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Abstract

In this work we study loss functions for learning and evaluating probability dis-1

tributions over large discrete domains. Unlike classification or regression where2

a wide variety of loss functions are used, in the distribution learning and density3

estimation literature, very few losses outside the dominant log loss are applied.4

We aim to understand this fact, taking an axiomatic approach to the design of loss5

functions for learning distributions. We start by proposing a set of desirable criteria6

that any good loss function should satisfy. Intuitively, these criteria require that the7

loss function faithfully evaluates a candidate distribution, both in expectation and8

when estimated on a few samples. Interestingly, we observe that no loss function9

possesses all of these criteria. However, one can circumvent this issue by intro-10

ducing a natural restriction on the set of candidate distributions. Specifically, we11

require that candidates are calibrated with respect to the target distribution, i.e.,12

they may contain less information than the target but otherwise do not significantly13

distort the truth. We show that, after restricting to this set of distributions, the log14

loss, along with a large variety of other losses satisfy the desired criteria. These15

results pave the way for future investigations of distribution learning that look16

beyond the log loss, choosing a loss function based on application or domain need.17

1 Introduction18

Estimating a probability distribution given independent samples from that distribution is a fundamental19

problem in machine learning and statistics [e.g. 25, 5, 26, 8]. In machine learning applications, the20

distribution of interest is often over a very large but finite sample space, e.g., the set of all English21

sentences up to a certain length or images of a fixed size in their RGB format.22

A central technique in learning these types of distributions, encompassing, e.g., log likelihood23

maximization, is evaluation via a loss function. Given a distribution p over a set of outcomes X24

and a sample x ∼ p, a loss function `(q, x) evaluates the performance of a candidate distribution25

q in predicting x. Generally, `(q, x) will be higher if ` places smaller probability on x. Thus, in26

expectation over x ∼ p, the loss will be lower for candidate distributions that closely match p.27

The dominant loss applied in practice is the log loss (`(q, x) = ln(1/qx)), which corresponds to log28

likelihood maximization. Surprisingly, few other losses are ever considered. This is in sharp contrast29

to other areas of machine learning, including in supervised learning where different applications have30

necessitated the use of different losses, such as the squared loss, hinge loss, `1 loss, etc. However,31

alternative loss functions can be beneficial for density estimation on large domains, as we show with32

a brief motivating example.33

Motivating example. In many learning applications, one seeks to fit a complex distribution with a34

simple model that cannot fully capture its complexity. This includes e.g., noise tolerant or agnostic35

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Samples from q1 Samples from q2

brappost to
hild oneems
me the
on not

ther of

log loss(p) = 7.45
log log loss(p) = 1.91
log loss(q1) = 11.25

log log loss(q1) = 2.22
log loss(q2) = 12.26

log log loss(q2) = 2.18

Figure 1: Modeling the distribution of English words, corrupted with 12% French and German words with
character trigrams. Distribution q1 is trained by minimizing log loss. q2 achieves worse log loss but better log
log loss and better performance at fitting the ‘head’ of the the target p, indicating that log log loss may be more
appropriate in this application. See Appendix G for more details.

learning. As an example, consider modeling the distribution over English words with a character36

trigram model. While this model, trained by minimizing log loss, fits the distribution of English37

words relatively well, its performance significantly degrades if the dataset includes a small fraction38

of foreign language words. The model is unable to fit the ‘tail’ of the distribution (corresponding39

to foreign words), however, in trying to do so it performs significantly worse on the ‘head’ of the40

distribution (corresponding to common English words). This is due to the fact that minimizing log41

loss requires qx to not be much smaller than px for all x. A more robust loss function, such as the log42

log loss, `(q, x) = ln(ln(1/qx)), emphasizes the importance of fitting the ‘head’ and is less sensitive43

to the introduction of the foreign words. See Figure 1 for an illustration and Appendix G for details.44

Loss function properties. In this paper, we start by understanding the desirable properties of45

log loss and seek to identity other loss functions with such properties that can have applications46

in various domains. A key characteristic of the log loss is that it is (strictly) proper. That is, the47

true underlying distribution p (uniquely) minimizes the expected loss on samples drawn from p.48

Properness is essential for loss functions, as without it minimizing the expected loss leads to choosing49

an incorrect candidate distribution even when the target distribution is fully known. Log loss is also50

local (sometimes termed pointwise). That is, the loss of q on sample x is a function of the probability51

qx and not of qx′ for x′ 6= x. Local losses are preferred in machine learning, where qx is often52

implicitly represented as the output of a likelihood function applied to x, but where fully computing53

q requires at least linear time in the size of the sample space N and is infeasible for large domains,54

such as learning the distribution of all English sentences up to a certain length.55

It is well-known that log loss is the unique local and strictly proper loss function [21, 24, 15]. Thus,56

requiring strict properness and locality already restricts us to using the log loss. At the same time,57

these restrictive properties are not sufficient for effective distribution learning, because58

• A candidate distribution may be far from the target yet have arbitrarily close to optimal loss.59

Motivated by this problem, we define strongly proper losses that, if given a candidate is far60

from the target, will give an expected loss significantly worse than optimal.61

• A candidate distribution might be far from the target, yet on a small number of samples, it may62

be likely to have smaller empirical loss than that of the target. This motivates our definition of63

sample-proper losses.64

• On a small number of samples, the empirical loss of a distribution may be far from its expected65

loss, making evaluation impossible. This motivates our definition of concentrating losses.66

Naively, it seems we cannot satisfy all our desired criteria: our only local strictly proper loss is the67

log loss, which in fact fails to satisfy the concentration requirement (see Example 4). We propose68

to overcome this challenge by restricting the set of candidate distributions, specifically to ones that69

satisfy the reasonable condition of calibration. We then consider the properties of loss functions on,70

not the set of all possible distributions, but the set of calibrated distributions.71

Calibration and results. We call a candidate distribution q calibrated with respect to a target p72

if all elements to which q assigns probability α actually occur on average with probability α in73

the target distribution.1 This can also be interpreted as requiring q to be a coarsening of p, i.e., a74

calibrated distribution may contain less information than p but does otherwise not distort information.75

While for simplicity we focus on exactly calibrated distributions, in Appendix F we extend our results76

1This definition is an adaptation of the standard calibration criterion applied to sequences of predictions
made by a forecaster [11, 13]. See discussion in Appendix H.
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to a natural notion of approximate calibration. Our main results show that the calibration constraint77

overcomes the impossibility of satisfying properness along with the our three desired criteria.78

Main results (Informal summary). Any (local) loss `(q, x):=f
(

1
qx

)
such that f is strictly concave79

and monotonically increasing has the following properties subject to calibration:80

1. ` is strictly proper, i.e., the target distribution minimizes expected loss.81

2. If f furthermore satisfies left-strong-concavity, ` is strongly proper, i.e., distributions far82

from the target have significantly worse loss.83

3. If f furthermore grows relatively slowly, ` is sample proper i.e., on few samples, distributions84

far from the target have higher empirical loss with high probability.85

4. Under these same conditions, ` concentrates i.e., on few samples, a distribution’s empirical86

loss is a reliable estimate of its expected loss with high probability.87

The above criteria are formally introduced in Section 3. Each criteria is parameterized and different88

losses satisfy them with different parameters. We illustrate a few examples in Table 1 below. We89

emphasize that all losses shown below achieve relatively strong bounds, only depending polylogarith-90

mically on the domain size N . Thus, we view all of these loss functions as viable alternatives to the91

log loss, which may be useful in different applications.92

`(q, x)
Strong Properness Concentration Sample Properness

E `(q;x)− E `(p;x) sample size m(γ,N) sample size m(ε,N)

ln 1
qx

Ω(ε2) Õ

(
γ−2 ln

(
N
γ

)2
)

O
(
ε−4 (lnN)2

)
(

ln 1
qx

)p
for p ∈ (0, 1] Ω

(
ε2 (lnN)p−1) Õ

(
γ−2 ln

(
N
γ

)2p
)

O
(
ε−4 (lnN)2

)
ln ln 1

qx
Ω
(

ε2

lnN

)
Õ

(
γ−2 ln ln

(
N
γ

)2
)

O
(
ε−4(ln lnN)2(lnN)2

)
(

ln e2

qx

)2

Ω(ε2) Õ

(
γ−2 ln

(
N
γ

)4
)

O
(
ε−4(lnN)4

)
Table 1: Examples of loss function that demonstrate strong properness, sample properness, and concentration,
when restricted to calibrated distributions. In the above, N is the distributions support size, ε:= ‖p− q‖1 is the
`1 distance between p and q, and γ is an approximation parameter for concentration (see Section 4.2 for details).
We assume for simplicity that ε ≥ 1/N and hide dependencies on a success probability parameter for sample
properness and concentration. Õ(·) suppresses logarithmic dependence on 1/ε and 1/γ.

1.1 Related work93

Our work is directly inspired by applications of distribution estimation in very high-dimensional94

spaces, such as language modeling [20] . However, we do not know of work in this area that takes a95

systematic approach to designing loss functions.96

A conceptually related research problem is that of learning distributions using computationally and97

statistically efficient algorithms. In addition to loss function minimization, a number of general-98

purpose methods have been proposed for this problem, including using histograms, nearest neighbor99

estimators, etc. See [17] for a survey of these methods. Much of the work in this space focuses100

on learning structured or parametric distributions [10, 18, 19, 9], e.g., monotone distributions or101

mixtures of Gaussians. On the other hand, learning an unstructured discrete distribution with support102

size N within an `1 distance of ε requires poly(N, 1/ε) samples. Thus, works in this space typically103

focus on designing computationally efficient algorithms for optimal estimation using large sample104

sets [26]. In comparison, we focus on unstructured distributions with prohibitively large supports and105

characterize loss functions that only require polylog(N) sample complexity to estimate. We do not106

introduce a general algorithm for distribution learning — as any such algorithm would require Ω(N)107

samples. Rather, motivated by tailored algorithms used in complex domains such as natural language108

processing, our work characterizes loss functions that could be used by a variety of algorithms.109

Outside distribution learning, loss functions (termed scoring rules) have been studied for decades in110

the information elicitation literature, which seeks to incentivize experts, such as weather forecasters,111

to give accurate predictions [e.g. 7, 16, 24, 14, 15]. The notion of loss function properness, for112

example, comes from this literature. Recent research has made some connections between information113

elicitation and loss functions in machine learning; however, it has focused mostly on the classification114

and regression and not distribution learning [4, 14, 22, 23, 12]. Our work can be viewed as a115
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contribution to the literature on evaluating forecasters by showing that, if the forecaster is constrained116

to be calibrated, then a variety of simple local loss functions become (strongly, sample) proper.117

2 Preliminaries118

We work with distributions over a finite domain X with |X | = N . The set of all distributions over X119

is denoted by ∆X . We denote a distribution p ∈ {0, 1}N over X by a vector of probabilities, where120

px is the probability p places on x ∈ X . For any set B ⊆ X , the total probability p places on B is121

denoted by p(B):=
∑
x∈B px. We use X to denote a random variable on X whose distribution is122

specified in context. We also consider point mass distributions δx ∈ ∆X where δxx′ = 1 [x = x′].123

