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Abstract

We study the Unadjusted Langevin Algorithm (ULA) for sampling from a proba-
bility distribution v = e~/ on R™. We prove a convergence guarantee in Kullback-
Leibler (KL) divergence assuming v satisfies log-Sobolev inequality and f has
bounded Hessian. Notably, we do not assume convexity or bounds on higher deriva-
tives. We also prove convergence guarantees in Rényi divergence of order ¢ > 1
assuming the limit of ULA satisfies either log-Sobolev or Poincaré inequality.

1 Introduction

Sampling is a fundamental algorithmic task. Many applications require sampling from probability
distributions in high-dimensional spaces, and in modern applications the probability distributions
are complicated and non-logconcave. While the setting of logconcave functions is well-studied, it
is important to have efficient sampling algorithms with good convergence guarantees beyond the
logconcavity assumption. There is a close interplay between sampling and optimization, either via
optimization as a limit of sampling (annealing) [34,155], or via sampling as optimization in the space
of distributions [36}162]]. Motivated by the widespread use of non-convex optimization and sampling,
there is resurgent interest in understanding non-logconcave sampling.

In this paper we study a simple algorithm, the Unadjusted Langevin Algorithm (ULA), for sampling
from a target probability distribution v = e~ on R”. ULA requires oracle access to the gradient V f
of the log density f = — log v. In particular, ULA does not require knowledge of f, which makes it
applicable in practice where we often only know v up to a normalizing constant.

As the step size € — 0, ULA recovers the Langevin dynamics, which is a continuous-time stochastic
process in R”™ that converges to v. We recall the optimization interpretation of the Langevin dynamics
for sampling as the gradient flow of the Kullback-Leibler (KL) divergence with respect to v in the
space of probability distributions with the Wasserstein metric [36]]. When v is strongly logconcave,
the KL divergence is a strongly convex objective function, so the Langevin dynamics as gradient
flow converges exponentially fast [6} 60]. From the classical theory of Markov chains and diffusion
processes, there are several known conditions milder than logconcavity that are sufficient for rapid
convergence in continuous time. These include isoperimetric inequalities such as Poincaré inequality
or log-Sobolev inequality (LSI). Along the Langevin dynamics in continuous time, Poincaré inequality
implies an exponential convergence rate in y2-divergence, while LSI—which is stronger—implies an
exponential convergence rate in KL divergence (as well as in Rényi divergence).

However, in discrete time, sampling under Poincaré inequality or LSI is a more challenging problem.
ULA is an inexact discretization of the Langevin dynamics, and it converges to a biased limit
ve # v. When v is strongly logconcave and smooth, it is known how to control the bias and
prove a convergence guarantee on KL divergence along ULA [[17, 121} 22, 24]. When v is strongly
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logconcave, there are many sampling algorithms with provable rapid convergence; these include
the ball walk and hit-and-run [37, 43| 44, 42] (which give truly polynomial algorithms), various
discretizations of the overdamped or underdamped Langevin dynamics [21} 22} 24} |8, [26] (which
have polynomial dependence on smoothness parameters but low dependence on dimension), and
the Hamiltonian Monte Carlo [47, 148} 125, 139, [16]. It is of great interest to extend these results to
non-logconcave densities v, where existing results require strong assumptions with bounds that grow
exponentially with the dimension or other parameters [2, (18} 145} 49]]. There are recent works that
analyze convergence of sampling using various techniques such as reflection coupling [28]], kernel
methods [29]], and higher-order integrators [40]], albeit still under some strong conditions such as
distant dissipativity, which is similar to strong logconcavity outside a bounded domain.

In this paper we study the convergence along ULA under minimal (and necessary) isoperimetric
assumptions, namely, LSI and Poincaré inequality. These are sufficient for fast convergence in
continuous time; moreover, in the case of logconcave distribution, the log-Sobolev and Poincaré
constants can be bounded and lead to convergence guarantees for efficient sampling in discrete time.
However, do they suffice on their own without the assumption of logconcavity?

