. Let Br (p) be a terrific ball of radius r that holds at least t points, and let
x1, ...,xt′ denote the set of t′ ≥ t distinct datapoints in Br (p). Denote D = maxi,j ‖xi − xj‖. Clearly,
r ≤ D ≤ 2r, the lower-bound follows from the minimality of r as a radius that separates these
datapoints from the rest of X and the upper-bound is a straight-forward application of the
triangle inequality. Next, let r∗ denote the radius in the range [D,2D] ⊂ [r,4r] which is posed as a
query to ABOVETHRESHOLD. We have thatQ(xj , r∗) = t for each xj . Indeed, the ball Br∗

(
xj

)
holds

t′ ≥ t datapoints. Moreover, Bcr∗
(
xj

)
⊂ Br+cr∗ (p) ⊂ B(4c+1)r (p) and therefore

(
B2r∗

(
xj

)
\Br∗

(
xj

))
⊂(

B(4c+1)r (p) \ {x1, ...,xt′ }
)

and thus it is empty too. Therefore, any datapoint outside of Br (p)

which must also be outside B(4c+1)r (p) is contained in the compliment of Br∗
(
xj

)
, and so the

compliment also contains t points. As this holds for any xj , it follows that LX(r∗) = t and thus
the required is proven.

The entire PTerrificBall procedure. The overall algorithm that tries to find a c-terrific ball
is the result of running TerrificRadius followed by the GoodCenter modified as discussed
above: we conclude by running ABOVETHRESHOLD with the query given by (4) for a ball of
radius (1 + c

10 )r̃. Its guarantee is as follows.

Lemma 5.7. The PTerrificBall procedure is a (2ε,δ)-DP algorithm which, if run using size-parameter
t ≥ 1000c2

ε na
√
d log(nd/β) log(1/δ) loglog(U/L) for some arbitrary small constant a > 0 (say a = 0.1),

and is set to find a c-terrific ball with c > γ (γ being the parameter fed into the LSH in the GoodCenter
procedure), then the following holds. With probability at least 1− 2β, if it returns a ball Bp (r), then this
ball is a (c,2Γ )-terrific ball of radius r ≤ (1 + c

10 )r̃, where r̃ denotes the radius obtained from its call to
TerrificRadius, and Γ is 16

ε

(
log(dlog2(U/L)e+ 1) + log(2/β)

)
.

Proof. By Claim 5.5, it follows that r̃ is a radius for some (c,2Γ )-terrific ball. The analysis
in [NS18] asserts that with probability at least 1− β, GoodCenter locates a (n−a/2)-fraction of the
points inside the ball, and uses their average. Note that t is set such that t · n−a/2 > 10c2 · 2Γ .
Fix x to be any of the ≥ t − 2Γ points inside the ball. Due to the quality function we use in
TerrificRadius, at most 2Γ of the points, which got the same hash value as x, are within
distance γr̃ < cr̃, and the remaining t − 2Γ are within distance r̃ from x. It follows that their
average is within distance at most r̃ + cr̃

10c2 ≤ r̃(1 + c
10 ). The rest of the [NS18] proof follows as in

the GoodCenter case.
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5.2 The Algorithm

We now introduce our overall algorithm for GMM clustering which mimics the approach of
Achlioptas and McSherry [AM05]. Recall, Achlioptas and McSherry’s algorithm correctly learns
the model’s parameters, provided that

∀i, j, ‖µi −µj‖2 ≥ C(σi + σj )
(√
k log(nk/β) +

1
√
wi

+
1
√
wj

)
(6)

for some constant C > 0, and that n ≥ poly(n,d,k). We argue that under the same separa-
tion condition (albeit we replace the constant of [AM05] with a much larger constant, say
C = 100) a (ε,δ)-differentially private algorithm can also separate the k-Gaussians and learn
the model parameters. Alas, we are also forced to make some additional assumptions. First,
we require a bound on the distribution parameters, that is, the norm of all means, and the
eigenvalues of covariances; this is due to standard results in DP literature ([BNSV15]) show-
ing the necessity of such bounds for non-trivial DP algorithms. The good news is that we
only require loglog-dependence on these parameters. Namely, our sample complexity is now
poly(n,k,d, 1

ε , log(1/δ), log(1/β), loglog((R +
√
dσmax)/σmin)). Secondly, because we replace the

non-private Kruskal based algorithm with an algorithm that locates a terrific ball, we are forced
to use one additional assumption — that the Gaussians are not “too flat”. The reason for this
requirement is that we are incapable of dealing with the case that the pairwise distances of points
drawn from the same Gaussian have too much variation in them (see Property 2 below). Formally,
we require the following interplay between n (the number of datapoints), β (probability of error),
and the norms of each Gaussian variance:

∀i, ‖Σi‖F
√

log(nk/β) ≤ 1
8 tr(Σi), and ‖Σi‖2log(nk/β) ≤ 1

8 tr(Σi). (7)

Note that for a spherical Gaussian (where Σi = σ2
i Id×d) we have that tr(Σi) = dσ2

i , while ‖Σi‖F =
σ2
i

√
d and ‖Σi‖2 = σ2

i , thus, the above condition translates to requiring a sufficiently large
dimension. This assumption was explicitly stated in the non-private work regarding learning
spherical Gaussians [VW02] (also, we ourselves made such an assumption in the simplified
version detailed in Section 4).

We now detail the main component of our GMM learner. Algorithm 3 takes X, the given
collection of datapoints, and returns a k-partition of X in the form of list of subsets. We thus
focus on finding the correct partition. Note that intrinsically, the returned partition of indices
cannot preserve privacy (it discloses the cluster of datapoint i), so once this k-partition is done,
one must apply the existing (ε,δ)-DP algorithms for finding the mean and variance of each
cluster, as well as apply (ε,0)-DP histogram in order to assess the cluster weights. This is the
overall algorithm (PGME) given in Algorithm 4.

In our analysis, we prove that our algorithm is (O(ε
√
k log(1/δ)),O(kδ))-DP, and accurate

with probability at least 1−O(kβ). The desired (ε,δ)-DP and error probability 1− β guarantees
are achieved by appropriately rescaling the values of ε,δ, and β.

Theorem 5.8. Algorithm 4 satisfies
(
2ε+ 8ε

√
2k log(1/δ)), (8k + 1)δ

)
-differential privacy.

Proof. Consider any two neighboring datasets X and X ′, which differ on at most one point. In
each of the levels of the recursion in RPGMP we apply three (ε,δ)-DP, one ( ε2 ,δ)-DP, and one
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Algorithm 3: Recursive Private Gaussian Mixture Partitioning

Input: Dataset X ∈Rn×d coming from a mixture of at most k Gaussians. Upper bound on
the number of components k. Bounds on the parameters of the GMM
wmin,σmin,σmax. Privacy parameters ε,δ > 0.

Output: Partition of X into clusters.

RPGMP(X;k,R,wmin,σmin,σmax, ε,δ):
1. If (k = 1)

Skip to last step (#8).

2. Find a small ball that contains X, and bound the range of points to within that ball:
Set n′← |X |+ Lap(2/ε)− nwmin

20 .
Br ′′ (p)← PGLOC(X,n′; ε2 ,δ,R,σmin,σmax).
Set r← 12r ′′.
Set X← X ∩Br (p).

3. Find 5-PTerrificBall in X with t = nwmin
2 :

Br ′ (p′)← PTERRIFICBALL(X, nwmin
2 , c = 5, largest = FALSE;ε,δ, r,

√
dσmin

2 ).

4. If the data is separable already, we recurse on each part:
If (Br ′ (p′) ,⊥)

Partition X into A = X ∩Br ′ (p′) and B = X \B5r ′ (p′).
Set CA← RPGMP(A;k − 1,R,wmin,σmin,σmax, ε,δ).
Set CB← RPGMP(B;k − 1,R,wmin,σmin,σmax, ε,δ).
Return CA ∪CB.

5. Find a private k-PCA of X:

Sample N , a symmetric matrix whose entries are taken fromN (0, 4r4 ln(2/δ)
ε2 ).

Π ∈Rd×d ← k-PCA projection of XTX +N , where Π is a rank k matrix.

6. Find 5-PTerrificBall in XΠ with t = nwmin
2 :

Br ′ (p′)← PTERRIFICBALL(XΠ, nwmin
2 , c = 5, largest = TRUE;ε,δ, r,

√
kσmin

2 ).

7. If the projected data is separable, we recurse on each part:
If (Br ′ (p′) ,⊥)

Partition X into A = {xi ∈ X : Πxi ∈ Br ′ (p′)} and B = {xi ∈ X : Πxi < B5r ′ (p′)}.
Set CA← RPGMP(A;k − 1,R,wmin,σmin,σmax, ε,δ).
Set CB← RPGMP(B;k − 1,R,wmin,σmin,σmax, ε,δ).
Return CA ∪CB.