Throughout this paper, we typically use p to denote the true (or target) distribution and q to denote a124

candidate or predicted distribution. For any two distributions p and q, the total variation distance125

between them is defined by TV(p,q):= supB⊆X p(B)− q(B) = 1
2‖p− q‖1, where ‖ · ‖1 denotes126

the `1 norm of a vector. Together, `1 and the total variation distance are two of the most widely used127

measures of distance between distributions.128

To measure the quality of a candidate distribution q given samples from p, machine learning typically129

turns to loss functions. A loss function is a function ` : ∆X × X → R where `(q, x) is the loss130

assigned to candidate q on outcome x. Given a target distribution p, the expected loss for candidate131

q is defined as `(q;p):=EX∼p [`(q, X)] . A loss function is called proper if `(p;p) ≤ `(q;p) for132

all p 6= q, and strictly proper if the inequality is always strict2. Two common examples of proper133

loss functions are the log loss function `(q, x) = ln( 1
qx

) (with the logarithm always taken base e in134

this paper) and the quadratic loss `(q, x) = 1
2‖δ

x − q‖22. A loss function ` is called local if `(q, x)135

is a function of qx alone. For example, the log loss is local while the quadratic loss is not.136

Our main results will be are characterized by the topology of the loss functions we consider.137

For simplicity, we will generally assume functions are differentiable, although our results can be138

extended.139

Definition 1 (Strongly Concave). A function f : [0,∞]→ R is β-strongly concave if for all z, z′ in140

the domain of f , f(z) ≤ f(z′) +∇f(z′) · (z − z′)− β
2 (z − z′)2.141

We also consider a relaxation of strong concavity that helps us in analyzing functions that have a142

large curvature close to the origin but flatten out as we move farther from it.143

Definition 2 (Left-Strongly Concave). A function f : [0,∞]→ R is β(z)-left-strongly concave if144

the function restricted to [0, z] is β(z)-strongly concave, for all z.145

As discussed, a natural assumption on the set of candidate distributions is calibration. Formally:146

Definition 3 (Calibration). Given a distribution q ∈ ∆X , let Bt(q) = {x : qx = t}. When it is clear147

from the context, we suppress q in the definition of Bt. We say that q is calibrated with respect to p,148

if q(Bt(q)) = p(Bt(q)) for all t ∈ [0, 1]. We let C(p) denote the set of all calibrated distributions149

with respect to p.150

In other words, q is calibrated with respect to p if points assigned probability qx = t have average151

probability t under p. In other words, p can be “coarsened” to q by taking subsets of points152

and replacing their probabilities with the subset average. Note that the uniform distribution q =153

( 1
N , . . . ,

1
N ) is calibrated with respect to all p, and that p is calibrated with respect to itself. Also note154

that there are only finitely many values t ∈ [0, 1] for which Bt is non-empty. We denote the set of155

these values by T (q) = {t : Bt 6= ∅}.156

We refer an interested reader to Appendix H for a more detailed discussion of the notion of calibration157

and its connections to similar notions used in forecasting theory, e.g. [11, 13]. See Appendix F for a158

discussion of how our results can be extended to a natural notion of approximate calibration.159

2Our use of “properness” is inspired the literature on proper scoring rules. It is not to be confused with
“properness” in learning theory where the learned hypothesis must belong to a pre-determined class of hypotheses.
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3 Three Desirable Properties of Loss Functions160

In this section, we define three criteria and discuss why any desirable loss function should demonstrate161

them. We use examples of loss functions, such as the log loss `log-loss(q, x) = ln( 1
qx

) and the linear162

loss `lin-loss(q, x) = −qx to help demonstrate the existence or lack of these criteria.163

3.1 Strong Properness164

Recall that a loss function is strictly proper if all incorrect candidate distributions yield a higher165

expected loss value than the target distribution. Here, we expand this to strong properness where this166

gap in expected loss grows with distance from the target distribution. We also extend both definitions167

to hold over a specific domain of candidate distributions, rather than all distributions.168

Definition 4 (Calibrated Properness). Let P : ∆X → 2∆X be a domain function, that is, P(p) ⊆169

∆X is a restricted set of distributions. A loss function ` is proper over P if for all p ∈ ∆X ,170

p ∈ argminq∈P(p) `(q;p). A loss function is said to be strictly proper over P if the argmin is171

always unique. When P(p) = C(p), i.e. is the set of calibrated distributions w.r.t. p, we call such a172

loss function (strictly) calibrated proper.173

Example 1. It is well-known that `log-loss(q, x) = ln
(

1
qx

)
is the unique local proper loss function174

(up to scaling) over the unrestricted domain P(p) = ∆X [6]. Indeed, it is known that the difference175

in expected log loss of a prediction q and the target distribution p is the KL-divergence, i.e.176

`log-loss(q;p)− `log-loss(p;p) = KL(p,q):=
∑
x

px ln

(
px
qx

)
. (1)

Furthermore, the KL-divergence is strictly positive for p 6= q. This proves that the log loss is strictly177

proper over ∆X , and as a result, is strictly calibrated proper as well.178

On the other hand, `lin-loss(q, x) = −qx is not proper over ∆X . This is due to that fact that the179

minimizer of this loss is the point mass distribution δx for x = argmaxx px. For example, for target180

distribution p = ( 1
3 ,

2
3 ) distribution q = (0, 1) yields a lower `lin-loss than that of p. Note, however,181

that such a choice of q is not calibrated with respect to p. When loss minimization is constrained182

to the set of calibrated distribution C(p) = {( 1
3 ,

2
3 ), ( 1

2 ,
1
2 )}, p minimizes the expected linear loss.183

Indeed, in Section 4 we show more generally that the linear loss and in fact many reasonable local184

loss functions are calibrated proper.185

While strict properness is an important baseline guarantee, we would like a “stronger” property: If186

q is significantly incorrect in the sense of being far from p, then the expected loss of q should be187

significantly worse. This motivates the following definition.188

Definition 5 (Strong Calibrated Properness). A loss function ` is β-strongly proper over a domain189

function P if for all p ∈ ∆X , for all q ∈ P(p), `(q;p) − `(p;p) ≥ β
2 ‖p− q‖21 . When P(p) =190

C(p), we call such functions β-strongly calibrated proper and when P(p) = ∆X , we simply refer to191

them as β-strongly proper.192

Example 2. The log loss is 1-strongly proper. This is equivalent to Pinsker’s inequality, which193

states that for all p and q, KL(p,q) ≥ 2TV(p,q)2. Together with (1) and the fact that TV(p,q) =194
1
2 ‖p− q‖1, this shows that log loss is 1-strongly proper (and thus also 1-strongly calibrated proper.)195

As we will see in Section 4, strong calibrated properness relates to the notion of strong concavity (of196

the inverse loss function) in `1 norm. We refer the interested reader to Appendix I for a discussion of197

the use of alternative norms in the definition of strong properness. In Appendix J we extend the study198

of normed concavity of loss functions to strong properness of a loss function over ∆X .199

3.2 Sample-properness200

So far, we have focused on the loss a candidate q receives in expectation over x ∼ p. Of course,201

if one is attempting to learn p, this expectation can generally not be computed. We would like the202

notion of properness to carry over to the setting when the loss on q is estimated using a small set of203

samples from p. We say that a loss function is sample-proper if within a small number, all candidate204

distributions that are sufficiently far from p yield a loss that is larger than that of p on the samples.205

In the remainder of this paper, let p̂ denote the empirical distribution corresponding to samples drawn206

from p. Note that the average loss of any q on the samples can be written `(q; p̂). Formally:207
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Definition 6 (Calibrated Sample-Properness). A loss function ` is m(ε, δ,N)-sample proper over208

a function domain P if, for all p ∈ ∆X and all q ∈ P(p) with ‖p− q‖1 ≥ ε, with probability at209

least 1− δ over m(ε, δ,N) i.i.d. samples from p, we have `(p; p̂) < `(q; p̂). When P(p) = C(p),210

we call such functions calibrated m(ε, δ,N)-sample proper.211

Example 3. A folklore theorem states that `log-loss is O
(

1
ε2 ln

(
1
δ

))
-sample proper over ∆X , and as212

a result it is calibrated O
(

1
ε2 ln

(
1
δ

))
-sample proper.213

Now consider `lin-loss(q, x) = −qx. Since it is not a proper loss function over ∆X , by definition214

it is not sample proper over ∆X for any m(ε, δ,N). When restricting to calibrated distributions215

however, as we claimed in Example 1 linear loss is calibrated proper in expectation. It is interesting216

to note that linear loss is not sample proper for any m(ε, δ,N) ∈ o
(
N2
)
. To observe this, consider217

p where p1 = 1
4+ 1

2
√
m

, p2 = 1
4−

1
2
√
m

, and px = 1
2(N−2) for all x = 3, . . . , N . Consider q where218

q1 = q2 = 1
4 and qx = 1

2(N/2−2) for x = 3, . . . , N/2. Let x1, . . . , xm be the samples drawn from219

p. Then, with a constant probability m( 1
4+ 1

2
√
m

)±
√
m and m( 1

4−
1

2
√
m

)±
√
m number of these220

samples are on instances x = 1 and x = 2, respectively. Therefore, with a constant probability221

`(q; p̂)− `(p; p̂) =
1

m

m∑
i=1

(pi − qi) ≤
√
m± 2

√
m−Θ

(
1

N

)
< 0,

when m ∈ o
(
N2
)
. Furthermore, note that q is calibrated w.r.t. p and ‖p− q‖1 = Θ(1). Thus, for222

`lin-loss to be calibrated m(ε, δ,N)-sample proper, we must have m(Θ(1),Θ(1), N) ∈ Ω
(
N2
)
.223

3.3 Concentration224

Beyond sample properness, when the expected loss `(q;p) is estimated from a small i.i.d. sample225

from p, we would like the empirical loss to remain faithful to the true value. For example, one might226

hope that minimizing loss on that sample will result in a distribution that has small loss on p. This227

will hold as long as the empirical loss well approximates the true expected loss with high probability.228

Definition 7 (Calibrated Concentration). A loss function ` concentrates over domain function P229

with m(γ, δ,N) samples if for all p ∈ ∆X , for all q ∈ P(p), for m(γ, δ,N) i.i.d. samples from p,230

Pr [|`(q; p̂)− `(q;p)| ≥ γ] ≤ δ. When P(p) = C(p), we say that ` calibrated concentrates with231

m(γ, δ,N) samples.3232

Example 4. We can easily see that log loss does not concentrate with o(N) samples over ∆X . Let p233

be the uniform distribution and q be uniform on X \ {x}. With high probability, x is not sampled,234

and `(q; p̂) is finite. Yet `(q;p) =∞. Note that although this example is extreme, its conclusion is235

robust: one can make an arbitrarily large finite gap. As we will see, the log loss, along with many236

other reasonable loss will concentrate with a small number of samples over calibrated distributions.237

4 The Main Results238

Looking back at the criteria defined in Section 3, we are immediately faced with an impossibility result:239

no local loss function exists that satisfies properness, o(N)-sample properness, and concentration240

with o(N) samples. This is because log loss is the unique local loss function that satisfies the first241

property and as shown in Example 4 it does not concentrate. In this section, we show that a broad242

class of local loss functions with certain niceness properties satisfies the above three criteria over243

calibrated domains. Specifically, we consider loss functions `(q, x) that are non-increasing in qx244

and are inversely concave: `(q, x) = f( 1
qx

) for some concave function f . Similarly, we say that ` is245

inversely strongly concave if the corresponding f is strongly concave.246

4.1 Calibrated and Strong Calibrated Properness247

In this section, we show that any (strongly) nice loss function is (strongly) proper over the domain of248

calibrated distributions. More formally.249

Theorem 1 (Strict Properness). Suppose the local loss function ` is such that `(q, x) = f( 1
qx

) for a250

concave f function. Then, ` is strictly proper over the domain function C.251

3We use γ to denote difference in loss to avoid confusion with ε, which generally means a distance between
distributions.
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Theorem 2 (Strong Properness). Suppose the loss function ` is such that `(q, x) = f( 1
qx

) where f252

is non-decreasing and is C(x)
x2 -left-strongly concave where C(x) is non-increasing and non-negative253

for x ≥ 1. Then for all p ∈ ∆X and q ∈ C(p),254

`(q;p)− `(p;p) ≥ C
(

4N

‖p− q‖1

)
·
‖p− q‖21

128
.