We note that LSI and Poincaré inequality apply to a wider class of measures than logconcave
distributions. In particular, LSI and Poincaré inequality are preserved under bounded perturbation and
Lipschitz mapping, whereas logconcavity is destroyed. Given these properties, it is easy to exhibit
examples of non-logconcave distributions satisfying L.SI or Poincaré inequality. For example, we
can take a small perturbation of a convex body to make it nonconvex but still satisfies isoperimetry;
then the uniform probability distribution (or a smooth version of it) on the body is not logconcave but
satisfies LSI and Poincaré inequality. Similarly, we can start with a strongly logconcave distribution
and make bounded perturbations; then the resulting (normalized) probability distribution is not
logconcave, but it satisfies LSI and Poincaré inequality. See Figure[I|for an illustration.
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Figure 1: Illustrations of non-logconcave distributions satisfying isoperimetry: uniform distribution
on a nonconvex set (left) and a perturbation of a logconcave distribution (right).

We measure the mode of convergence using KL divergence and Rényi divergence of order ¢ > 1,
which is stronger. Our first main result says the only further assumption we need is smoothness. We
say v = e~/ is L-smooth if V f is L-Lipschitz. Here H,, (p) is the KL divergence between p and v.
See Theorem 2in Section [3.1]for more detail.

Theorem 2. Assume v = e~/ satisfies log-Sobolev inequality with constant o > 0 and is L-smooth.
ULA with step size 0 < € < ;77 satisfies
_ . € 2
Hy(pr) < e “FH,(po) + Bl

For0 < 6 < 4n, ULA withe < % reaches error H,,(pr) < 0 after k > é log ZH"T(’)”) iterations.

For example, if we start with a Gaussian pg = N'(z*, 1) where z* is a stationary point of f (which

we can find, e.g., via gradient descent), then H,,(pg) = O(n) (see Lemma , and Theorem [2|gives an

iteration complexity of k = é(i;g‘) to achieve H, (p) < 0§ using ULA with step size e = O(2).

The result above matches previous known bounds for ULA when v is strongly logconcave [17, 121,
22, 124]]. Our result complements the recent work of Ma et al. [45] who study the underdamped
version of the Langevin dynamics under LSI and show an iteration complexity for the discrete-
time algorithm that has better dependence on the dimension (\/%T in place of % above for ULA),
but under an additional smoothness assumption (f has bounded third derivatives) and with higher
polynomial dependence on other parameters. Our result also complements the work of Mangoubi
and Vishnoi [49] who study the Metropolis-adjusted version of ULA (MALA) for non-logconcave v
and show a log(%) iteration complexity from a warm start, under the additional assumption that f
has bounded third and fourth derivatives in an appropriate co-norm.



We note that in general some isoperimetry condition is needed for rapid mixing of Markov chains
(such as Langevin dynamics and ULA), otherwise there are bad regions in the state space from which
the chains take arbitrarily long to escape. Smoothness or bounded Hessian is a common assumption
needed for the analysis of discrete-time algorithms (such as gradient descent or ULA).

In the second part of this paper, we study the convergence of Rényi divergence of order ¢ > 1
along ULA. Rényi divergence is a family of generalizations of KL divergence [56} 59} |1 1], which
becomes stronger as the order ¢ increases. There are physical and operational interpretations of
Rényi divergence [31} 3]]. Rényi divergence has been useful in many applications, including for
the exponential mechanism in differential privacy [27, [1} [12} |52], lattice-based cryptography [4],
information-theoretic encryption [35], variational inference [41]], machine learning [32} 50|, informa-
tion theory and statistics [20, 53], and black hole physics [23]].

Our second result proves a convergence bound for the Rényi divergence of order ¢ > 1. While
Rényi divergence is a stronger measure of convergence than KL divergence, the situation is more
complicated. First, we can hope to converge to the biased limit v, only for finite ¢ for any step
size € (as we illustrate with an example). Second, it is unclear how to bound the Rényi divergence
between v, and v. We first show the following convergence guarantees of Rényi divergence along the
continuous-time Langevin dynamics under LSI or Poincaré inequality; see Theorem [3|and Theorem [3]
Here R, . (p) is the Rényi divergence of order ¢ between p and v.