8. Since the data isn’t separable, we treat it as a single Gaussian:
Set a single cluster: C← {i : xi ∈ X}.
Return {C}.

( ε2 ,0)-DP procedures to the data, as well as fork into one of the two possible partitions and
invoke recursive calls on the part of the data the contains the point that lies in at most one of
X and X ′. Since the recursion can be applied at most k times, it follows that the point plays a
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Algorithm 4: Private Gaussian Mixture Estimation

Input: Dataset X ∈Rn×d coming from a k-Gaussian mixture model. Upper bound on the
number of components k. Bounds on the parameters of the GMM wmin,σmin,σmax.
Privacy parameters ε,δ > 0; failure probability β > 0.

Output: Model Parameters Estimation

PGME(X;k,R,wmin,σmin,σmax, ε,δ,β):
1. Truncate the dataset so that for all points, ‖Xi‖2 ≤O(R+ σmax

√
d)

2. {C1, ..,Ck} ← RPGMP(X;k,R,wmin,σmin,σmax, ε,δ)

3. For j from 1 to k
(µj ,Σj )← PGE({xi : i ∈ Cj};R,σmin,σmax, ε,δ).
ñj ← |Cj |+ Lap(1/ε).

4. Set weights such that for all j, wj ← ñj /(
∑
j ñj ).

5. Return 〈µj ,Σj ,wj〉kj=1

role in at most k rounds, each of which is (4ε,4δ)-DP. By advanced composition (Lemma 2.9),
overall PGME is (4ε ·

√
8k log(1/δ),8kδ)-DP. The additional calls for learning the mixture model

parameters on each partition are (2ε,δ)-DP. Summing the two parts together yields the overall
privacy-loss parameters.

Since the latter steps of Algorithm 4 rely on existing algorithms with proven utility, our utility
analysis boils down to proving the correctness of Algorithm 3. We argue that given X taken
from a Gaussian Mixture Model with sufficiently many points and sufficient center separation,
then with high probabiliy, Algorithm 3 returns a k-partition of the data which is laminar with the
data. In fact, the algorithm might omit a few points in each level of the recursion, however, our
goal is to argue that the resulting k-subsets are pure — holding only datapoints from a single
cluster.

Definition 5.9. Given that X is drawn from a k′-GMM, we call two disjoint sets A, B ⊆ X a
laminar partition of X if (i) there exists a partition of the set {1,2, .., k′} into S and T such that all
datapoints in A are drawn from the Gaussians indexed by some i ∈ S and all datapoints in B are
drawn from the Gaussians indexed by some i ∈ T , and (ii) |X \ (A∪B)| ≤ nwminα

10k′ log(1/α) .

Towards the conclusion that the partition returned by Algorithm 3 is laminar, we require
multiple claims regarding the correctness of the algorithm through each level of the recursion.
These claims, in turn, rely on the following properties of Gaussian data.

1. The Hanson-Wright inequality (Lemma 2.15): ∀i,∀x ∼N (µi ,Σi) we have that

tr(Σi)− 2‖Σi‖F
√

log(n/β) ≤ ‖x −µi‖22 ≤ tr(Σi) + 2‖Σi‖F
√

log(n/β) + 2‖Σi‖2 log(n/β).

Using the assumption that 2‖Σi‖F
√

log(n/β) ≤ 1
4 tr(Σi) and that 2‖Σi‖2 log(n/β) ≤ 1

4 tr(Σi)
(Equation 7) we get that 3

4 tr(Σi) ≤ ‖x −µi‖2 ≤ 3
2 tr(Σi).
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2. Similarly, for every i and for any x,y ∼N (µi ,Σi) we have that x − y ∼N (0,2Σi) implying
under the same concentration bound that 3

2 tr(Σi) ≤ ‖x − y‖22 ≤ 3tr(Σi).

3. For every i, its empirical spectral norm is close to the expected spectral norm, assuming
for all i we have win = Ω(d + log(1/β)) (see Lemma 2.16). Namely,

1
ni

∥∥∥∥∥∥∥∥
∑

{x∈X: x∼N (µi ,Σi )

(x −µi)(x −µi)T
∥∥∥∥∥∥∥∥

2

∈
(

1
2‖Σi‖2,

3
2‖Σi‖2

)
.

4. Under center separation, we have that ∀i,∀x ∼ N (µi ,Σi) and for all j , i we have that
‖x − µi‖2 ≤ ‖x − µj‖2. This is a result of the fact that when projecting x onto the line
that connects µi and µj the separation between µi and µj is overwhelmingly larger than
(σi + σj )

√
ln(n/β) (a consequence of the separation condition combined with (7)).

5. Lastly, we also require that for any i the number of points drawn from the ith Gaus-
sian component is roughly win. In other words, we assume that for all i we have
{x ∈ X : x drawn from i} is in the range (3win

4 , 5win
4 ). Standard use of the multiplicative

Chernoff bound suggests that when n = Ω(log(1/β)/wi) then for each cluster i the required
holds.

Thus, we have (informally) argued that, with probability ≥ 1−5βk, the given dataset satisfies all
of these properties. Next we argue a few structural propositions that follow.

Proposition 5.10. Let Br (p) be a ball such that for some i, both µi and some x ∼N (µi ,Σi) lie in Br (p).
Then B4r (p) holds all datapoints drawn fromN (µi ,Σi).

Proof. Based on Property 1 it follows that B√2‖µi−x‖2 (µi) holds all datapoints drawn from the ith
Gaussian. As ‖µi − x‖2 ≤ 2r we have that B√2‖µi−x‖2 (µi) ⊂ B4r (p).

Proposition 5.11. Let Br (p) be a ball such that for some i, two points x,y ∼ N (µi ,Σi) lie in Br (p).
Then B4r (p) holds all datapoints drawn fromN (µi ,Σi).

Proof. Based on Property 2, we have that the ball B√2‖x−y‖2 (x) holds all datapoints drawn from
the ith Gaussian. As ‖x − y‖2 ≤ 2r it follows that B√2‖x−y‖2 (x) ⊂ B4r (p).

The remainder of the utility proof also relies on the assumption that at all levels of the
recursion, all subprocedures (which are probabilistic in nature) do not terminate per-chance or
with a non-likely output. Note that this assumption relies in turn on a sample size assumption:
we require that wminn

2 is large enough for us to find a terrific ball, namely, we require

n = Ω̃


√d log(d/β) log(1/δ) loglog((R+

√
dσmax)/σmin)

wminε


1

1−a


for some small constant a > 0 (say a = 0.1). Recall that at any level of the recursion we deal with
at most two such subprocedures. As we next argue, (a) at each level of the recursion we partition
the data into two parts, which are each laminar with a mixture of k′ < k Gaussians, and (b) when
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the given input contains solely points from a single Gaussian we reach the bottom level of the
recursion. It follows that the recursion tree (a binary tree with k leaves) has 2k nodes. Since each
instantiation of the recusion has failure probability at most 6β (a consequence of Claim 5.12,
Claim 5.13, Claim 5.14, Corollary 5.15, Claim 5.16, and Claim 5.17), this implies that that with
probability ≥ 1− 12kβ, all subroutines calls ever invoked by RPGMP are successful. Note that
the overall success probability of Algorithm 4 is thus 1− 19kβ (with probability ≤ 5kβ, there
exists some cluster, whose datapoints don’t satisfy properties 1-5; with probability ≤ 12kβ, a call
made through Step 2 of Algorithm 4 fails; and with probability ≤ 2kβ, a failure occurs at Steps 3
and 4 of Algorithm 4). We continue assuming no such failure happens.

Subject to successfully performing each subprocedure, the following claims yield the overall
algorithm’s correctness.

Claim 5.12. Let (X1, . . . ,Xn) be samples from a mixture of k Gaussians in PGME. Suppose X (a subset
of the samples) is the input dataset in RPGMP, such that (1) for each 1 ≤ i ≤ k, the number of points
in X belonging to component i is either equal to 0 or greater than Ω(nwmin); and (2) X contains points
from at least one component. If

n ≥
(√
dk
ε

) 1
1−a

· 9
log∗

(√
d
(
Rσmax
σmin

)d)
·polylog

(
d,

1
ε
,
1
δ

1
β
,

1
γ

)
+O

(
d + log(k/β)

wmin
+

log(1/β)
εwmin

)
,

where a > 0 is an arbitrarily small constant, then with probability at least 1− β, the ball Bp (r) found in
Step 2 of RPGMP contains all points in X, and r ≤ cropt , where c > 0 is a constant (which depends on
a), and ropt is the radius of the smallest ball that contains all points in X.

Proof. First, note that from Lemma D.1, we know that with probability at least 1 − β
2 , the

magnitude of the Laplace noise added in Step 2 of RPGMP is at most 2
ε log(2/β). Since for every

component that has points in X, there are at least Ω(nwmin) points, we know from our bound on
n that this magnitude of Laplace noise is at most nwmin

20 . Therefore,

n′ = n+ Lap(2/ε)− nwmin

20

≥ n
(
1− wmin

10

)
≥ n/2,

which means that by asking PGLOC to search for n′ points, we are covering at least half of every
component that has points in X.