We defer the proof of Theorem 2 to Appendix B.1 and only prove Theorem 1 here. To help us with255

this proof, let us first understand an a key property of calibration in the next lemma, whose proof256

appears in Appendix A.1. At a high level, this lemma shows that the average value of 1/px and 1/qx257

is the same over instances x such that qx = t, which is also equal to 1/t.258

Lemma 1. For any distribution p ∈ ∆X and q ∈ C(p), and for any t ∈ [0, 1], we have259

EX∼p
[

1
pX

∣∣∣ X ∈ Bt] = 1
t , where Bt = {x : qx = t}.260

Proof of Theorem 1. Suppose `(q, x) = f( 1
qx

) for a strictly concave f . Consider any q that is261

calibrated with respect to p. Recall that Bt = {x : qx = t} and T (q) = {t : |Bt| 6= ∅} is a finite set.262

`(p;p) =
∑

t∈T (q)

p(Bt)E
[
f

(
1

pX

) ∣∣∣ X ∈ Bt] ≤ ∑
t∈T (q)

p(Bt)f

(
E
[

1

pX

∣∣∣ X ∈ Bt])

=
∑

t∈T (q)

p(Bt)f

(
1

t

)
=

∑
t∈T (q)

∑
x∈Bt

pxf

(
1

qx

)
= `(q;p),

where the second transition is by Jensen’s inequality and the third transition is by Lemma 1. If f is263

strictly concave and there exists a Bt where q and p disagree, then the inequality is strict.264

4.2 Concentration265

The (strong) properness of a loss function, as discussed in Section 4.1, is only concerned with266

loss functions in expectation. In this section, we consider finite sample guarantees. Recall that `267

concentrates over P(p) (Definition 7) if, with m(γ, δ,N) samples, the empirical loss `(q; p̂) of a268

distribution q ∈ P(p) is γ-close to its true loss `(q;p) with probability 1− δ. Concentration can be269

difficult to achieve: by Example 4, even the log loss does not concentrate for any sample size o(N)270

for general q ∈ ∆X . However, as we show below, when q is calibrated, many natural loss functions,271

including log loss, indeed concentrate. All that is needed is that the loss function is inverse concave,272

increasing, and does not grow too quickly as qx → 0.273

Theorem 3 (Concentration). Suppose ` is a local loss function with `(q, x) = f
(

1
qx

)
for nonnega-274

tive, increasing, concave f(z). Suppose further that f(z) ≤ c
√
z for all z ≥ 1 and some constant c.275

Then ` concentrates over the domain function C for any m(γ, δ,N) ≤ N , such that276

m(γ, δ,N) ≥
c1 · f (β)

2
ln 1

δ

γ2
,

where c1 is a fixed constant and β:= 16N8

δ·min(1,γ2/c2) . That is, for any p ∈ ∆X ,q ∈ C(p), drawing at277

least m(γ, δ,N) samples guarantees |`(q; p̂)− `(q;p)| ≤ γ with probability ≥ 1− δ.278

Note that γ bounds the absolute difference between `(q; p̂) and `(q;p). The desired difference279

may depend on the relative scale of the loss function. If e.g., we take `(q, x) and scale to obtain280

`′(q, x) = α · `(q, x) for some α, the desired error γ scales by α, f(β) and c both scale by α, and281

thus we can see that the sample complexity remains fixed.282

We defer the proof of Theorem 3 to Appendix C. At a high level, calibration helps us avoid worst-case283

instances (as in Example 4) using a very simple fact: when q is calibrated, we have qx
px
≥ 1

N for all284

x (see Lemma 3). This rules out very low probability events that contribute significantly to `(q;p)285

but require many samples to identify. The main idea in proving Theorem 3 is to partition X into Ω286

containing elements of very small probability, and X \ Ω. With high probability, no element of Ω is287

ever sampled from p. Conditioned on this, the loss is bounded (and its expectation does not change288

much), so a concentration result can be applied.289
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4.3 Sample Properness290

Lastly, we turn our attention to calibrated sample properness. Recall that a loss function is sample291

proper if all candidate distributions that are sufficiently far from p have a loss that is larger p on292

the empirical distribution p̂ corresponding to a small number of samples from p. It is not hard293

to see that sample properness of a loss function is a direct consequence of its concentration and294

strong properness. For any candidate distribution q for which ‖q− p‖1 is large, strong properness295

(Theorem 2) implies that `(q;p) is significantly larger than `(p;p). Furthermore, concentration296

(Theorem 3) implies that with high probability `(q;p) ≈ `(q; p̂) and `(p;p) ≈ `(p; p̂). Therefore,297

with high probability, `(q; p̂) > `(p; p̂). Formally in Appendix D we prove:298

Theorem 4 (Sample properness). Suppose ` is a local loss function with `(q, x) = f( 1
qx

) for299

nonnegative, increasing, concave f(z). Suppose further that f(z) ≤ c
√
z for all z ≥ 1 and some300

constant c and that f is C(x)
x2 -left-strongly concave for where C(x) is nonincreasing and nonnegative301

for x ≥ 1. Then for all p ∈ ∆X and q ∈ C(p), if p̂ is the empirical distribution constructed from m302

independent samples of p with m ≤ N and303

m ≥
c1 · f(β)2 ln 1

δ(
C
(

4N
‖p−q‖1

)
‖p− q‖2

)2 ,

where c1 is constant and β:= 288N8

δ·min

(
1,

[
C
(

4N
‖p−q‖1

) ‖p−q‖21
128c

]2) , then `(q; p̂) > `(p; p̂) with prob.≥ 1−δ.304

4.4 Application of the Main Results to Loss Functions305

We now instantiate Theorems 2, 3, and 4 for one example of a natural loss function `(q, x) =306

ln ln( 1
qx

). Refer to Table 1 for other loss functions and see Appendix E for details on its derivation.307

First, note that ln ln(z) is C(z)/z2-left-strongly concave for C(z) = (1+ln(z))
ln(z)2 .4 Moreover, C(z) is308

non-increasing and non-negative for z ≥ 1 and ln ln(z) ≤
√
z. Using these, for any p and q ∈ C(p)309

such that ‖p− q‖1 ≥ ε we have310

• By Theorem 2, `(q;p)− `(p;p) ≥ Ω( ε2

ln(N/ε) ).311

• By Theorem 3, an empirical distribution p̂ of Õ
(
γ−2 ln ln(N)2 ln(1/δ)

)
i.i.d samples from312

p is sufficient such that |`(q; p̂)− `(q;p)| ≤ γ with probability 1− δ.313

• By Theorem 4, an empirical distribution p̂ of Õ
(
ε−4 ln ln(N ln(N))2 ln(1/δ) ln(N)

)
i.i.d314

samples from p is sufficient such that `(q; p̂) > `(p; p̂) with probability 1− δ.315

5 Discussion316

In this work, we characterized loss functions that meet three desirable properties: properness in317

expectation, concentration, and sample properness. We demonstrated that no local loss function318

meets all of these properties over the domain of all candidate distributions. But, if one enforces the319

criterion of calibration (or approximate calibration as discussed in Appendix F), then many simple320

loss functions have good properties for evaluating learned distributions over large discrete domains.321

We hope that our work provides a starting point for several future research directions.322

One natural question is to understand how to select a loss function based on the application domain.323

Our example for language modeling, from the introduction, motivates the idea that log loss is not324

the best choice always. Understanding this more formally, for example in the framework of robust325

distribution learning, could provide a systematic approach for selecting loss functions based on326

the needs of the domain. Our work also leaves open the question of designing compuationally and327

statistically efficient learning algorithms for different loss functions under the constraint that the328

candidate q is (approximately) calibrated. One challenge in designing computationally efficient329

algorithms is that the space of calibrated distributions is not convex. We present some advances330

towards dealing with this challenge in Appendix F by providing an efficient procedure for ‘projecting’331

a non-calibrated distribution on the space of approximately calibrated distribution. It remains to be332

seen if iteratively applying this procedure could be useful in designing an efficient algorithm for333

minimizing the loss on calibrated distributions.334

4In Appendix E, we show that function f is b(z)-left-strongly concave if for all z, f ′′(z) ≤ −b(z).
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A Additional Proofs for Strict Proper Losses398

A.1 Proof of Lemma 1399

Lemma 1 (restated). For any distribution p ∈ ∆X and q ∈ C(p), and for any t ∈ [0, 1], we have400

EX∼p
[

1
pX

∣∣∣ X ∈ Bt] = 1
t , where Bt = {x : qx = t}.401

Proof. We have402

E
[

1

pX

∣∣∣ X ∈ Bt] =
∑
x∈Bt

px
p(B)

1

px
=
|Bt|
p(Bt)

=
1

t
.

403

A.2 Proof of Theorem 1404

Suppose `(q, x) = f( 1
qx

) for a strictly concave f . Consider any q that is calibrated with respect to p.405

Recall that Bt = {x : qx = t} and T (q) = {t : |Bt| 6= ∅} is a finite set.406

`(p;p) =
∑

t∈T (q)

p(Bt)E
[
`(p, X)

∣∣∣ X ∈ Bt]
=

∑
t∈T (q)

p(Bt)E
[
f

(
1

pX

) ∣∣∣ X ∈ Bt]

≤
∑

t∈T (q)

p(Bt)f

(
E
[

1

pX

∣∣∣ X ∈ Bt]) (By Jensen’s inequality)

=
∑

t∈T (q)

p(Bt)f

(
1

t

)
(By Lemma 1)

=
∑

t∈T (q)

∑
x∈Bt

pxf

(
1

t

)

=
∑

t∈T (q)

∑
x∈Bt

pxf

(
1

qx

)
= `(q;p).

If f is strictly concave and there exists a Bt where q and p disagree, then the inequality is strict.407

B Additional Proofs for Strongly Proper Losses408

B.1 Proof of Theorem 2409

Let us start by an analogous result to Lemma 1. We defer the proof of this lemma to Appendix B.2.410

Lemma 2. Suppose f(z) is b(z)-left-strongly concave. Let B ⊆ X be any set and let t(B):=p(B)
|B| ,5411

and suppose
∑
x∈B |px − t(B)| ≥ ε. Let µ = 1

t(B) . Then412

E
X∼p

[
f

(
1

pX

) ∣∣∣ X ∈ B] ≤ f(µ) +
b(µ)

32

ε2

p(B)2t(B)2
.

