
A Supplementary Material395

A.1 Set Hyperparameters396

The proposed channel gating building block introduces four hyperparameters — ε, η, T , and λ. ε is397

the hyperparameter in the approximated gate function. η is the fraction of input channels in xp of398

each layer. T and λ are the target threshold and scaling factor in the squared loss term which is used399

to reduce the FLOPs during training. We experimented with settings of these hyperparameters on400

CIFAR-10 with ResNet-18:401

• ε: The maximum value of the partial derivative of the gate with respect to xp and ∆402

equals to ε
4 . To avoid gradient vanishing and explosion, we explore three different ε values403

(ε = 2, 3, 4).404

• η: We set a uniform η for all the layers and examine the impact of different η on the accuracy405

and FLOP reduction trade-off. Moreover, different layer might requires different number of406

channels (ηcl−1) in the base path to minimize the accuracy loss. However, it is impractical407

to search for the best η for each layer which is a combinatorial search problem.408

• T : Similar to η, a uniform T is chosen for all the layers whereas different T values are409

exploited to achieve different FLOP reduction.410

• λ: The λ determines whether the threshold can reach the target (T ) and and how many411

epochs needed to reach the target. If the λ is too large, it is equivalent to initialize the ∆412

with T . In this paper, we simply set the λ to be relative small value (10−4) to prevent drastic413

changes of the ∆ value.414
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(a) Accuracy vs. FLOP reduction with different ε.
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(b) Accuracy vs. FLOP reduction with different η.

Figure 7: Empirical study on choosing hyperparameters.

We first study the impact of the ε on the accuracy and FLOP reduction trade-off by sweeping three415

target values (T = 0, 1, 2) whereas keeping all other hyperparameters fixed (η = 1
8 , λ = 10−4).416

Figure (7a) shows that the ε = 2 provides a better trade-off empirically. For rest of the experiments,417

we use ε = 2. We then compare the effectiveness of having different fractions of the input channels in418

the base path . Three η values (η = 1
4 ,

1
8 ,

1
16 ) are evaluated and the results are depicted in Figure (7b).419

Based on the experimental results, we find that a smaller η provides better accuracy and FLOP420

reduction trade-off if targeting a lower FLOP saving.421

A.2 Datasets422

The CIFAR-10 dataset consists of 50,000 training images and 10,000 test images corresponding to 10423

classes. We use a standard data-augmentation scheme in [22], in which the images are zero-padded424

with four pixels on each side, randomly cropped to produce 32×32 images, and horizontally mirrored.425

For testing, we evaluate the model using the original 32× 32 image. The ImageNet dataset contains426

a total of 1.2 million training images and 50,000 validation images with 1000 different classes.427

We follow the same data augmentation scheme adopt by [10]. The image is resized to 256 × 480428

pixels randomly. We scale the image by 256
480 , subtract the per-pixel mean, and random flip the image429

horizontally. A 224× 224 random crop is taken from an image. Moreover, the color augmentation430

in [18] is used. We use the 256× 256 center cropped image to test the model.431
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A.3 Training Details432

CIFAR-10: We train all models using stochastic gradient descent (SGD) with a momentum weight433

of 0.9 and weight decay factor of 10−4. For CIFAR-10, all models are trained with mini-batch size434

256 for 300 epochs. The initial learning rate is 0.1 and we divide the learning rate by 10 twice at435

epoch 200 and 250.436

ImageNet: All models are trained using Nesterov accelerated stochastic gradient descent (SGD) with437

a momentum weight of 0.9 and weight decay factor of 10−4. All models are trained with mini-batch438

size 256 for 140 epochs. The initial learning rate is 0.1 and divided by 10 at epoch 30, 60, 90, and439

120.440

A.4 Ablation Study441

The core idea of CGNet lies in channel gating, grouping, and shuffle operations. To evaluate the442

benefits of introducing channel grouping and shuffle, we compare the accuracy and FLOP reduction443

between CGNets with and without the grouping and shuffle operations on CIFAR-10. As shown in
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Figure 8: Accuracy vs. FLOP reduction with and without the channel grouping and shuffle operations.
444

Figure 8, integrating CGNet with channel grouping improves the test accuracy significantly. Channel445

grouping guarantees unbiased weight updates. The top-1 accuracy of CGNet with channel grouping446

is 0.84% higher than the one without channel grouping when the computational cost is reduced by447

5×.448

Moreover, as discussed in Section 3.3, channel shuffle operation enhances the cross-channel informa-449

tion flow when pruning the computations aggressively. CGNet with channel shuffle outperforms the450

one without channel shuffle when achieving more than 3× FLOP reduction. The top-1 accuracy of451

CGNet with channel shuffle is 0.23% higher than the one without channel shuffle when targeting at452

5× FLOP reduction.453

A.5 Empirical Study of Gate Functions454

Gate Functions Computational Overhead Test Error (%) FLOP Reduction
+ ×

`1-norm cl−1 · wl−1 · hl−1 0 8.19 3.97×
FC cl−1 · wl−1 · hl−1 cl · cl−1 6.50 4.25×
CGcoarse cl · wl−1 · hl−1 0 6.40 4.15×
CGfine 0 0 5.44 5.49×
Table 5: Comparison between different gate functions on CIFAR-10.

There exist two categories of gate functions in literature — parameter-less and parameterized gates.455

A parameter-less gate predicts the saliency of features based on the statistics without extra parameters456

whereas a parameterized gate function usually embeds a fully-connected layer to generate the saliency457

vectors. In contrast, our gating scheme generates activation-wise saliency at nearly zero cost by458

reusing a fraction of the weights and computations within a layer. It is also feasible to combine459

methods for generating saliency vectors proposed in previous studies [6, 8, 29] with the learnable460

Heaviside step function. In this subsection, we empirically compare channel gating and the two461

previously-proposed gating functions.462

12



Let xl be the input features of layer l where xl ∈ Rcl−1×wl−1×hl−1 . `1-norm gate reduces xl to463

a saliency vector (s`1−norm ∈ Rcl−1) by calculating the `1-norm of each input channel. FC gate464

further applies a fully-connected layer with cl neurons on s`1−norm to obtain the saliency vector sFC465

∈ Rcl for output channels. CGcoarse and CGfine represent the proposed gating scheme with different466

granularity of the decision. CGfine generates decision for each output activation as discussed in467

Section 3 whereas CGcoarse produces a single decision for an entire output channel by aggregating the468

fine-grained decisions.469

As shown in Table 5, the FC gate outperforms `1-norm gate because it introduces the sparsity in both470

input and output channels, providing a quadratic reduction in computational cost with respect to the471

pruning ratio. CGcoarse achieves a similar trade-off between accuracy and FLOPs compared to the472

FC gate, but with lower computation overhead because it re-uses partial sums to predict the saliency473

of output activations. Finally, the proposed CGfine provides the highest accuracy and FLOP savings474

with no overhead. Although it is feasible to generate activation-wise decisions using the FC gate, the475

computational overhead of the FC gate grows exponentially with the width/height of 2-D features as476

it requires having cl · wl · hl neurons.477

A.6 Qualitative Results478

Figure 9: Samples with different FLOP reductions for CIFAR-10.

In this subsection, we present more qualitative results of CGNet. In Figure 9, We also show the test479

samples with the maximum and minimum FLOP reduction for five categories in CIFAR-10. There480

exists more than 2× difference in FLOP reduction among these samples which demonstrates that481

CGNet can prune adaptively for different samples.482
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