Next, by Theorem 4.11, we know that with probability at least 1 − β
2 , if the radius of the

smallest ball covering n′ points is r ′, we will get a ball of radius r ′′ =O(r ′) that covers at least
n′
2 points. Let Br ′′ (p) be the returned ball. There are two cases to consider: (1) the ball covers at
least two points from all components in X; and (2) it covers at most one point from at least one
component in X (which we call “completely uncovered” for brevity). In the first case, because
all points in X satisfy Property 2, multiplying r ′′ by 4 would cover all the points in X. In the
second case, since n′ is very large, there must be at least two points from every completely
uncovered component in X \Br ′′ (p), that lie together in some optimal ball containing n′ points,
and one point in X ∩ Br ′′ (p) that lies in the same optimal ball as those two points. Consider
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any completely uncovered component, and let y,z be two such points from it, with x being a
corresponding point in X ∩Br ′′ (p). Then by triangle inequality,∥∥∥p − y∥∥∥

2
≤ ‖p − x‖2 +

∥∥∥x − y∥∥∥
2

≤ r ′′ + 2r ′

≤ 3r ′′ ,

which also holds for ‖p − z‖2. Therefore, multiplying r ′′ by 3 would cover both y and z. Since
the choice of completely uncovered components was arbitrary, this holds for all completely
uncovered components. Again, since all points in X satisfy Property 2, multiplying 3r ′′ by 4 (to
get r) fully covers all points in completely uncovered components, and all other points in X as
well.

Finally, r ′ ≤ ropt , which means that r ∈O(ropt). This completes our proof of the claim.

We now describe our strategy for proving the main theorem of this subsection (which will be
Theorem 5.18 below). We will begin by establishing a series of claims (first in prose, then with
formal statements), and show how they imply our main theorem statement. We then conclude
the subsection by substantiating our claims with proofs.

First, we argue that if the mixture contains at least two components and Step 3 of the
algorithm finds a terrific ball to split the data (in the original, non-projected space), then the
partition that is induced by this ball will split the data in a laminar fashion. That is, it will call
the algorithm recursively on two disjoint subsets of the data, such that for each component, all
samples which were drawn from this component end up in only one of the two subsets. This
will ensure that the two recursive calls operate on valid (sub)instances of the GMM learning
problem.

Claim 5.13. If the dataset X contains samples from a mixture of k ≥ 2 Gaussians, and Step 3 of RPGMP
finds a terrific ball over the data, then with probability at least 1− β, the partition formed by the terrific
ball is laminar.

On the other hand, if we still have at least two components and the algorithm is unable
to find a terrific ball, we argue that all points lie in a ball of limited radius. Since the sample
complexity of our private PCA algorithm (Lemma 3.1 and Lemma 3.2) depends on the radius of
this ball, this will allow us to bound the sample complexity of this step.

Claim 5.14. If the dataset X contains samples from a mixture of k ≥ 2 Gaussians with σ2
max denoting

the largest directional variance of any component in the mixture, and Step 3 of RPGMP does not find a
terrific ball over the data, then with probability at least 1− β, the radius r of the entire instance (found in
Step 2) is at most k4.53

√
dσmax, that is, all points of X lie in a ball of radius k4.53

√
dσmax.

In the same setting, after the PCA projection, we have that the projected means are close to
the original means, and that the resulting data will have a terrific ball (due to the separation
between components).

Corollary 5.15. Under the same conditions as in Claim 5.14, we have that if

n ≥O
k9.06d3/2

√
log(2/δ) log(1/β)
wminε

 ,
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then with probability at least 1− β, we have that for each center µi , the corresponding projected center µ̂i
is within distance ≤ 3σmax√

wi
. As a result, under our center-separation condition, the projected data XΠ has

a 21-terrific ball.

Similar to Claim 5.13, we conclude this case by arguing that the partition formed by the
resulting terrific ball to split the data (in the projected space) is laminar, resulting in the two
recursive calls being made to valid (sub)instances of the problem.

Claim 5.16. Under the same conditions as in Claim 5.14, with probability at least 1− β, the partition
formed by the terrific ball found on the projected data XΠ is laminar.

Finally, if our dataset is generated from a single component, then we will not locate a terrific
ball, and the recursion ceases.

Claim 5.17. For any i, if the dataset X is composed of at least

400wid log(1/βwmin)
wmin

+Ω

(1
ε

(
loglog

(
(R+
√
dσmax)/σmin

)
+ log(1/β)

))
points drawn only from N (µi ,Σi), then with probability at least 1− β, neither Step 3 nor Step 6 will
locate a terrific ball.

Putting together all of these claims and the entire discussion, we have that following theorem.

Theorem 5.18. Algorithm 3 satisfies
(
8ε

√
2k log(1/δ)),8kδ

)
-DP, and under the center-separation of (6),

with probability ≥ 1− 12kβ, it returns k-subsets which are laminar with the k clusters, while omitting
no more than αwminn

20log(1/α) of the datapoints, provided that

n = Ω̃


√d log(d/β) log(1/δ) loglog((R+

√
dσmax)/σmin)

wminε


1

1−a
 for an arbitrary constant a > 0

n = Ω

k9.06d3/2
√

log(2/δ) log(1/β)
wminε


n = Ω

(
d log(1/βwmin)

wmin

)
n = Ω

k log(1/α) log(log((R+
√
dσmax)/σmin)/β)

αεwmin

 .
The proof of Theorem 5.18 follows from all the above mentioned properties of the data and

the claims listed above. It argues that in each level of the recursion we are forced to make a
laminar partition with probability at least 1−6β (conditioned on the success in the previous levels)
until we reach a subset (of sufficient size) which is contained in a single cluster, then we halt.
Since this implies that we ultimately return k clusters, it means that there are at most 2k nodes
in the recursion tree, so the failure probability adds up to 12kβ. The sample complexity bounds
are the bounds required for all claims and properties 1-5, where the last bound guarantees that
the total number of points omitted in the overall execution of the algorithm doesn’t exceed
nwminα

20log(1/α) (at most O(kΓ ) = O( kε log(log((R +
√
dσmax)/σmin)/β)), since the recursion tree has at

most k non-leaf nodes).
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Proof of Claim 5.13. Let Br (p) be the ball returned by Step 3 of the RPGMP algorithm. Let x,y
be two datapoints that lie inside the ball and belong to the same component i. It follows
from Proposition 5.11 that all datapoints from cluster i lie inside B4r (p), but since the annulus
B5r (p) \Br (p) is effectively empty (contains significantly less than nwminα

20k log(1/α) points), it should
be the case that (almost) all of these datapoints lie in Br (p) itself, and in particular, no point from
component i lies outside of B5r (p).

It follows that any component i with at least two datapoints that fall inside Br (p) belongs to
one side of the partition, and moreover, since the ball contains > nwmin

4 datapoints, there exists at
least one component i, such that all of its datapoints lie inside B4r (p).

Next, suppose that for some j , i, some datapoint z drawn from the jth component lies inside
Br (p). It follows that both z and µi lie inside Br (p), and so

2r ≥ ‖z −µi‖2 ≥ ‖z −µj‖2 ≥
√

3
4

tr(Σj ),

thus r ≥
√

3
16 tr(Σj ). Thus the ball of radius 4r centered at z, which is fully contained inside

B5r (p), has radius ≥
√

3tr(Σj ). This is large enough to include all datapoints from cluster j as

well. Again, the fact that the annulus B5r (p) \Br (p) is effectively empty implies that (effectively)
all points from cluster j also belong to Br (p).

Lastly, note that ≥ nwmin/4 datapoints are left outside B5r (p). This implies that at least some
component is left outside of B5r (p). Therefore, the partition (A,B) formed by the terrific ball is a
laminar partition of the dataset X.

The failure probability of this claim is β using Lemma 5.7 because the success of the event in
this claim rests on PTERRIFICBALL functioning correctly.

Proof of Claim 5.14. Based on Property 1, for any datapoint in X and its respective center we

have that their distance is at most s def=
√

1.5dσmax. Now, since we know that our procedure that
looks for a 5-terrific ball failed, then by Claim 5.6 we know that the data holds no 21-terrific ball.

Consider the following function f : N→ [k],

f (i) = min
T⊆[k],

X⊆
⋃
j∈T

Bis(µj)

|T | ,

that is, the minimum number of balls of radius i · s centered at some µj that are required to
cover all datapoints in X. The above paragraph implies that f (1) ≤ k, so it is enough to show
that f (klog2(23)) ≤ 1, as it would imply that a ball of radius O(klog2(23)

√
dσmax) covers the entire

instance. We argue that if there exists no 21-terrific ball in X, then for all i such that f (i) > 1,
then f (23i) ≤ f (i)/2, which by induction leads to f (23log2(k)) = f (klog2(23)) ≤ 1.