Proof of Theorem 2. Note that a calibrated distribution q can be thought of as a piecewise uni-413

form distribution with pieces {Bt}t∈T (q) and q(Bt) = p(Bt). Let εt =
∑
x∈Bt |px − qx|, with414

5When B = Bt(q) for some t ∈ [0, 1], t(B) = t.
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∑
t∈T (q) εt = ε = ‖p− q‖1. Let α =

‖p−q‖1
4 and let H = {t ∈ T (q) : t ≥ α

N } refer to indices of415

pieces in which the two distributions place reasonably high probability. We have:416

`(q;p)− `(p;p) =
∑
x

px

[
f

(
1

qx

)
− f

(
1

px

)]
=

∑
t∈T (q)

p(Bt)

[
f

(
1

t

)
− E
X|Bt

[
f

(
1

pX

)]]
where EX|Bt [·] refers to the expectation over X ∼ p conditioned on X ∈ Bt. Now consider any417

fixed component Bt. The difference inside the brackets is f
(

1
t

)
− EX|Bt

[
f
(

1
pX

)]
. Intuitively,418

strong concavity implies there should be a significant “Jensen gap”. This is formalized in Lemma 2419

of Appendix B that shows that if
∑
x∈Bj |px − qx| = εj , then420

f

(
1

t

)
− E
X|Bt

[
f

(
1

pX

)]
≥
b
(

1
t

)
32
· ε2t
t2p(Bt)2

. (2)

Summing over all t ∈ T (q) and Applying the assumption that b(x) ≥ C(x)
x2 where C(x) is nonin-421

creasing along with the fact that t ≥ α
N for t ∈ H gives422

`(q;p)− `(p;p) ≥
∑

t∈T (q)

p(Bt)
b( 1
t )

32

ε2t
t2p(Bt)2

≥
∑
t∈H

p(Bt)
b( 1
t )

32

ε2t
t2p(Bt)2

≥
C
(
N
α

)
32

∑
t∈H

ε2t
p(Bt)

.

(3)

For t /∈ H , since q(Bt) = p(Bt) ≤ α|Bt|
N we have εt ≤ 2α|Bt|

N . Thus we have
∑
t/∈H εt ≤423

2α
N |T (q)\H| ≤ 2α, and so correspondingly,

∑
t∈H εt ≥ ε−2α. Since the bound of (3) is increasing424

in each εt and decreasing in each p(Bt) we can obtain a lower bound by considering its minimum425

when
∑
t∈H εt = ε− 2α and

∑
t∈H p(Bt) = 1. By the convexity of (·)2 this minimum is obtained426

at εt = p(Bt) · (ε− 2α) .427

This gives an overall bound of `(q;p)− `(p;p) ≥ C(Nα )
32 · (ε− 2α)2. Replacing α =

‖p−q‖1
4 in this428

bound completes theorem.429

B.2 Proof of Lemma 2430

Proof. We draw X ∼ p conditioned on X ∈ B. Let S = {x ∈ B : px > t(B)}. We upper-bound431

f( 1
pX

) for each realization of X . If pX ≤ t(B), then we simply use concavity. Otherwise, if X ∈ S,432

we use b(z)-left-strong-concavity. Furthermore, note that by Lemma 1, EX∼p|B
[

1
pX

]
= µ. We have:433

E
X∼p|B

[
f

(
1

pX

)]
≤ E

[
f(µ) + df(µ) ·

(
1

pX
− µ

)
− 1 [X ∈ S]

b(µ)

2

(
1

pX
− µ

)2
]

= f(µ)− b(µ)

2

1

p(B)

∑
x∈S

px

(
1

px
− µ

)2

,

Note the 1
p(B) term arises from conditioning on X ∈ B. We now lower-bound the sum, using the434

constraint that
∑
x∈B |px − t(B)| ≥ ε, which implies that

∑
x∈S px − t(B) ≥ ε

2 .435 ∑
x∈S

px

(
1

t(B)
− 1

px

)2

=
p(S)

t(B)2
− 2|S|
t(B)

+
∑
x∈S

1

px
.

Fixing p(S) and |S|, we get by convexity that this is minimized by px constant on S, therefore equal436

to t(B) + ε
2|S| . So we have437

|S|
(
t(B) +

ε

2|S|

)(
1

t(B)
− 1

t(B) + ε
2|S|

)2

=
(
|S|t(B) +

ε

2

) ε

2|S|
(
t(B)2 + εt(B)

2|S|

)
2

=
|S|t(B)ε2 + ε3

2

4|S|2t(B)2
(
t(B) + ε

2|S|

)2 .
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We consider the two cases for the larger term in the denominator. In the case ε
2|S| > t(B), we get438

≥
|S|t(B)ε2 + ε3

2

4|S|2t(B)2
(
ε
|S|

)2

≥
|S|t(B) + ε

2

4t(B)2

≥ ε

4t(B)2

≥ ε2

4p(B)t(B)2

where the last line follows because we must have ε ≤ p(B) from the definition of ε. In the remaining439

case, we get440

≥
|S|t(B)ε2 + ε3

2

4|S|2t(B)2 (2t(B))
2

≥ ε2

16|S|t(B)3

≥ ε2

16|B|t(B)3

=
ε2

16p(B)t(B)2
.

441

C Additional Proofs for Concentration of Losses442

We first give a simple lemma that will be used to prove our main calibrated distribution concentration443

result, Theorem 3.444

Lemma 3 (Calibrated Distribution Probability Lower Bound). For any p ∈ ∆X and q ∈ C(p), for445

any x ∈ X ,446

qx ≥
px
N
. (4)

Proof. Let B = {x′ : qx′ = qx}. Then by calibration we have:447

qx =
q(B)

|B|
≥ q(B)

N
=

p(B)

N
≥ px
N
.

448

This bound is achieved when q is the uniform distribution and p is a point distribution.449

C.1 Proof of Theorem 3450

We prove the following stronger result, Proposition 1, that only uses the lower-bound property451

qx ≥ Ω(pxN ) and does not require a distribution to be calibrated. Combining this proposition with452

Lemma 3 immediately proves Theorem 3.453

Proposition 1. Suppose ` is a local loss function with `(q, x) = f
(

1
qx

)
for nonnegative, increasing,454

concave f(z). Suppose further that f(z) ≤ czr for all z ≥ 1, some constant c > 0, and some constant455

r < 1. Given p, suppose q is any distribution such that qx ≥ c2px
N for all x and some constant456

c2 ∈ (0, 1]. Then, drawing at least m(γ, δ,N) samples guarantees that
∣∣`(q; p̂) − `(q;p)

∣∣ ≤ γ with457

probability ≥ 1− δ if458

m(γ, δ,N) ≥
c1 · f(β)2 ln 1

δ

γ2
,

where c1 is a fixed constant and β:= 22/(1−r)N3/(1−r)+2

c
r/(1−r)
2 δ·min(1,[γ/c]1/(1−r))

.459
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Proof. Fix a sample size m ≤ N . Let Ω ⊆ X be the set of x’s that occur with non-negligible
probability:

Ω =

{
x : px ≥

c
r/(1−r)
2 · δ ·min(1, [γ/c]1/(1−r))

22/(1−r)N3/(1−r)+1

}
.

we have p(X \ Ω) ≤ N · c
r/(1−r)
2 δ

4N4 ≤ δ
4N and thus for x1, . . . xm drawn i.i.d. from p. By a union460

bound, letting E be the event that x1, . . . , xm ∈ Ω and using that m ≤ N :461

Pr [E ] ≥ 1− δ

4
. (5)

We will condition on E going forward. First note that for x ∈ Ω, we can bound `(q, x) using Lemma462

3. Specifically, since qx ≥ c2px
N and f is nondecreasing, we have:463

`(q, x) = f

(
1

qx

)
≤ f

(
22/(1−r)N3/(1−r)+2

c
r/(1−r)
2 · δ ·min(1, [γ/c]1/(1−r))

)
.

Denote

β:=
22/(1−r)N3/(1−r)+2

c
r/(1−r)
2 · δ ·min(1, [γ/c]1/(1−r))

.

Letting zi be the random variable464

zi =
1

m

(
`(q, xi)− E

x∼p
[`(q, x)|x ∈ Ω]

)
,

we have for xi ∈ Ω, |zi| ≤ f(β)
m (where we use that `(q, x) is nonnegative by assumption.) So465

E[z2
i | xi ∈ Ω] ≤ f(β)2/m2. Then by a standard Bernstein inequality:466

Pr

∣∣∣∣∣∣ 1

m

m∑
j=1

`(q, xj)− E
x∼p

[`(q, x)|x ∈ Ω]

∣∣∣∣∣∣ ≥ γ

2
| E

 ≤ exp

(
− γ2/8

f(β)2/m+ f(β)/m · γ/3

)
≤ δ

2

(6)

where the second inequality follows if we have m ≥ c1f(β)2 log(1/δ)
γ2 for sufficiently large c1. By a467

union bound, from (5) and (6) we have:468

Pr

∣∣∣∣∣∣ 1

m

m∑
j=1

`(q, xj)− E
x∼p

[`(q, x)|x ∈ Ω]

∣∣∣∣∣∣ ≥ γ

2

 ≤ δ.
It remains to show that the conditional expectation Ex∼p[`(q, x)|x ∈ Ω] is very close to `(q;p) =469

Ex∼p[`(q, x)], which will give us the lemma. Intuitively, by conditioning on x ∈ Ω we are only470

removing very low probability events, which do not have a big effect on the loss. Specifically, we471

need to show that:472 ∣∣∣∣ Ex∼p[`(q, x)|x ∈ Ω]− `(q;p)

∣∣∣∣ ≤ γ

2
(7)
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Since p(X \ Ω) ≤ N · c
r/(1−r)
2 δ·min(1,γ/c)

4N4 ≤ c
r/(1−r)
2 γ

4N3 ≤ cr2γ
4N3 , using that f is nondecreasing,473

f(z) ≤ czr for some c and r < 1, and qx ≥ c2px
N :474

E
x∼p

[`(q, x) | x ∈ Ω] =
∑
x∈Ω

px
p(Ω)

· `(q, x)

≤ 1

1− cr2 min(1,γ/c)
4N3

·
∑
x∈Ω

px · `(q, x)

≤
(

1 +
cr2 min(1, γ/c)

2N3

)
·
∑
x∈X

px · `(q, x)

≤ `(q;p) +
cr2 min(1, γ/c)

2N3
·
∑
x∈X

px · f
(

N

c2px

)
≤ `(q;p) +

cr2 min(1, γ/c)

2N3
· c · N

r

cr2

∑
x∈X

p1−r
x

= `(q;p) +
min(1, γ/c)

2N3
· c ·N2r

≤ `(q;p) +
γ

2
.

This gives us one side of (7). On the other side we have:475

E
x∼p

[`(q, x) | x ∈ Ω] =
∑
x∈Ω

px
p(Ω)

· `(q, x)

≥
∑
x∈Ω

px · `(q, x)

= `(q;p)−
∑
x/∈Ω

px · `(q, x). (8)

Again using that f(z) ≤ czr for r < 1, that qx ≥ c2px
N , and that for x /∈ Ω we have px ≤476

c
r/(1−r)
2 δ·min(1,[γ/c]1/(1−r))

22/(1−r)N3/(1−r)+1 :477 ∑
x/∈Ω

px · `(q, x) =
∑
x/∈Ω

px · f
(

1

qx

)
≤ c

∑
x/∈Ω

p1−r
x · N

r

cr2
≤ c ·Nr+1 · γ/c

4N3
≤ γ

4N
.

Combined with (8) this yields the other side of (7), completing the bound and the proof.478

Proof of Theorem 3. Using Lemma 3, we have that for a calibrated distribution q, qx ∈ Ω(px/N)479

for all x ∈ X . Together with the assumption that f(z) ≤ c
√
z, we can directly apply Proposition 1 to480

prove the claim.481

D Additional Proofs for Sample Proper Losses482

D.1 Proof of Theorem 4483

In the statement of Theorem 4 we require that `(q, x) = f
(

1
qx

)
for f that is nonnegative, increasing,484

and C(x)
x2 -left-strongly concave. Further we require that C(x) is non-decreasing and non-negative for485

x ≥ 1. Directly applying Theorem 2 we thus have:486

`(q;p)− `(p;p) ≥ C
(

4N

‖p− q‖1

)
·
‖p− q‖21

128
. (9)

Let γ:=C
(

4N
‖p−q‖1

)
· ‖p−q‖

2
1

128 . Additionally, since f(x) ≤ c
√
z for z ≥ 1 and since q,p ∈ C(p), ap-487

plying Theorem 3 with error parameter γ/3 and failure parameter δ/2, we have for β:= 288N8

δ·min(1,γ2/c2) ,488
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if m ≥ c1f(β)2 lg 2
δ

(γ/3)2 for large enough constant c1 then the following hold, each with probability489

≥ 1− δ/2:490

|`(q; p̂)− `(q;p)| ≤ γ

3
and |`(p; p̂)− `(;p)| ≤ γ

3
.

By a union bound, with probability ≥ 1− δ both bounds hold simultaneously and by (9) we have:491

`(q; p̂)− `(p; p̂) ≥ `(q;p)− `(p;p)− 2γ

3
≥ γ − 2γ

3
> 0,

which completes the theorem. Plugging the value of γ in we see that the bound holds for492

m ≥
c1f(β)2 ln 1

δ(
C
(

4N
‖p−q‖1

)
· ‖p−q‖

2
1

128 /3
)2 =

c′1f(β)2 ln 1
δ(

C
(

4N
‖p−q‖1

)
· ‖p− q‖21

)2

for large enough constant c′1. Additionally, we see that:493

β =
288N8

δ ·min

(
1,
[
C
(

4N
‖p−q‖1

)
· ‖p−q‖

2
1

128c

]2) .
E Instantiation of Theorems 2, 3, and 4494

Let us start with two observations regarding loss functions, characterizing inverse concave loss495

functions and inverse left-concave functions.496

Observation 1. Let `(q, x) = f
(

1
qx

)
be such that ` is nonnegative, twice differentiable, decreasing,497

and convex. Then, f(x) is concave.498

Proof. For ease of exposition, let `(z) = f( 1
z ).499

df

dy
=
d`( 1

y )

dz

(
−1

y2

)
d2f

dz2
=
d2`( 1

y )

dz2

(
−1

y2

)
+
d`( 1

y )

dz

(
2

y3

)
.

Decreasing and convex gives a negative derivative and positive second derivative. Given that y > 0,500

we obtain a negative second derivative, hence concavity.501

Observation 2. Consider a nonincreasing function b(z). A function f is b(z)-left-strongly concave502

if for all z, f ′′(z) ≤ −b(z).503

Proof. We need to show that f restricted to [0, z] is b(z)-strongly concave. Consider z1 ≥ z2. Since504

b(z) is non-increasing we have for t ∈ [z2, z1]:505

f ′(t) = f ′(z2) +

∫ t

z2

f ′′(s)ds ≤ f ′(z2)− b(z) · (t− z2).

We thus have:506

f(z1)− f(z2) =

∫ z1

z2

f ′(t)dt ≤
∫ z1

z2

[f ′(z2)− b(z)(t− z2)]dt

≤ f ′(z2) · (z1 − z2)− b(z) · (z1 − z2)2

2
.

Rearranging gives:507

D−f (z1, z2):=f(z2) + f ′(z2) · (z1 − z2)− f(z1) ≥ b(z)

2
· (z1 − z2)2.
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For z1 ≤ z2, analogously for t ∈ [z1, z2] we have:508

f ′(t) = f ′(z2)−
∫ z2

t

f ′′(s)ds ≥ f ′(z2)− b(z) · (t− z2)

and so509

f(z1)− f(z2) = −
∫ z1

z2

f ′(t)dt ≤
∫ z1

z2

[f ′(z2)− b(z)(t− z2)]dt

≤ f ′(z2) · (z1 − z2)− b(z) · (z1 − z2)2

2
.

Rearranging gives again gives:510

f(z2) + f ′(z2) · (z1 − z2)− f(z1) ≥ b(z)

2
· (z1 − z2)2,

completing the lemma.511

E.1 Deriving Table 1512

For `(q, x) = (ln(1/qx))p for a constant p ∈ (0, 1]. By Observation 2, we have that (ln(z))p is513

C(z)/z2-left-strongly concave for514

C(z) = p ln(z)p−1 + p(1− p) ln(z)p−2 ∈ Θ
(
ln(z)p−1

)
.

Moreover, C(z) is non-increasing and non-negative for z ≥ 1 and ln(z)p−1 ≤
√
z. Using these, for515

any p and q ∈ C(p) such that ‖p− q‖1 ≥ ε we have516

• By Theorem 2, `(q;p)− `(p;p) = Ω
(
ε2 ln(N/ε)p−1

)
.517

• By Theorem 3, an empirical distribution p̂ of O
(
γ−2 ln(1/δ) ln(N/δγ)2p

)
i.i.d samples518

from p is sufficient such that |`(q; p̂)− `(q;p)| ≤ γ with probability 1− δ.519

• By Theorem 4, an empirical distribution p̂ of520

O

(
1

ε4
ln

(
1

δ

)
ln

(
N

δε2 ln(N/ε)p

)2p

ln(N/ε)−2p+2

)
∈ O

(
1

ε4
ln

(
1

δ

)
ln

(
N

δε

)2
)

i.i.d samples from p is sufficient such that `(q; p̂) > `(p; p̂) with probability 1− δ.521

For `(q, x) = ln(e2/qx)2. By Observation 2, we have that ln(e2 · z)2 is 2+2 ln(z)
z2 -left-strongly522

concave. Since Theorem 2 requires that C(z) is nonincreasing we cannot set C(z) = 2 + 2 ln(z) as523

might be expected. Instead we set C(z) = 2. Additionally, using that ln(e2 · z)2 ≤
√
z, for any p524

and q ∈ C(p) such that ‖p− q‖1 ≥ ε we have525

• By Theorem 2, `(q;p)− `(p;p) = Ω
(
ε2
)
.526

• By Theorem 3, an empirical distribution p̂ of O
(
γ−2 ln(1/δ) ln(N/δγ)4

)
i.i.d samples527

from p is sufficient such that |`(q; p̂)− `(q;p)| ≤ γ with probability 1− δ.528

• By Theorem 4, an empirical distribution p̂ of529

O

(
1

ε4
ln

(
1

δ

)
ln

(
N

δε2 ln(N/ε)

)4
)
∈ O

(
1

ε4
ln

(
1

δ

)
ln

(
N

δε

)4
)

i.i.d samples from p is sufficient such that `(q; p̂) > `(p; p̂) with probability 1− δ.530

E.2 Other Loss Functions531

We also instantiate Theorem 2 for a few natural loss functions that do not obtain strong finite sample532

bounds (Theorems 3, and 4).533

For the linear loss `lin-loss(q, x) = −qx, we have by Observation 2 that − 1
z is 2

z3 -left-strongly-
concave. Thus setting C(z) = 1/z, by Theorem 2 for any p and q ∈ C(p) with ‖p− q‖1 ≥ ε:

`lin-loss(q;p)− `lin-loss(p;p) = Ω
( ε
N
· ε2
)

= Ω

(
ε3

N

)
.

We can improve the dependence on N and ε by considering e.g., `(q, x) = −√qx. In this case we
have that −1/

√
z is 3

4z5/2
-left-strongly-concave. Thus setting C(z) = 3

4
√
z

, by Theorem 2 we have:

`(q;p)− `(p;p) = Ω

(√
ε

N
· ε2
)

= Ω

(
ε2.5√
N

)
.
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F Approximate Calibration534

In this section we show that our results are robust to a notion of approximate calibration and that we535

can construct distributions that satisfy approximate calibration using a small number of samples.536

Definition 8 (Approximate Calibration). For q ∈ ∆X , for any t ∈ [0, 1], let Bt = {x : qt = t}. q537

is (α1, α2)-approximately calibrated with respect to p if there is some subset T ⊆ [0, 1] such that538

q(Bt) ∈ (1± α1)p(Bt) for all t /∈ T , q(Bt) ≥ (1− α1)p(Bt) for all t ∈ T , and q(∪t∈TBt) ≤ α2.539

Let C(p, α1, α2) denote the set of all (α1, α2)-approximately calibrated distributions w.r.t. p.540

Intuitively, q ∈ C(p, α1, α2) is calibrated up to (1±α1) multiplicative error on any bucket Bt where541

q and hence p place reasonably large mass. There is some set of buckets (corresponding to t ∈ T )542

where q may significantly overestimate the probability assigned by p, however, the total mass placed543

on these buckets will still be small – at most α2.544

F.1 Efficiently Constructing Approximately Calibrated Distributions545

We now demonstrate that, given a candidate distribution q and sample access to p, it is possible546

to efficiently construct q′ ∈ C(p, α1, α2). Further, if q ∈ C(p, α1, α2) we will have ‖q− q′‖1 ≤547

O(α1 + α2). In this way, if q is approximately calibrated, we can certify at least that it is close548

to another approximately calibrated distribution. Of q is not approximately calibrated, we return a549

distribution that is approximately calibrated, which of course, may be far from q.550

Theorem 5. Given any q ∈ ∆X , sample access to p ∈ ∆X , and parameters α1, α2, δ ∈ (0, 1] there551

is an algorithm that takes O

(
log
(
N
α1

)2
·log

(
logN
δα1

)
α4

1·α2
2

)
samples from p and returns, with probability552

≥ 1− δ, q′ ∈ C(p, α1, α2). Further, if q ∈ C(p, α1, α2) then ‖q− q′‖1 ≤ O(α1 + α2).553