Fix i. Assume f (i) > 1, otherwise we are done. By definition, there exists a subset {µj1 ,µj2 , ...,µjf (i)
}

of the k centers, such that X is contained in
⋃
t Bis

(
µjt

)
. Pick any center µ in this subset. We

know that Bis (µ) is not a 21-terrific ball. Since it holds enough points (at least nwmin) and leaves
out enough points (since f (i) > 1), it must be the case that B21is (µ) \Bis (µ) is non-empty, that
is, there exists a point x ∈ X that resides in B21is (µ) \Bis (µ). This means that B22is (µ) holds the
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center µ′ of the ball Bis (µ′) that covers x, and therefore Bis (µ′) ⊂ B23is (µ). Note that by symmetry
it also holds that µ ∈ B22is (µ′) and so Bis (µ) ⊂ B23is (µ′).

Now, draw a graph containing f (i) nodes (one node per center µjt ), and connect two nodes µ
and µ′ if Bis (µ) ⊂ B23is (µ′). This is a graph in which each node has degree ≥ 1 because there is no
21-terrific ball centered at the corresponding mean, and therefore, has a dominating set of size
≤ f (i)/2. Hence, X is covered by balls of radius 23is centered at each node in this dominating
set, implying that f (23i) ≤ f (i)/2.

Finally, by Claim 5.12, we have that the radius r found is Step 2 is in O(klog2(23)
√
dσmax) ∈

O(k4.53
√
dσmax).

As before, the failure probability of this claim is β using Lemma 5.7.

Proof of Corollary 5.15. Under the same conditions as in Claim 5.14, it holds that the added noise

is such that ‖N‖2 ≤
2r2
√
d ln(2/δ) log(1/β)

ε with probability≥ 1−β. Using the fact that r = k4.53
√
dσmax,

Lemmata 3.1 and 3.2, along with our bound on n (hence, on ni), imply that with probability at
least 1− β, for any i,

‖µ̄i −Πµ̄i‖ ≤
√

1
ni
‖A−C‖2 +

√
2r2

√
d ln(2/δ) log(1/β)

εni

≤ 1
√
wi

(
4
√

2σmax + σmax

)
≤ 7

σmax√
wi

≤ 7
σmax√
wmin

.

Without loss of generality, assume cluster 1 is the Gaussian of largest variance. It follows
that for all i , 1, we have

‖Πµ1 −Πµi‖2 ≥ 100(σ1 + σi)
(√
k log(n) +

1
√
w1

+
1
√
wi

)
− 7

(
σ1√
w1

+
σ1√
wi

)
≥ 100σ1

√
k log(n).

Yet, similar to the analysis in [VW02, AM05], we have that ‖Π(x −µi)‖2 ≤
√
kσ2

i log(n) for each

datapoint and its respective cluster i.5 Roughly, the argument is that, if we draw a sample
from a Gaussian in a k dimensional space, its `2 distance from its mean is O(σ

√
k logn). The

same argument holds if the sample is drawn in a d dimensional space and then projected into
k dimensions, as long as the projection is independent of the sample. While the projection is
dependent on the data, the fact that it was computed in a differentially private manner allows
us to act as though it is independent.

This implies that all points that belong to cluster 1 fall inside the ball B4
√
kσ2

max log(n) (Πµ1),

whereas any point from a different cluster must fall outside the ball B90
√
kσ2

max log(n) (Πµ1), with

each side containing at least nwmin
2 datapoints.

5In fact, due to the fact that Π was derived via in a differentially private manner, is is easier to argue this than in
the [AM05] paper, see the following blog post.
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Proof of Claim 5.16. Again, as in the proof of Corollary 5.15, we leverage the fact that using the

projection, we have that ‖Π(x −µi)‖2 ≤
√
kσ2

i log(n) for each datapoint x belonging to cluster i.
Note that we run the PTerrificBall procedure using the flag largest = TRUE. As a result, based
on Claim 5.6 and Corollary 5.15, we are guaranteed that the radius of the ball returned is at least
as large as the radius of the terrific ball that holds all points from the cluster having the largest
directional variance σ2

max (without loss of generality, let that be cluster 1). In other words, we

have that the radius of the terrific ball is at least 4
√
kσ2

max log(n).
Therefore, for any cluster i, the radius is large enough so that the ball of radius 4r holds all

datapoints from cluster i. Again, the annulus B5r (p)\Br (p) holds very few points, and so almost
all datapoints of cluster i lie inside Br (p), and none of its points lie outside of B5r (p).

Again, the failure probability of this claim is β using Lemma 5.7.

Proof of Claim 5.17. At a high level, the proof goes as follows. Suppose our dataset was generated
according to a single Gaussian, and that Step 3 or 6 produces a terrific ball. Perform the following
thought experiment: take the data, apply some univariate projection, and partition the line into
5 intervals (corresponding to the ball of radius r/diameter 2r, the two surrounding intervals
of diameter 4r, and the two infinite intervals which extend past those points). For the ball to
be terrific, there must be a projection such that the first interval has significantly many points,
the second and third intervals have almost no points, and the last two intervals (collectively)
have many points. Given the structure of a Gaussian, we know that no such projection and
decomposition could exist when considering the true probability measure assigned by the
Gaussian distribution, since the distribution is unimodal with quickly decaying tails. However,
with some small probability, this could happen with respect to the empirical set of samples. For a
given projection, we bound this probability by partitioning the line into intervals of appropriate
width, and then applying a Chernoff and union bound style argument. We bound the overall
probability by taking a union bound over a net of possible directions. A more formal argument
follows.

First, due to the proof of Claim 5.13 we know that if a terrific ball Br (p) is found in Step 3
then its radius is large enough to hold all datapoints from the same cluster. Therefore, in the
case where all datapoints are taken from the same Gaussian we have that no points lie outside
of B5r (p).

Next, we argue something slightly stronger. Note that a 4-terrific ball, either on the data on
over the projected data, implies that there’s some direction (unit-length vector) v — namely, a
line going from the origin through the center of the ball — such that on projecting the data onto
v we have an interval of length 2r holding at least nwmin

3 datapoints, surrounded by intervals of
length 3r of both sides with very few points (quantified by the guarantees of Lemma 5.7), and
the remainder of the line also holds nwmin

3 datapoints. (The same holds for a ball for the projected
points since this ball lies in some k-dimensional subspace.) However, since the datapoints are all
drawn from the same Gaussian, its projection over v also yields a (one-dimensional) Gaussian,
with the property that for any three ordered intervals from left to right of the same length
I1, I2, I3, the probability mass held in I2 is greater than the minimum between the probability
held in I1 and the probability mass held in I3. We thus have that a necessary condition for the
existence of such terrific ball is that there exists a direction v and an interval ` which should have
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a probability mass of at least wmin/10 yet contains less than wmin/20 fraction of the empirical
mass.

We now apply classical reasoning: a Chernoff and union argument. Fix a cluster i. If we are
dealing with a set of datapoints drawn only from the ith Gaussian, then this set has no more
than 2win points, and so the ratio λ = wmin

20wi
represents the fraction of points that ought to fall

inside the above-mentioned interval. We thus partition the distribution projected onto direction
v into 2/λ intervals each holding λ/2 probability mass. The Chernoff bound guarantees that if
the number of points from cluster i is at least 200d log(1/βλ)

λ then a given interval has empirical
probability sufficiently close (up to a multiplicative factor of 2) to its actual probability mass.
Applying the union-bound over all 2

λ intervals times all 2O(d) unit-length vectors in a cover of
the unit-sphere, we get that such an interval exists with probability ≤ β. Note that the number of
points of cluster i is at least nwi2 , so by re-plugging the value of λ into the bound we get that it is

enough to have nwi
2 ≥

200wid log(1/βwmin)
wmin

, implying that n ≥ 400d log(1/βwmin)
wmin

is a sufficient condition
to have that no such ill-represented interval exists, and as a result, no terrific ball exists.

5.3 Estimation

We want to show that once we have clusters C1, . . . ,Ck from RPGMP, such that each cluster
contains points from exactly one Gaussian, no two clusters contain points from the same
Gaussian, and that the fraction of points lost from the dataset is at most

τ =O
(
wminα

log(1/α)

)
,

we can learn individual Gaussians and mixing weights accurately. We use the learner for
d-dimensional Gaussians from [KLSU19] in the process.

Theorem 5.19 (Learner from [KLSU19]). For every α,β,ε,δ,σmin,σmax,R > 0, there exists an (ε,δ)-
differentially private algorithm MKLSU, which if given m samples from a d-dimensional Gaussian
N (µ,Σ), such that, m ≥m1 +m2, where,

m1 ≥O

d2 + log( 1
β )

α2 +
d2polylog( d

αβεδ )

αε
+
d

3
2 log

1
2 (σmax
σmin

)polylog(d log(σmax/σmin)
βεδ )

ε


m2 ≥O

d log(dβ )

α2 +
d log(d logR log(1/δ)

αβε ) log
1
2 (1
δ )

αε
+

√
d log(Rdβ ) log

1
2 (1
δ )

ε


and σ2

min � Σ � σ2
max and

∥∥∥µ∥∥∥
2
≤ R, outputs µ̂, Σ̂, such that with probability at least 1− β,

dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ α.