The main idea of the algorithm achieving Theorem 5 is to round q’s probabilities into buckets of554

multiplicative width (1± α1). We can then efficiently approximate the total probability mass in each555

bucket, excluding those that may have very small mass. On these buckets, we may over approximate556

the true mass, and thus they are included in the set T in Definition 8.557

We start with a simple lemma that shows, using a standard concentration bound, how well we can558

approximate the probability of any event under any distribution.559

Lemma 4. For any p ∈ ∆X and B ⊆ X , given m independent samples x1, . . . xm ∼ p, there is560

some fixed constant c such that, for any ε, δ ∈ (0, 1], if m ≥ 3 ln(2/δ)
ε2 , then with probability ≥ 1− δ:561 ∣∣∣∣p(B)− |{xi : xi ∈ B}|

m

∣∣∣∣ ≤ ε.
Proof. E |{xi : xi ∈ B}| = m · p(B). By a standard Chernoff bound:562

Pr [||{xi : xi ∈ B}| −m · p(B)| ≥ m · ε] ≤ e
−

( ε
p(B) )

2

2+ ε
p(B)

mp(B)
+ e−

( ε
p(B) )

2

2 mp(Bi)

≤ e−
ε2m

2p(B)+ε + e−
ε2m
2

≤ 2e−
ε2m
3 ,

which is ≤ δ as long as m ≥ 3 ln(2/δ)
ε2 .563

With Lemma 4 in hand, we proceed to the proof of Theorem 5.564

Proof of Theorem 5. For convenience, define γ1 = α1

3 , and b = dlog1− γ18
γ1
8N e. Note that b =

O

(
log N

α1

α1

)
. For i ∈ {1, . . . , b}, define:

B̄i =

{
x : qx ∈

( (
1− γ1

8

)i
,
(

1− γ1

8

)i−1 ]}
.
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Let B̄b+1 =
{
x : qx ≤

(
1− γ1

8

)b}
.6 Note that B̄1 ∪ . . . ∪ B̄b ∪ B̄b+1 = X . Now, via Lemma 4,

with O
(
b2·log b/δ
α2

2·α2
1

)
samples from p it is possible to compute p̃(B̄1), . . . , p̃(B̄b+1) such that, with

probability ≥ 1− δ,

|p(B̄i)− p̃(B̄i)| ≤
γ1 · α2

8(b+ 1)

for all i simultaneously. Let E be the event that these approximations hold, and assume that E occurs.565

Then for any i with p̃(B̄i) ≤ α2

4(b+1) , it must be that566

p(B̄i) ≤
α2

4(b+ 1)
+

γ1 · α2

8(b+ 1)
≤ α2

2(b+ 1)
. (10)

Let L ⊆ {1, . . . , b+ 1} be the set of all such i. Similarly, for i with p̃(B̄i) >
α2

4(b+1) , it must be that:567

p(Bi) >
α2

4(b+ 1)
− γ1 · α2

8(b+ 1)
>

α2

8(b+ 1)
. (11)

Let H = {1, . . . , b+ 1} \ L be the set of all such i.568

Define w as follows: for x ∈ ∪i∈LB̄i set wx = α2

2|∪i∈LB̄i| . For i ∈ H , for x ∈ B̄i let wx = p̃(B̄i)
|B̄i|

.569

We have the following facts about w:570

1. For i ∈ H , w(B̄i) = p̃(B̄i) ∈ p(B̄i) ± γ1·α2

8(b+1) , which by the fact that p(B̄i) ≥ α2

8(b+1)571

(equation (11)) gives for all i ∈ H:572

w(B̄i) ∈ (1± γ1)p(B̄i). (12)

2. w(∪i∈LBi) = α2

2 and by (10), p(∪i∈LB̄i) =
∑
i∈L p(B̄i) ≤ (b+ 1) · α2

2(b+1) = α2

2 .573

In combination, the above facts give that ‖w‖1 ∈ (1± γ1). Thus, letting q′ = 1
‖w‖1

·w, we have:574

1. Applying (12), for all i ∈ H ,
(

1−γ1
1+γ1

)
p(B̄i) ≤ q′(B̄i) ≤

(
1+γ1
1−γ1

)
p(B̄i). Since γ1 = α1

3575

we have 1−γ1
1+γ1

≥ 1− α1 and 1+γ1
1−γ1 ≤ 1 + α1, which gives for all i ∈ H:576

q′(B̄i) ∈ (1± α1)p(B̄i). (13)

2. q′(∪i∈LB̄i) ≥ 1
1+γ1

· α2

2 ≥ (1 − α1) · α2

2 ≥ (1 − α1) · p(∪i∈LB̄i). Additionally,577

q′(∪i∈LB̄i) ≤ 1
1−γ1 ·

α2

2 ≤ α2.578

3. ‖q′ −w‖1 ≤ γ1.579

Properties (1) and (2) together give that q′ ∈ C(p, α1, α2) where we define the set T to be {q̄x} for580

x ∈ ∪i∈LB̄i.581

Recalling that b = O
(

logN/α1

α1

)
, the overall sample complexity used to construct q′ is:582

O

(
b2 · log b/δ

α2
2 · α2

1

)
= O

(
log(N/α1)2 log(b/δ)

α4
1 · α2

2

)
= O

 log(N/α1)2 · log
(

logN
δα1

)
α4

1 · α2
2

 .

Finally, it remains to show that if q ∈ C(p, α1, α2), then ‖q− q′‖1 ≤ O(α1 + α2).583

For every j ≤ b, since q places all probabilities within (1± γ1
8 ) = (1± α1

24 ) of each other on this584

bucket, for every x ∈ B̄j , qx ∈ (1± α1

24 ) · q(B̄j)

|B̄j |
. We thus have:585 ∑

x∈B̄j

|qx − q′x| ≤ |q(B̄j)− q′(B̄j)|+O(α1) · q(B̄j).

6Note that this this is different that the usual definition of Bt = {x : qx = t}, but it is still within the same
spirit of bucketing the elements based on their qx values.
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For B̄b+1 since q(B̄b+1) ≤ α
24 , we simply have

∑
x∈B̄b+1 |qx − q′x| ≤ |q(B̄j)− q′(B̄j)|+O(α1).586

Thus overall:587

‖q− q′‖1 =

b+1∑
j=1

∑
x∈B̄j

|qx − q′x| ≤
b+1∑
j=1

|q(B̄j)− q′(B̄j)|+O(α1).

We now bound the above sum using that both q and q′ are in C(p, α1, α2). Let T be the set of588

probabilities for which q may significantly overestimate p but places mass≤ α2. Let T ′ be analogous589

set for q′ (see Definition 8). Let q̄ be vector obtained by setting qx = px for {x : qx ∈ T}. Let q̄′ be590

defined analogously for q′. We have:591

‖q− q′‖1 ≤
b+1∑
j=1

|q(B̄j)− q′(B̄j)|+O(α1) ≤
b+1∑
j=1

|q̄(B̄j)− q̄′(B̄j)|+O(α1 + α2).

Additionally, we can see that both q̄ and q̄′ are calibrated up to error (1 ± α1) on all B̄j (q̄ is592

calibrated up to this error on all its level sets, which form a refinement of {B̄j}.) Thus we have:593

‖q− q′‖1 ≤
b+1∑
j=1

O(α1) · p(B̄j) +O(α1 + α2) = O(α1 + α2).

which completes the claim.594

F.2 Strong Properness Under Approximate Calibration595

We now show that Theorem 2 is robust to approximation calibration, using a similar proof strategy.596

See Table 2 for a sampling of results that this implies, which essentially match those given by Table1597

in the case of exact calibration.598

Theorem 6. Suppose `(q, x) = f( 1
qx

) where f is non-decreasing, and for z ≥ 1
maxx qx

is non-599

negative and satisfies f ′(z) ≤ D(z)
z for some non-decreasing function D. Also suppose that f is600

C(z)
z2 -left-strongly concave for C that is non-increasing and non-negative for z ≥ 1. Then for all601

p ∈ ∆X , α1 ≤ 1/2 and q ∈ C(p, α1, α2):602

`(q;p)− `(p;p) ≥
C
(
N

2α2

)
32

· (‖p− q‖1 − α1 − 5α2)
2 − 2α1 ·D

(
N

2α2

)
− 3α2 · f

(
N

3α2

)
.

Proof. Let q ∈ C(p, α1, α2) be piecewise uniform with pieces {Bt}t∈T (q). Let L1 =603 {
t : p(Bt)

|Bt| ≤
α2

N

}
. Let H ⊆ T (q) \ L1 contain all remaining t for which q(Bt) ∈ (1± α1)p(Bt).604

Finally, let L2 = T (q) \ (H ∪ L1) contain all remaining t ∈ T (q). Let εt =
∑
x∈Bt |px − qx|, with605 ∑

t∈T (q) εt = ε = ‖p− q‖1. Finally, consider q′ ∈ C(p) that is exactly calibrated and piecewise606

uniform on Bt(q), that is, q′x = p(Bt(q))/|Bt| for all x ∈ Bt(q) and t ∈ T (q).607

By definition of L1 we have p(∪t∈L1
Bt) = q′(∪t∈L1

Bt) ≤ α2. Additionally, by our definition of608

approximate calibration, for any t ∈ L1, either q(Bt) ∈ (1± α1)p(Bt) or else t ∈ T is in the set of609

buckets for which the total mass q(∪t∈TBt) ≤ α2. We have610

q(∪t∈L1
Bt) ≤ (1 + α1)α2 + α2 ≤ 3α2.

Similarly, using the definition of approximate calibration we have:611

q(∪t∈L2Bt) ≤ α2 and p(∪t∈L2Bt) = q′(∪t∈L2Bt) ≤
α2

1− α1
≤ 2α2.

This gives us that the truly calibrated q′ is close to the approximately calibrated q:612

‖q− q′‖1 ≤
∑
t∈H

α1 · p(Bt) +
∑

t∈L1∪L2

(q(Bt) + q′(Bt))) ≤ α1 + 5α2.
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Thus, by triangle inequality we have613

‖p− q′‖1 ≥ ‖p− q‖1 − α1 − 5α2. (14)

We can thus bound `(q′;p) − `(p;p) following the proof of Theorem 2. Let ε′ = ‖p− q′‖1 and614

ε′t =
∑
x∈Bt |px− q

′
x|. Let `H(q;p) =

∑
j∈H

∑
x∈Bt pxf

(
1
qx

)
be the loss restricted to the buckets615

in H . By (2) we can bound:616

`(q′;p)− `(p;p) ≥ `H(q′;p)− `H(p;p) ≥
∑
t∈H

p(Bt)
b( |Bt|q′(Bt)

)

32

(ε′t)
2(

q′(Bt)
|Bt|

)2

p(Bt)2

.

Since H excludes call elements in L1, for all t ∈ H , q′(Bt)
|Bt| ≥

α2

N . Thus by our assumption on b(·):617

`H(q′;p)− `H(p;p) ≥
∑
t∈H

C
(
N
α2

)
32

(ε′t)
2

p(Bt)
.

and applying the same argument as in Theorem 2 can lower bound this quantity using (14) by:618

`H(q′;p)− `H(p;p) ≥
C
(
N
α2

)
32

· (‖p− q‖1 − α1 − 5α2)
2
. (15)

We next show that `H(q′;p)− `H(q;p) is not too large. Since q and q′ are both piecewise uniform619

on {Bt}t∈T (q) and since q′ is calibrated (i.e, q′(Bt) = p(Bt) for all t),620

`H(q′;p)− `H(q;p) = `H(q′;q′)− `H(q;q′).

We have using that f is nondecreasing:621

`H(q′;q′) =
∑
t∈H

∑
x∈Bt

q′(Bt) · f
(
|Bt|

q′(Bt)

)
≤
∑
t∈H

∑
x∈Bt

q′(Bt) · f
(

1

(1− α1) · qx

)
(16)

Using the concavity of f along with the assumption that f ′(z) ≤ D(z)
z , we have:622

f

(
1

(1− α1) · qx

)
≤ f

(
1

qx

)
+ f ′

(
1

qx

)
·
(

1

(1− α1)qx
− 1

qx

)
≤ f

(
1

qx

)
+D

(
1

qx

)
· qx ·

α1

(1− α1)qx

≤ f
(

1

qx

)
+D

(
1

qx

)
· 2α1.

Plugging back into (16), using that qx ≥ (1− α)q′x ≥
α2(1−α1)

N ≥ α2

2N for all x ∈ ∪t∈HBt we have:623

`H(q′;q′) ≤
∑
t∈H

∑
x∈Bt

q′(Bt)

[
f

(
1

qx

)
+D

(
N

2α2

)
· 2α1

]
≤ `H(q;q′) +D

(
N

2α2

)
· 2α1.

Combined with (15) this gives:624

`H(q;p)− `H(p;p) ≥
C
(
N

2α2

)
32

· (‖p− q‖1 − α1 − 5α2)
2 − 2α1 ·D

(
N

2α2

)
. (17)

Finally, let `L(q;p) be the loss restricted to buckets in L1 ∪ L2. As shown,
∑
t∈L1∪L2

∑
x∈Bt px ≤625

3α2. By the concavity of f(z) we thus have:626

`L(p;p) =
∑

t∈L1∪L2

∑
x∈Bt

px · f
(

1

px

)
≤ 3α2 · f

(
N

3α2

)
.
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Combined with (17) this finally gives:627

`(q;p)− `(p;p) ≥ `H(q;p)− `H(p;p)− `L(p;p)

≥
C
(
N

2α2

)
32

· (‖p− q‖1 − α1 − 5α2)
2 − 2α1 ·D

(
N

2α2

)
− 3α2 · f

(
N

3α2

)
,

which completes the theorem.628

`(q, x) f(z) D(z) C(z) α1 α2
`(q;p)−`(p;p)

ε2

ln 1
qx

ln(z) 1 1 Θ
(
ε2
)

Θ
(

ε2

lnN

)
Ω(1)

ln 1
qx

p, p ∈ (0, 1] (ln(z))p 1 ln(z)p−1 Θ
(
ε2
)

Θ
(

ε2

(lnN)p

)
Ω
(
(lnN)p−1)

ln
(

ln 1
qx

)
ln(ln(z)) 1 1/ ln(z) Θ

(
ε2
)

Θ
(

ε2

ln(lnN)

)
Ω
(

1
lnN

)
1√
qx

√
z 2

√
z 1

4
√
z

Θ
(
ε4

N

)
Θ
(
ε4

N

)
Ω
(
ε2

N

)
(

ln e2

qx

)2

ln(e2z)2 2 ln(z) + 2 2 Θ
(

ε2

lnN

)
Θ
(

ε2

(lnN)2

)
Ω (1)

Table 2: Examples of loss functions that are strongly proper over C(p, α1, α2). We let ε:= ‖p− q‖1
and assume for simplicity that ε ≥ 1/N . We fix values of α1 and α2 that yield a strong properness
bound nearly matching that of Theorem 3 for truly calibrated distributions. Note that in the theorem
D(z) is required to be nondecreasing and thus we set it to 1 for all loss functions considered that
grow slower than the log loss.

F.3 Concentration Under Approximate Calibration629

It is also easy to show that our main concentration result, Theorem 3, is robust to approximate630

calibration, since this result just uses that calibration ensures qx
px

is not too small for any x (Lemma631

3). In particular, using an identical argument to what is used in Lemma 3 we can see from Definition632

8 that for q ∈ C(p, α1, α2), for all x, qx ≥ (1−α1)px
N ≥ px

2N for α1 ≤ 1/2. Following the proof of633

Theorem 3 using this bound in place of Lemma 3 gives:634

Theorem 7. Suppose ` is a local loss function with `(q, x) = f
(

1
qx

)
for non-negative, non-

decreasing, concave f(z). Suppose further that f(z) ≤ c
√
z for all z ≥ 1 and some constant c. Then

` concentrates over C(p, α1, α2) for any α1 ≤ 1/2 and m(γ, δ,N) ≤ N satisfying

m(γ, δ,N) ≥
c1 · f (β)

2
ln 1

δ

γ2
,

where c1 is a fixed constant and β:= 32N8

δ·min(1,γ2/c2) .635

That is, for any p ∈ ∆X ,q ∈ C(p, α1, α2), drawing at least m(γ, δ,N) samples guarantees636

|`(q; p̂)− `(q;p)| ≤ γ with probability ≥ 1− δ.637

First, the analogue of Lemma 3.638

Lemma 5. For all p and all q ∈ C(p, α1, α2) with α1 ≤ 1/2, for all x, we have qx ≥ px
N(1−α1) ≥639

px
2N .640

Proof. Given x, let B = {x′ : qx′ = qx}. By calibration,641

qx =
q(B)

|B|
≥ q(B)

N
≥ (1− α1)p(B)

N
≥ (1− α1)px

N
.

If α1 ≤ 1/2, we get qx ≥ px
2N .642

Proof of Theorem 7. By Lemma 5, we have qx ≥ c2px
N for all x with c2 = 0.5. We apply Proposition643

1, with all parameters exactly as in Theorem 3 except with c2 = 0.5 rather than 1.644
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Note that Theorem 7 is essentially identical to Theorem 3, up to a constant factor in β. Thus, all of645

our concentration results hold, up to constant factors, when q ∈ C(p, α1, α2) for α1 ≤ 1/2 and any646

α2. Also note that Theorem 7 gives a high probability bound for any q ∈ C(p). If for example, we647

wish to minimize `(q;p) over some set of candidate calibrated distributions, we could form an ε-net648

over these distributions and apply the theorem to all elements of this net, union bounding to obtain a649

bound on the probability that the empirical loss is close to the true loss on all elements. Optimizing650

would then yield a distribution with loss within γ of the minimal.651

G Details on Motivating Example652

We now give details on the motivating example for considering alternatives to the log loss in the653

introduction (see Figure 1.)654

Dataset: Our primary data set is a list of 36663 of the most frequent English words, along with655

their frequencies in a count of all books on Project Gutenberg [3]. We then obtained a list of the656

10000 most frequent French [1] and German [2] words. All capitals were converted to lower case, all657

accents removed, and all duplicates from the French and German lists removed. After preprocessing,658

the data consisted of the original 36663 English words along with 16409 French/German words. We659

gave the French and German words uniform frequency values, with the total frequency of these words660

comprising 12.23% of the probability mass of the word distribution.661

Our tests are relatively insensitive to the exact frequency chosen for the French/German words662

within the reasonable range of 5-30%. Low frequency (< 5% of the total probability mass) is not663

sufficient noise to make the log loss minimizing distribution to perform poorly. On the other hand,664

high frequency (> 30% of the total probability mass) is too large and forces even our loglog loss665

minimizing distribution to perform poorly –due to its poor performance on the French and German666

words.667

Learning q1 and q2: We trained the candidate distribution q1 by minimizing log loss for a668

basic character trigram model. Minimizing log loss here simply corresponds to setting the trigram669

probabilities to their relative frequencies in the dataset. These frequencies were computed via a scan670

over all words in the dataset, taking into account the word frequencies. Note that we have full access671

to the target p and thus q1 exactly minimizes `(q;p) = Ex∼p
[
ln 1

qx

]
over all trigram models.672

We trained q2 by distorting the optimization to place higher weight on the head of the distribution.673

In particular, we let p̄ be the distribution with p̄x ∝ pαx for α = 1.4. and minimized log loss over p̄.674

We saw similar performance for α ∈ [1.3, 2]. Below this range, there was not significant difference675

between q1 and q2. Above this range, q2 placed very large mass on the head of the distribution, e.g.,676

outputting the most common word the with probability ≥ .40.677

Results: Our results are summarized in Figure 1. We can see that q2 seems to give more natural678

word samples and, while it achieves worse log loss than q1 (it must since q1 minimizes this loss over679

all trigram models), it achieves better log log loss. This indicates that in this setting, the log log loss680

may be a more appropriate measure to optimize. Our approach to training q2 via a reweighting of p681

can be viewed a heuristic for minimizing log log loss. Developing better algorithms for doing this,682

especially under the constraint that q2 is (approximately) calibrated is an interesting direction.683

One way to see the improved performance of q2 is that its cumulative distribution more closely684

matches that of p. See plot in Figure 1. Overall p places 87.77% of its mass on the English words in685

the input distribution. q1 places 45.56% of its mass on these words and q2 places 83.40% of its mass686

on them. Note that the cumulative distribution plot and these statistics are deterministic, since q1 and687

q2 are trained by exactly minimizing log loss over the distributions p and p̄ without sampling. Thus688

no error bars are shown.689

Below we show an extended sampling of words from q1, q2 and p, evidencing q′2s superior per-690

formance on the task of generating natural English words. In this single run, e.g., q1 generates691

6 distinct commonly used English words {and,the,why,soon,caps,of}. q2 generates 10:692

{all,the,which,on,take,and,be,in,of,he}. p generates 19, all with the except of the693

German word verweigert. More quantitatively, in a run of 10000 random samples, p generates694

2497 distinct English words (the word distribution is very skewed so many duplicates of common695

words are generated). In comparison, q1 generates 815 distinct words and q2 generates 957.696
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Of course there are many methods of evaluating the performance of q1 and q2, which generally will697

be application specific. Our experiments are designed to give just a simple example, motivating the698

idea that minimizing log loss may not always be the optimal choice, and, like in classification and699

regression, there is room for alternative loss functions to be considered.700

Samples from q1 Samples from q2 Samples from p
and all old

tiest the verweigert
rike which five
agal nesell common
the on ny

itunge whostionespirs significance
cand the friend
ho take i

aren the with
why and museum
soon be the
ca frould without

caps in in
der the ethan

connestand the pointed
of goich def
per of down

shicy ithe the
theared he sky
introt ong the

701

H Calibration Definition702

In this section we give further discussion on our definition of calibration. Most typically in forecasting,703

calibration is a property of a sequence of forecasts q(1), . . . , evaluated against a sequence of samples704

x(1), . . . . So our definition may require some background. First, we give a justification based on q as705

a coarsening of p. Then, we show how formalizations of calibration for sequences of forecasts can be706

related to our definition.707

As a coarsening. One way to view the forecast q is as a coarsening of p in the sense of assigning708

probabilities to certain events Bα ⊆ X , but remaining agnostic as to the relative probabilities of709

various elements of Bα, assigning all of them equal weight α. By dividing X into maximal pieces710

Bα on which q is piecewise uniform, in this way one obtains that q is literally a coarsening of p if711

p(Bα) = q(Bα) for each piece (as the pieces partition X ). This is our definition of calibration.712

This directly captures the typical informal definition of calibration as “events that are assigned713

probability β occur a β-fraction of the time”, where the pieces Bα are the events and β = q(Bα) =714

p(Bα) are the probabilities assigned to them.715

It is also consistent with standard formalizations of calibration for sequences (see below), as if716

x(s) ∼ p i.i.d. each round and q(s) = q each round, one has that in the limit, each piece Bα will be717

represented as often as q predicts.718

Sequences of forecasts. Calibration of sequences can be formalized, for example, as follows. If719

each x(t) ∈ X = {0, 1}, then we can let Rt be the set of rounds s ≤ t where x(s) = 1 and St(q) be720

the set of rounds s ≤ t where q(s) = q. In this case, the sequence is termed calibrated if, on rounds721

where q was predicted, the fraction of times that x(s) = 1 converges to q1:722

∀q : lim
t→∞

|St(q) ∩Rt|
|St(q)|

= q1.