Now, we are in a situation where at most nτ samples get lost from each component in the
clustering process. So, we need a more robust version of MKLSU that works even when we lose
a small fraction of the points. The following theorem guarantees the existence of one such robust
learner.
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Theorem 5.20. For every α,β,ε,δ,σmin,σmax,R > 0, there exists an (ε,δ)-differentially private algo-
rithm PGE with the following guarantee. Let (X1, . . . ,Xn) be independent samples from a d-dimensional
GaussianN (µ,Σ), where σ2

min � Σ � σ2
max and

∥∥∥µ∥∥∥
2
≤ R and n ≥ 1

wmin
(n1 +n2), for

n1 ≥O

 (d2 + log( 1
β )) log2(1/α)

α2 +
(d2polylog( d

αβεδ ))

αε
+
d

3
2 log

1
2 (σmax
σmin

)polylog(d log(σmax/σmin)
βεδ )

ε


n2 ≥O

d log(dβ ) log2(1/α)

α2 +
d log(d logR log(1/δ)

βε ) log
1
2 (1
δ ) log2(1/α)

αε
+

√
d log(Rdβ ) log

1
2 (1
δ )

ε

 .
For every S ⊆ [n] with |S | ≥ n(1−O(α/ log(1/α))), when PGE is given {Xi}i∈S as input, with probability
at least 1− β,

dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ α.

The proof of this theorem follows effectively the same structure as that of Theorem 5.19, the
primary difference in the setting being that a miniscule fraction of points have been removed.
However, fortunately, the proof of Theorem 5.19 uses the Gaussianity of the data essentially
only to show concentration of the empirical mean and covariance in various norms, which are
preserved even against an adversary who can delete a small fraction of the points (see, i.e.,
Lemma 4.3, 4.4, and Corollary 4.8 of [DKK+16]). Substituting these statements into the proof, it
follows essentially the same.

Now, we give a lemma that says that the mixing weights are accurately estimated.

Lemma 5.21. Suppose w1, . . . ,wk are the mixing weights of the Gaussians of the target distribution
D ∈ G(d,k). Let ŵ1, . . . , ŵk be their respective estimations produced by the algorithm. If

n ≥O
(
k2

εα
ln(k/β)

)
,

then with probability at least 1−O(β),

∀ 1 ≤ i ≤ k, |ŵi −wi | ≤
α
3k
.

Proof. Let w′1, . . . ,w
′
k be the empirical weights of the Gaussians produced using the points in X.

We have the following claim for them.

Claim 5.22. Let X be the dataset as in the algorithm. If

n ≥O
(
k2

εα
ln(k/β)

)
,

and X satisfies Condition 2.5, then for wi ≥ 4α
9k ,∣∣∣wi −w′i ∣∣∣ ≤ α

9k
,

and for wi < 4α
9k , ∣∣∣wi −w′i ∣∣∣ ≤ 2α

9k
,
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Proof. There are two sources of error in this case: (1) adding Laplace noise; and (2) by having
lost τ points from X. Let ñi be as defined in the algorithm, ni = |Ci |, and ni be the number of
points of this component in X.

First, we want to show that the if the number of points is large enough, then the added noise
does not perturb the empirical weights too much. Now, using Lemma D.1 with our bound on n,
and applying the union bound over all calls to PCOUNT, we get that with probability at least
1−O(β),

∀ i, |ñi −ni | ≤
nα

40k2 .

Also, we know that
k∑
i=1
ni ≥ n(1− τ).

Now, let e = α
40k2 . From the above, using triangle inequality, we get that for all i,

∣∣∣ŵi −w′i ∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
ñi
k∑
j=1
ñj

− ni
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣∣
ñi
k∑
i=1
ñi

− ni
k∑
i=1
ni

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣
ni
k∑
i=1
ni

− ni
n

∣∣∣∣∣∣∣∣∣∣∣∣
≤ e+ ke

1− ke
+
ni
n

∣∣∣∣∣ 1
1− τ

− 1
∣∣∣∣∣

≤ α
18k

+
α

18k

≤ α
9k
,

Where the second to last inequality holds because τ ≤ α
20k .

Because
∣∣∣wi −w′i ∣∣∣ ≤ α

9k , using triangle inequality, we get the required result.

Combining these statements is sufficient to conclude Theorem 5.1.

6 Sample and Aggregate

In this section, we detail methods based on sample and aggregate, and derive their sample
complexity. This will serve as a baseline for comparison with our methods.

A similar sample and aggregate method was considered in [NRS07], but they focused on
a restricted case (when all mixing weights are equal, and all components are spherical with a
known variance), and did not explore certain considerations (i.e., how to minimize the impact
of a large domain). We provide a more in-depth exploration and attempt to optimize the sample
complexity.

The main advantage of the sample and aggregate method we describe here is that it is
extremely flexible: given any non-private algorithm for learning mixtures of Gaussians, it can
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immediately be converted to a private method. However, there are a few drawbacks, which
our main algorithm avoids. First, by the nature of the approach, it will increase the sample
complexity multiplicatively by Ω(

√
d/ε), thus losing any chance of the non-private sample

complexity being the dominating term in any parameter regime. Second, it is not clear on how
to adapt this method to non-spherical Gaussians. We rely on the methods of [NSV16, NS18],
which find a small `2-ball which contains many points. The drawback of these methods is that
they depend on the `2-metric, rather than the (unknown) Mahalanobis metric as required by
non-spherical Gaussians. We consider aggregation methods which can handle settings where
the required metric is unknown to be a very interesting direction for further study.

Our main sample-and-aggregate meta-theorem is the following.

Theorem 6.1. Let m = Θ̃

(√
kd+k1.5

ε log2(1/δ) · 2O
(
log∗

(
dRσmax
ασmin

)))
. Suppose there exists a (non-private)

algorithm with the following guarantees. The algorithm is given a set of samples X1, . . . ,Xn generated
i.i.d. from some mixture of k Gaussians D =

∑k
i=1wiN (µi ,σ

2
i Id×d), with the separation condition that

‖µi − µj‖2 ≥ (σi + σj )τk,d , where τk,d is some function of k and d, and τk,d ≥ cα, for some sufficiently
large constant c. With probability at least 1−m/100, it outputs a set of points {µ̂1, . . . , µ̂k} and weights

{ŵ1, . . . , ŵk} such that ‖µ̂π(i) − µi‖2 ≤ O
(

ασi√
logmk

)
and |ŵπ(i) − wi | ≤ O(α/k) for all i ∈ [k], where

π : [k]→ [k] is some permutation.
Then there exists a (ε,δ)-differentially private algorithm which takes mn samples from the same

mixture, and input parameters R,σmin,σmax such that ‖µi‖2 ≤ R and σmin ≤ σi ≤ σmax for all i ∈ [k].
With probability at least 9/10, it outputs a set of points {µ̂1, . . . , µ̂k} and weights {ŵ1, . . . , ŵk} such that
‖µ̂π(i) −µi‖2 ≤O (ασi) and |ŵπ(i) −wi | ≤O(α/k) for all i ∈ [k], for some permutation π.

Proof. In short, the algorithm will repeat the non-private algorithm several times, and then
aggregate the findings using the 1-cluster algorithm from [NSV16]. We will focus on how to
generate the estimates of the means, and sketch the argument needed to conclude the accuracy
guarantees for the mixing weights.

In more detail, we start by discretizing the space where all the points live, which is a set
of diameter poly(R,σmax,d, logn), at granularity poly

(
ασmin
d

)
, and every point we consider will

first be rounded to the nearest point in this discretization. This will allow us to run algorithms
which have a dependence on the size of the domain. Since this dependence will be proportional
to the exponentiation of the iterated logarithm, we can take the granularity to be very fine by
increasing the exponent of the polynomial, at a minimal cost in the asymptotic runtime. For
clarity of presentation, in the sequel we will disregard accounting for error due to discretization.

Now, we use the following theorem of [NSV16].

Theorem 6.2 ([NSV16]). SupposeX1, . . . ,Xm are points from Sd ⊂R
d , where Sd is finite. Letm,t,β,ε,δ

be such that,

t = Ω


√
d
ε

log
(

1
β

)
log

(
md
βδ

)√
log

(
1
βδ

)
· 9log∗(2|S |

√
d)

 .
Let ropt be the radius of the smallest ball that contains at least t points from the sample. There exists an
(ε,δ)-DP algorithm that returns a ball of radius at most w · ropt such that it contains at least t −∆ points

45



from the sample with error probability β, where w =O(
√

logm) and

∆ =O
(

1
ε

log
(

1
β

)
log

(m
δ

)
· 9log∗(2|S |

√
d)
)
.