One way to obtain our definition is by “flattening” this one: let there be a finite number of rounds723

and suppose p,q are probability distributions over rounds (so p will pick exactly one round to occur,724

and q assigns a binary prediction to each round). In this case we can let S(α) = {t : qt = α} be725
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the set of rounds assigned a probability α by the forecast, then naturally the round t ∼ p lies in726

this set with probability p(S(α)). So the flattened definition of calibration requires that for each α,727

p(S(α)) = q(S(α)), which is exactly our definition.728

Our definition can also be obtained as described above by letting X be general, letting q be forecast729

on each round while x(s) ∼ p i.i.d. each round. If one interprets q as a distribution over events Bα730

that partition X , one obtains the requirement that in the limit p(Bα) = q(Bα) for each α.731

I Strong Properness in `2 Norm732

Our criteria can be extended to utilize different distance measures than our choice of `1 or total733

variation distance. However, justifying and investigating other measures requires further work. In734

particular, this section shows why a choice of `2 distance can be problematic.735

Following our main definitions, one can define a loss to be strongly proper in `2 if, for all p,q,736

`(q;p)− `(p;p) ≥ 1

2
‖p− q‖22.

In particular, consider the quadratic loss `(q, x) = 1
2 ‖δ

x − q‖22, which can be shown to be 1-737

strongly-proper in `2 (Corollary 3). However, the usefulness of this guarantee can be limited, as the738

following example shows.739

Proposition 2. Given a 1-strongly proper loss in `2 norm, q can assign probability zero to the entire740

support of p, yet have expected loss within 2
N of optimal.741

Proof. Let X = {1, . . . , N} for even N . Let p be uniform on {1, . . . , N2 } and let q be uniform on742

{N2 + 1, . . . , N}.743

The point is that for any such “thin” distributions (small maximum probability), their `2 norms744

‖p‖ , ‖q‖ are vanishing and by the triangle inequality so is the distance ‖p− q‖ between them.745

In this example, ‖p− q‖22 = N
(

2
N

)2
= 4

N . So strong properness only guarantees that the difference746

in loss is `(q;p) − `(p;p) ≥ 2
N . In fact, this is exactly matched by the quadratic loss, where the747

difference in expected score (the Bregman divergence of the two-norm) is exactly 1
2 ‖p− q‖22 =748

2
N .749

Thus, strongly proper losses in `2 can converge to optimal expected loss at the rapid rate of O( 1
N )750

even when making completely incorrect predictions.751

J Strongly Proper Losses and Scoring Rules on the Full Domain752

In this section, for completeness, we investigate the strongly proper criterion in the traditional setting753

of proper losses (equivalently, scoring rules). The main result is that, just as (strictly) proper losses754

are Bregman divergences of (strictly) convex functions, so are strongly proper losses Bregman755

divergences of strongly convex functions. We derive some non-local strongly proper losses. These756

results may be of independent interest.757

Terminology. Given a function f : Rd → R, the vector v ∈ Rd is a supergradient of f at z if for758

all z′, we have f(z′) ≤ f(z) + v · (z′ − z). (In other words, there is a tangent hyperplane lying759

above f at z with slope v.) A function is concave if it has at least one supergradient at every point. (If760

exactly one, it is differentiable.) In this case, use df(z) to denote a choice of a supergradient of f at z.761

Given a concave f , the divergence function of f is762

D−f (z, z′):= [f(z′) + df(z′) · (z − z′)]− f(z),

the gap between f(z) and the linear approximation of f at z′ evaluated at z. The reason for this763

notation is that D−f is the Bregman divergence of the convex function −f .764

Definition 9 (Strongly Concave). A function f : Rd → R is β-strongly concave with respect to a765

norm ‖·‖ if for all z, z′,766

D−f (z, z′) ≥ β

2
‖z − z′‖2 .
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J.1 Background: proper loss characterization767

We first recall some background from theory of proper scoring rules, phrased in the loss setting. Given768

a loss `(q, x), the expected loss function is H`(p) = `(p;p). The following classic characterization769

says that (strict) properness of ` is equivalent to (strict) concavity of H`.770

Theorem 8 ([21, 24, 15]). ` is a (strictly) proper loss if and only if H` is (strictly) concave. If so, we771

must have772

`(q, x) = H`(q) + dH`(q) · (δx − q)

where dH`(q) is any supergradient of H` at q and δx is the point mass distribution on x.773

Corollary 1. The expected loss of q under true distribution p is the linear approximation of H` at q,774

evaluated at p:775

`(q;p) = H`(q) + dH`(q) · (p− q).

Corollary 2. When the true distribution is p, the improvement in expected loss for reporting p instead776

of q is the divergence function of H` (the Bregman divergence of −H`), i.e.777

`(q;p)− `(p;p) = D−H`(p,q).

Example 5. Recall from Example 1 the log loss `(q, x) = ln 1
q has expected loss equal to Shannon778

entropy. The associated Bregman divergence is the KL-divergence, so the difference in expected log779

loss between p and q under true distribution p is KL(p,q):=
∑
x px ln px

qx
. The quadratic loss has780

expected loss Hquad(p) = 1
2 −

1
2‖p‖

2
2, so the associated Bregman divergence is D−Hquad(p,q) =781

1
2‖p− q‖22.782

The above are all well-known, although in the literature on proper scoring rules everything is negated783

(a score is used equal to negative loss, the expected score is convex, etc.).784

J.2 Strongly concave functions and strong properness785

Given the above characterization and our (carefully chosen) definition of strongly proper, the classic786

characterization of proper losses extends easily:787

Theorem 9. A proper loss function ` is β-strongly proper (with respect to a norm) if and only if H`788

is β-strongly concave (with respect to that norm).789

Proof. We have `(q;p)− `(p;p) = D−H`(p,q) by Corollary 2. H` is β-strongly concave if and790

only if D−H`(p,q) ≥ β
2 ‖p− q‖ for all p,q, which is the condition that ` is β-strongly proper.791

Though the proof is trivial once the definitions are set up and followed through, the statement is792

powerful. It completely characterizes the proper loss functions satisfying that, if q is significantly793

wrong (far from p), then its expected loss is significantly worse. It also gives an immediate recipe794

for constructing such losses: Start with any concave function H(q) that is strongly concave in your795

norm of choice, and set `(q, x) = H(q) + dH(q) · (δx − q). All strongly proper losses satisfy this796

construction for some such H .797

J.3 Known examples798

Recall that the log scoring rule’s expected loss function is Shannon entropy. Hence, the fact that799

log loss is 1-strongly-proper (Example 2) turns out to be equivalent to the statement that Shannon800

entropy is 1-strongly convex in `1 norm. As described in Section 3, this fact (perhaps surprisingly) is801

equivalent to Pinsker’s inequality.802

However, `1-strong properness seems difficult to satisfy over the simplex. In particular,803

Proposition 3. The quadratic scoring rule is not strongly proper in `1 norm.804

Proof. Consider q as the uniform distribution and let px ∈ 1±ε
N , such that ‖p− q‖1 = ε. Then805

`(q; p) − `(p; p) = 1
2 ‖p− q‖22 = 1

2 (N)
(
ε
N

)2
= ε2

2N . As N → ∞, this difference in loss goes to806

zero while ‖p− q‖1 = ε, so there is no fixed β such that the loss is β-strongly proper.807
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We can show that it is strongly proper in `2 norm. However, the usefulness of `2 strong properness is808

less clear, as is demonstrated in Appendix I.809

Lemma 6. The function − 1
2‖p‖

2
2 is 1-strongly concave with respect to the `2 norm.810

Proof. The associated Bregman divergence is 1
2‖p − q‖22, which is equal to 1

2‖p − q‖22, so it is811

1-strongly convex in `2 norm.812

Corollary 3. The quadratic loss is 1-strongly proper with respect to the `2 norm.813

J.4 New proper losses814

Because the `1 norm is especially preferred when measuring distances between probability distribu-815

tions, we seek losses that are 1-strongly proper with respect to the L1 norm. By the characterization of816

Theorem 9, this is equivalent to seeking `1 β-strongly-convex functions of probability distributions.817

Lemma 7. Let M ∈ RN×N be the negative of the Hessian of a function H : ∆X → R. Then H is818

β-strongly concave in `1 norm if and only if819

min
w:‖w‖1=1

wᵀMw ≥ β

Proof. M is the Hessian of the (presumably convex) function −H .820

We focus on separable, symmetric concave functions: H(q) =
∑
x h(qx) for some concave function821

h. In this case the Hessian of H is a diagonal matrix with (x, x) entry d2h(z)
dz2 . Call its negative M as822

in Lemma 7 and for convenience later, let us define f(z) as823

1

f(z)
:=
−d2h(z)

dz2
.

Then by Lemma 7, H(q) is β-strongly concave if824

β ≤ min
w:‖w‖1=1

wᵀMw

= min
w:‖w‖1=1

∑
x

w2
x

f(qx)
.

This is solved by setting wx ∝ f(qx), where the normalizing constant is C:=
∑
x f(qx). So we have825

β ≤
∑
x

(
f(qx)

C

)2
1

f(qx)

=
1

C2

∑
x

f(qx)

=
1

C

=
1∑

x f(qx)
.

So for 1-strong concavity, we require
∑
x f(qx) ≤ 1 for all q. Now choose f(qx) = q1+α

x .826

• If α < 0, then
∑
x f(qx) can be arbitrarily large and the resulting function is not strongly827

concave in `1 norm.828

• If α = 0, then we have d2h(z)
dz2 = −1

z and we recover h(z) = z ln( 1
z ), which gives H as829

Shannon entropy; the log scoring rule.830

• If α ≥ 1, we get h(z) is unbounded on [0, 1], so we obtain an expected loss function that is831

unbounded on the simplex.832

• For 0 < α < 1, we get a class of apparently-new proper loss functions that are 1-strongly833

proper. Here d2h(z)
dz2 = −1

z1+α , so h(z) = z1−α and H(z) =
∑
x q

1−α
x .834

In particular, for the last class, we identify the appealing case α = 0.5. It gives the following “inverse835

root” loss function:836
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• H(q) = 2
∑
x

√
qx.837

• `(q, x) = 1√
qx

+
∑
x′
√
qx′ .838

• `(q;p) =
∑
x

1√
qx

(px + qx).839

• D−H(p,q) =
∑
x

1√
qx

(√
px −

√
qx
)2

.840

We are not aware of this loss having been used before, but it seems to have nice properties. There is841

an apparent similarity to the squared Hellinger distance H(p,q)2:= 1
2

∑
x

(√
px −

√
qx
)2

, we are842

not aware of a closer formal connection. For example, Hellinger distance is symmeteric.843
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