Compare with the slightly different guarantees of Theorem B.1, which is the 1-cluster algo-
rithm from [NS18]. We will use Theorem 6.2 k times, with the following settings of parameters:
their ε is equal to our O(ε/

√
k log(1/δ)), their β is equal to O(1/k), their |S | is our poly

(
dRσmax
σminα

)
,

their m is equal to mk, and all other parameters are the same.
We start by taking the results of running the non-private algorithm m times. We will run

the algorithm of Theorem 6.2 with t =m to obtain a ball (defined by a center and a radius). We
remove all points within this ball, and repeat the above process k times. Note that by advanced
composition, the result will be (ε,δ)-differentially private. We spend the rest of the proof arguing
that we satisfy the conditions of Theorem 6.2, and that if we choose the ith mean to be an
arbitrary point from the ith output ball, these will satisfy the desired guarantees.

First, we confirm that our choice of t satisfies the conditions of the theorem statement. Since

we set t to be equal to m = Θ̃

(√
kd+k1.5

ε log2(1/δ) · 2O
(
log∗

(
dRσmax
ασmin

)))
, the “first term” (the one with

the leading
√
kd/ε) is large enough so that t will satisfy the necessary condition.

For the rest of the proof, we will reason about the state of the points output by the m runs of
the non-private algorithm. Note that the non-private algorithm will learn to a slightly better
accuracy than our final private algorithm (α/

√
logmk, rather than α). By a union bound, we

know that all m runs of the non-private algorithm will output mean estimates which are close to
the true means with probability at least 99/100, an event we will condition on for the rest of the

proof. This implies that, around the mean of component i, there is a ball of radius O
(

ασi√
logmk

)
which contains a set of m points: we will call each of these point sets a mean-set. We will say that
a mean-set is unbroken if all m of its points still remain, i.e., none of them have been removed yet.

We claim that, during every run of the algorithm of Theorem 6.2, we will identify and remove
points belonging solely to a single unbroken mean-set. First, we argue that the smallest ball
containing m points will consist of points solely from a single unbroken mean-set. There are
two cases which could be to the contrary: if it contains points from one unbroken mean-set
and another mean-set (either broken or unbroken), and if it contains points from only broken
mean-sets. In the first case, the separation condition and triangle inequality imply that the
ball consisting of points solely from the unbroken mean-set within this ball would be smaller.
The second case is also impossible: this is because we require at least m points in the ball, and
during the ith iteration, there will be at most (i−1)∆ ≤ k∆ points leftover from broken mean-sets
(assuming that the claim at the start of this paragraph holds by strong induction). The “second
term” of m (the one with the leading k1.5/ε) enforces that m > k∆, preventing this situation.
Arguments similar to those for these two cases imply that any ball with radius equal to this
minimal radius inflated by a factor of w =O(

√
logmk) and containing m−∆ points must consist

of points belonging solely to a single unbroken mean-set.
It remains to conclude that any point within a ball has the desired accuracy guarantee.

Specifically, using any point within a ball as a candidate mean will approximate the true mean
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of that component up to O
(

ασi√
logmk

)
. This is because the smallest ball containing an unbroken

mean-set has radius at most O
(

ασi√
logmk

)
(and we know that every point within this ball has the

desired accuracy guarantee with respect to the true mean), and the algorithm will inflate this
radius by a factor of at most w =O(

√
logmk).

At this point, we sketch the straightforward argument to estimate the values of the mixing
weights. The output of the non-private algorithm consists of pairs of mean and mixing weight
estimates. By a union bound, all of the (non-private) mixing weights are sufficiently accurate
with probability at least 99/100. In order to aggregate these non-private quantities into a single
private estimate, we can use a stability-based histogram (see [KKMN09, BNSV15], and [Vad17]
for a clean presentation). More precisely, for all the mean estimates contained in each ball, we
run a stability-based histogram (with bins of width O(α/k)) on the associated mixing weight
estimates, and output the identity of the most populated bin.

We claim that the aggregated mixing weight estimates will all fall into a single bin with a
large constant probability, simultaneously for each of the histograms. This is because all the
mixing weight estimates are correct with probability 99/100, and the argument above (i.e., each
run of the [NSV16] algorithm removes points belonging solely to a single unbroken mean-set)
implies that we will aggregate mixing weight estimates belonging only to a single component.
This guarantees the accuracy we desire. The cost in the sample complexity is dominated by the
cost of the k runs of the algorithm of [NSV16].

The following lemma can be derived from [VW02]. The first term of the sample complexity
is the complexity of clustering from Theorem 4 of [VW02], the second and third terms are for
learning the means and mixing weights, respectively.

Lemma 6.3 (From Theorem 4 of [VW02]). There exists a (non-private) algorithm with the following
guarantees. The algorithm is given a set of samples X1, . . . ,Xn generated i.i.d. from some mixture
of k Gaussians D =

∑k
i=1wiN (µi ,σ

2
i Id×d), with the separation condition that ‖µi − µj‖2 ≥ 14(σi +

σj )(k ln(4n/β))1/4. With probability at least 1 − β, it outputs a set of points {µ̂1, . . . , µ̂k} and weights
{ŵ1, . . . , ŵk} such that ‖µ̂π(i)−µi‖2 ≤O (ασi) and |ŵπ(i)−wi | ≤O(α/k) for all i ∈ [k], where π : [k]→ [k]

is some permutation. The number of samples it requires is n = Õ
(
d3

w2
min

log
(
maxi

|µi |2

σ2
i

)
+ d
wminα2 + k2

α2

)
6.

From Theorem 6.1, this implies the following private learning algorithm.

Theorem 6.4. There exists an (ε,δ)-differentially private algorithm which takes n samples from some
mixture of k Gaussians D =

∑k
i=1wiN (µi ,σ

2
i Id×d), with the separation condition that ‖µi − µj‖2 ≥

(σi + σj )Ω̃(k1/4 · polylog
(
k,d,1/ε, log(1/δ), log∗(Rσmax

ασmin
)
)
) , and input parameters R,σmin,σmax such

that ‖µi‖2 ≤ R and σmin ≤ σi ≤ σmax for all i ∈ [k]. With probability at least 9/10, it outputs
a set of points {µ̂1, . . . , µ̂k} and weights {ŵ1, . . . , ŵk} such that ‖µ̂π(i) − µi‖2 ≤ O (ασi) and |ŵπ(i) −
wi | ≤ O(α/k) for all i ∈ [k], for some permutation π. The number of samples it requires is n =

Õ
(√

kd+k1.5

ε log2(1/δ) · 2O
(
log∗

(
dRσmax
ασmin

)) (
d3

w2
min

log
(
maxi

|µi |2

σ2
i

)
+ d
wminα2 + k2

α2

))
.

6We note that [NRS07] states a similar version of this result, though their coverage omits dependences on the
scale of the data.
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We note that plugging more recent advances in learning mixtures of Gaussians [HL18a,
KSS18, DKS18] into Theorem 6.1 allows us to derive computationally and sample efficient
algorithms for separations which are o(k1/4). However, we note that even non-privately, the
specific sample and time complexities are significantly larger than what we achieve from our
more direct construction.
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A Proofs for Deterministic Regularity Conditions

Lemma A.1. Suppose XL = ((X1,ρ1), . . . , (Xn,ρn)) are labelled samples from D ∈ G(d,k, s,R,κ,wmin).
If

n ≥ 12
wmin

ln(2k/β),

then with probability at least 1− β, for every label ρi , for 1 ≤ i ≤ k, the number of points having label ρi
is in [nwi

2
,
3nwi

2

]
.

Proof. It follows directly from Lemma D.3 by setting p = wi , and taking the union bound over
all mixture components.

Lemma A.2. Suppose XL = ((X1,ρ1), . . . , (Xn,ρn)) are labelled samples from D ∈ G(d,k, s,R,κ,wmin).
If

n ≥ 405k2

2α2 ln(2k/β),

then with probability at least 1− β, for every label ρi , for 1 ≤ i ≤ k, such that wi ≥ 4α
9k , the number of

points having label ρi is in [
n
(
wi −

α
9k

)
,n

(
wi +

α
9k

)]
.

Proof. It follows directly from Lemma D.4 by setting p = wi and ε = 4α
9k , and taking the union

bound over all mixture components.

Lemma A.3. Let XL = ((X1,ρ1), . . . , (Xn,ρn)) be a labelled sample from a Gaussian mixture in D ∈
S(`,k,κ, s), where ` ≥ 512ln(nk/β) and s > 0. Then with probability at least 1 − β, For every 1 ≤
u ≤ k, the radius of the smallest ball containing the set of points with label u (i.e. {Xi : ρi = u}) is in
[
√
dσu/2,

√
3dσu].

Proof. For a given u, if Xi ,Xj are samples from Gu , then by Lemma D.6, we have with probability
at least 1− 4e−t

2/8,
2`σ2

u − 2tσ2
u

√
` ≤

∥∥∥Xi −Xj∥∥∥2
2
≤ 2`σ2

u + 2tσ2
u

√
`.

Setting t = 8
√

2ln(mk/β), and taking a union bound over all Gaussians and all pairs of samples
from every Gaussian, we have that with probability at least 1 − β, for any u and all pairs of
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points Xi ,Xj from Gu ,

2`σ2
u − 16σ2

u

√
2` ln

(
mk
β

)
≤

∥∥∥Xi −Xj∥∥∥2
2
≤ 2`σ2

u + 16σ2
u

√
2` ln

(
mk
β

)
.

By our assumption on `, we get

`σ2
u ≤

∥∥∥Xi −Xj∥∥∥2
2
≤ 3`σ2

u .

Now, because the distance between any two points from the same Gaussian is at least
√
`σu , the

smallest ball containing all the points must have radius at least
√
`σu/2.

For the upper bound, for any u, let the mean of all points, P = 1
mu

mu∑
i=1
Xi be a candidate center

for the required ball, where Xi are samples from Gu , and mu is the number of samples from the
Gaussian. Then for any point X sampled from the Gaussian,

‖X − P ‖2 ≤

∥∥∥∥∥∥∥ 1
mu

mu∑
i=1

Xi −X

∥∥∥∥∥∥∥
2

≤ 1
mu

mu∑
i=1

‖Xi −X‖2 ≤
1
mu
·mu
√

3`σu =
√

3`σu .

This proves the lemma.

Lemma A.4. Let XL = ((X1,ρ1), . . . , (Xn,ρn)) be a labelled sample from a Gaussian mixture in D ∈
S(`,k,κ,C

√
`), where ` ≥ 512max{ln(nk/β), k} andC > 1 is a universal constant. Then with probability

at least 1− β, For every ρi , ρj , ∥∥∥Xi −Xj∥∥∥2
≥ C

2

√
`max{σρi ,σρj }.

Proof. Let x,y be points as described in the statement of the Lemma. From Lemma D.6, we know
that with probability at least 1− 4e−t

2/8,∥∥∥x − y∥∥∥2
2
≥ E

[∥∥∥x − y∥∥∥2
2

]
− t

(
(σ2
i + σ2

j )
√
` + 2

∥∥∥µi −µj∥∥∥2

√
σ2
i + σ2

j

)
= (σ2

i + σ2
j )` +

∥∥∥µi −µj∥∥∥2
2
− t

(
(σ2
i + σ2

j )
√
` + 2

∥∥∥µi −µj∥∥∥2

√
σ2
i + σ2

j

)
.

Setting t = 16
√

ln(mk/β), σ = max{σi ,σj}, taking the union bound over all pairs of Gaussians,
and all pairs of points from any two Gaussians, and using the assumption on d, we get the
following with probability at least 1− β.

∥∥∥x − y∥∥∥2
2
≥ (σ2

i + σ2
j )` +

∥∥∥µi −µj∥∥∥2
2

2
− 16(σ2

i + σ2
j )

√
` ln

(
mk
β

)
≥

(
1 +

C2

2
− C

2
√

2

)
σ2` >

C2

4
σ2`

This proves the lemma.
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B Private Location for Mixtures of Gaussians

Theorem B.1 ([NS18]). Suppose X1, . . . ,Xm are points from S` ⊂R
`, where S` is finite. Let m,t,β,ε,δ

be such that,

t ≥O

ma ·
√
`

ε
log

(
1
β

)
log

(
m`
βδ

)√
log

(
1
βδ

)
· 9log∗(2|S |

√
`)

 ,
where 0 < a < 1 is a constant that could be arbitrarily small. Let ropt be the radius of the smallest ball that
contains at least t points from the sample. There exists an (ε,δ)-DP algorithm (called PLOCε,δ,β) that
returns a ball of radius at most w · ropt such that it contains at least t −∆ points from the sample with
error probability β, where w =O(1) (where the constant depends on the value of a), and

∆ =O
(
ma

ε
log

(
1
β

)
log

(
1
βδ

)
· 9log∗(2|S |

√
`)
)
.

Algorithm 5: Private Gaussians Location PGLOC(S,t;ε,δ,R,σmin,σmax)

Input: Samples X1, . . . ,Xm ∈R` from a mixture of Gaussians. Number of points in the
target ball: t. Parameters ε,δ,β > 0.

Output: Center ~c and radius r such that Br(~c) contains at least t/2 points from S.

Set parameters: λ← 0.1

Let X be a grid in [−R− 3
√
`σmaxκ,R+ 3

√
`σmaxκ]` of width λ = σmin

10 .
Round points of S to their nearest points in the grid to get dataset S ′

(~c, r ′)← PLOCε,δ,β(S ′ , t,X )

Let r← r ′ +λ
√
`

Return (~c, r)

Proof of Theorem 4.11. We show that Algorithm 5 satisfies the conditions in the theorem.
Privacy follows from Theorem B.1, and post-processing (Lemma 2.8).
The first part of the theorem follows directly from Theorem B.1 by noting that ∆ ≤ t

2 for large
enough n,`, |S |, and t = γn, where 0 < γ ≤ 1. For all x ∈ X, with high probability, it holds that
‖x‖2 ≤ R+O(

√
`σmax) by applying Lemma 2.16 after rescaling x appropriately by its covariance,

then applying the triangle inequality, and noting that the empirical mean of a set of points lies
in their convex hull.
Now, we move to the second part of the lemma. Because of the discretization, we know that,∥∥∥x − x′∥∥∥

2
≤ λ
√
`. (8)

Therefore, ∥∥∥~p − x∥∥∥
2
≤

∥∥∥~p − x′∥∥∥
2

+
∥∥∥x′ − x∥∥∥

2

≤ r ′ +λ
√
`.
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Let x,y ∈ S and x′ , y′ ∈ S ′ be their corresponding rounded points. Then from Equation 8, we
know that ∥∥∥x′ − y′∥∥∥

2
≤

∥∥∥x′ − x∥∥∥
2

+
∥∥∥x − y∥∥∥

2
+
∥∥∥y − y′∥∥∥

2

≤
∥∥∥x − y∥∥∥

2
+ 2λ
√
`. (9)

Let r ′opt be the radius of the smallest ball containing at least t points in S ′ . Because of Equation 9,
we can say that

r ′opt ≤ ropt + 2λ
√
`.

From the correctness of PLOC, we can conclude the following,

r ′ ≤ cr ′opt
≤ c

(
ropt + 2λ

√
`
)
,

where c > 4 is an absolute constant. This gives us,

r = r ′ +λ
√
`

≤ c
(
ropt +

9
4
λ
√
`
)

≤ c
(
ropt +

1
4

√
`σmin

)
.

This completes the proof.

C Private Estimation of a Single Spherical Gaussian

Proof of Theorem 4.16. We show that Algorithm 6 satisfies the conditions in the theorem.
For the privacy argument for Algorithm 6, note that we truncate the dataset such that all

points in X lie within Br (~c). Now, the following are the sensitivities of the computed functions.

1.
|X ′ |∑
i=1
Xi : `2-sensitivity is 2r.

2.
m′∑
i=1
Y 2
i : `1-sensitivity is 2r2.

3. Number of points in X ′: `1-sensitivity is 1.

Therefore, by Lemmata 2.13, 2.11, and 2.9, the algorithm is (ε,δ)-DP.
Firstly, either not all the points ofX lie within Br(~c), that is, |X ′ | < m, in which case, we’re done,

or all the points do lie within that ball, that is, |X ′ | =m. Since we can only provide guarantees
when we have a set of untampered random points from a Gaussian, we just deal with the second
case. So, m′X = m + e, where e is the noise added by PCOUNT. Because m ≥ 6

ε ln(5/β), using

Lemma D.1, we know that with probability at least 1− β5 , |e| ≤ 3ln(5/β)
ε , which means thatm ≥ 2 |e|.

Because of this, the following holds.

1
m

(
1− |e|

2m

)
≤ 1
m
≤ 1
m

(
1 +

2 |e|
m

)
and

1
m

(
1− |e|

2m

)
≤ 1
m+ e

≤ 1
m

(
1 +

2 |e|
m

)
(10)
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Algorithm 6: Private Spherical Gaussian Estimator PSGE(X;~c, r,ε,δ)

Input: Samples X1, . . . ,Xm ∈R`. Center ~c ∈R` and radius r > 0 of target component.
Parameters ε,δ > 0.

Output: Mean and variance of the Gaussian.

Set parameters: ∆ ε
3 ,σ
← 6r2

ε ∆ ε
3 ,δ,µ
← 6r

√
2ln(1.25/δ)
ε

Let X ′← X ∩Br(~c)
For each i such that X2i ,X2i−1 ∈ X ′, let Yi ← 1√

2
(X2i −X2i−1), and let Y ← Y1, . . . ,Ym′

Let m′X = PCOUNT ε
3
(X,Br(~c)) and m′Y = m′X

2

// Private Covariance Estimation

σ̂2← 1
m′Y `

(
m′∑
i=1
‖Yi‖22 + zσ

)
, where zσ ∼ Lap

(
∆ ε

2 ,σ

)
// Private Mean Estimation

µ̂← 1
m′X

(|X ′ |∑
i=1
X ′i + zµ

)
, where zµ ∼N

(
0,∆2

ε
3 ,δ,µ

I`×`

)
Return (µ̂, σ̂2)

We start by proving the first part of the claim about the estimated mean. Let SX ′ =
m∑
i=1
X ′i and

S~cX ′ =
m∑
i=1

(X ′i −~c). Then, ∥∥∥∥∥ 1
m
S~cX ′ −

1
m+ e

S~cX ′

∥∥∥∥∥
2

=

∥∥∥S~cX ′∥∥∥2 |e|
m(m+ e)

.

We want the above to be at most
σαµ

4 . This gives us the following.

m(m+ e) ≥
4
∥∥∥S~cX ′∥∥∥2 |e|
αµσ

Because |e| ≤ m
2 , it is sufficient to have the following.

m2 ≥
8
∥∥∥S~cX ′∥∥∥2 |e|
αµσ

But because Xi ∈ Br(~c) for all i,
∥∥∥Xi −~c∥∥∥2

≤ r. So, due to our bound on |e|, it is sufficient to have
the following.

m2 ≥
24mr ln(5/β)

εαµσ
⇐⇒ m ≥

24r ln(5/β)
εαµσ
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This gives us, ∥∥∥∥∥ 1
m
SX ′ −

1
m+ e

SX ′

∥∥∥∥∥
2
≤
σαµ

4
.

Now, we want to bound the distance between 1
m+eSX ′ and 1

m+e (SX ′ + zµ) (by
σαµ

4 ).∥∥∥∥∥ 1
m+ e

SX ′ −
1

m+ e
(SX ′ + zµ)

∥∥∥∥∥
2
≤
σαµ

4
⇐⇒

∥∥∥∥∥ zµ
m+ e

∥∥∥∥∥
2
≤
σαµ

4
⇐⇒ m+ e ≥

4
∥∥∥zµ∥∥∥2
σαµ

Because m ≥ 2 |e|, it is sufficient to have the following.

m
2
≥

4
∥∥∥zµ∥∥∥2
σαµ

⇐⇒ m ≥
8
∥∥∥zµ∥∥∥2
σαµ

Using Lemma D.5, we and noting that ` ≥ 8ln(10/β), we know that with probability at least
1− β5 ,

∥∥∥zµ∥∥∥2
≤

6r
√

2ln(1.25/δ)
√

2`
ε

=
12r

√
` ln(1.25/δ)
ε

Therefore, it is sufficient to have the following.

m ≥
96r

√
` ln(1.25/δ)
σαµε

To complete the proof about the accuracy of the estimated mean, we need to bound the distance
between 1

mSX ′ and µ (by
σαµ

2 ). Let µ̃ = 1
mSX ′ . Using Lemma 2.16, and the fact thatm ≥ c1`+c2 log(1/β)

α2
µ

for universal constants c1, c2, we get that with probability at least 1− β5 ,∥∥∥µ− µ̃∥∥∥
2
≤
αµσ

2
.

We finally apply the triangle inequality to get,∥∥∥µ− µ̂∥∥∥
2
≤
σαµ

2
+
σαµ

4
+
σαµ

4
= σαµ.

We now prove the lemma about the estimated covariance. Note that m′ = m
2 . Let ΣY =

m′∑
i=1
‖Yi‖22. We want to show the following.

(1−ασ )1/3σ2 ≤ 1
m′`

ΣY ≤ (1 +ασ )1/3σ2

(1−ασ )1/3 1
m′`

ΣY ≤
1
m′Y `

ΣY ≤ (1 +ασ )1/3 1
m′`

ΣY

(1−ασ )1/3 1
m′Y `

ΣY ≤
1
m′Y `

(ΣY + zσ ) ≤ (1 +ασ )1/3 1
m′Y `

ΣY

The claim would then follow by substitution. We use the fact that for any t ∈ [0,1],

(1− t)1/3 ≤ 1− t
6
≤ 1 +

t
6
≤ (1 + t)1/3. (11)
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We start by proving the first inequality. Note that for each i, j, Y ji ∼ N (0,σ2) is i.i.d. Using
Lemma D.5 and the fact that m ≥ 576

α2
σ `

ln(10/β), we know that with probability at least 1− β5 ,(
1− ασ

6

)
σ2 ≤ 1

m′`
ΣY ≤

(
1 +

ασ
6

)
σ2.

Combining the above with Inequality 11, we get the first result.
To prove the second result, since m′ = m

2 , using Inequality 10, it is enough to show that,

ΣY

m′`

(
1 +
|e|
m′

)
≤ ΣY

m′`

(
1 +

ασ
6

)
and

ΣY

m′`

(
1− ασ

6

)
≤ ΣY

m′`

(
1− |e|

4m′

)
.

Since with high probability, |e| ≤ 3
ε ln(5/β), having m ≥ 36

εασ
ln(5/β) satisfies the two conditions.

This gives us, (
1− ασ

6

) 1
m′`

ΣY ≤
1
m′Y `

ΣY ≤
(
1 +

ασ
6

) 1
m′`

ΣY ,

which gives us the required result after combining with Inequality 11.
To prove the third result, it is sufficient to show the following.

1
m′Y `

(ΣY + |zσ |) ≤
ΣY

m′Y `

(
1 +

ασ
6

)
and

ΣY

m′Y `

(
1− ασ

6

)
≤ 1
m′Y `

(ΣY − |zσ |)

Note that from Lemma D.1, with probability at least 1− β
10 ,

|zσ | ≤
6r2 ln(10/β)

ε
.

From Lemma A.3, we know that for any i, j, with probability at least 1− β
10 ,∥∥∥Yi −Yj∥∥∥2

≥
√
`σ
2 .

This means that at least half of the points of Y must have L2 norms at least
√
`σ
4 , which implies

that ΣY ≥ m′`σ2

32 = m`σ2

64 . Then the two conditions above will be satisfied if,

m`σ2

64
≥ 6
ασ
·

6r2 ln(10/β)
ε

⇐⇒ m ≥
2304r2 ln(10/β)

ασεσ2`
.

This gives us, (
1− ασ

6

) 1
m′Y `

ΣY ≤
1
m′Y `

(ΣY + zσ ) ≤
(
1 +

ασ
6

) 1
m′Y `

ΣY ,

which when combined with Inequality 11, gives us the third result. Combining the three results
via substitution, we complete the proof for the accuracy of the estimated variance.
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D Additional Useful Concentration Inequalities

Throughout we will make use of a number of concentration results, which we collect here
for convenience. We start with standard tail bounds for the univariate Laplace and Gaussian
distributions.

Lemma D.1 (Laplace Tail Bound). Let Z ∼ Lap(t). Then P [|Z | > t · ln(1/β)] ≤ β.

Lemma D.2 (Gaussian Tail Bound). Let X ∼N (µ,σ2). Then P

[∣∣∣X −µ∣∣∣ > σ√2ln(2/β)
]
≤ β.

We also recall standard bounds on the sums of well behaved random variables.

Lemma D.3 (Multiplicative Chernoff). Let X1, . . . ,Xm be independent Bernoulli random variables
taking values in {0,1}. Let X denote their sum and let p = E [Xi]. Then for m ≥ 12

p ln(2/β),

P

[
X <

[mp
2
,
3mp

2

]]
≤ 2e−mp/12 ≤ β.

Lemma D.4 (Bernstein’s Inequality). LetX1, . . . ,Xm be independent Bernoulli random variables taking
values in {0,1}. Let p = E [Xi]. Then for m ≥ 5p

2ε2 ln(2/β) and ε ≤ p/4,

P

[∣∣∣∣∣ 1
m

∑
Xi − p

∣∣∣∣∣ ≥ ε] ≤ 2e−ε
2m/2(p+ε) ≤ β.

Lemma D.5 (Concentration of Empirical Variance). Let X1, . . . ,Xm ∼N (0,σ2) be independent. If
m ≥ 8

ε2 ln
(

2
β

)
and ε ∈ (0,1), then

P


∣∣∣∣∣∣∣ 1
m

m∑
i=1

X2
i − σ

2

∣∣∣∣∣∣∣ > εσ2

 ≤ β.
Finally, we have a concentration lemma from [VW02] for the distance between two points

drawn from not-necessarily identical spherical Gaussians.

Lemma D.6. Let X ∼N (µ1,σ
2
1 Id×d) and y ∼N (µ2,σ

2
2 Id×d). For t > 0,

P

[∣∣∣∣∣∥∥∥x − y∥∥∥2
2
−E

[∥∥∥x − y∥∥∥2
2

]∣∣∣∣∣ > t ((σ2
1 + σ2

2 )
√
d + 2

∥∥∥µ1 −µ2

∥∥∥
2

√
σ2

1 + σ2
2

)]
≤ 4e−t

2/8.
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