Theorem 3. Suppose v satisfies LSI with constant o > 0. Let ¢ > 1. Along the Langevin dynamics,

_ 20t
Rq,V(Pt) <e Rq7V(PO)~

Theorem 5. Suppose v satisfies Poincaré inequality with constant o« > 0. Let ¢ > 2. Along the
Langevin dynamics,

" (pt><{R v(po) = 25t if By (po)

>1
2at .
" Ryu(p ) if Rg(po) < 1.

and as long as Ry, (p1) > 1,

Notice that under Poincaré inequality, compared to LSI, the convergence is slower in the beginning
before it becomes exponential. For a reasonable starting distribution (such as a Gaussian centered at
a stationary point), this leads to an extra factor of n compared to the convergence under LSI. We then
turn to discrete time and show the convergence of Rényi divergence along ULA to the biased limit v,
under the assumption that v, itself satisfies either LSI or Poincaré inequality. We combine this with a
decomposition result on Rényi divergence to derive a convergence guarantee for Rényi divergence to
v along ULA; see Theorem 4] and Theorem 6]

In what follows, we review KL divergence and its properties along the Langevin dynamics in Section[2}
and prove a convergence guarantee for KL divergence along ULA under LSI in Section[3] We provide
a review of Rényi divergence and its properties along the Langevin dynamics in Section4] We then
prove the convergence guarantee for Rényi divergence along ULA under LSI in Section|[5| and under
Poincaré inequality in Section[6] We conclude with a discussion in Section

2 Review of KL divergence along Langevin dynamics

In this section we review the definition of Kullback-Leibler (KL) divergence, log-Sobolev inequality,
and the convergence of KL divergence along the Langevin dynamics in continuous time under
log-Sobolev inequality. See Appendix for a review on notation.

2.1 KL divergence

Let p, v be probability distributions on R"”, represented via their probability density functions with
respect to the Lebesgue measure on R™. We assume p, v have full support and smooth densities.

Recall the Kullback-Leibler (KL) divergence of p with respect to v is

p(x)
H,(p) = 1 . 1
(p) / p(x)log V(x) dx (D
KL divergence is the relative form of Shannon entropy H (p fRn x) log p(z) de. Whereas

Shannon entropy can be positive or negative, KL dlvergence 18 nonnegat1ve and minimized at v:



H,(p) > 0 forall p, and H,(p) = 0if and only if p = v. Therefore, KL divergence serves as a
measure of (albeit asymmetric) “distance” of a probability distribution p from a base distribution v.
KL divergence is a relatively strong measure of distance; for example, Pinsker’s inequality implies
that KL divergence controls total variation distance. Furthermore, under log-Sobolev (or Talagrand)
inequality, KL divergence also controls the quadratic Wasserstein W5 distance, as we review below.
We say v = e~ is L-smooth if f has bounded Hessian: —LI < V2f(x) < LI for all z € R™. We
provide the proof of Lemma|[I]in Appendix

Lemma 1. Suppose v = e~/ is L-smooth. Let p = N (z*, %I) where x* is a stationary point of f.
Then H,(p) < f(z*) + % log %

2.2 Log-Sobolev inequality

Recall we say v satisfies the log-Sobolev inequality (LSI) with a constant « > 0 if for all smooth
function g: R™ — R with E, [¢°] < oo,

2
E,[g%log 9] -~ E,[g*]log B, [g°] < ~E,[|[Vg]’] )

Recall the relative Fisher information of p with respect to v is

p) |’
V log o(z) H dx. 3)

LSI is equivalent to the following relation between KL divergence and Fisher information for all p:

10 = [ o)

1
Hy(p) < 5=Ju(p)- )

2
Indeed, to obtain (@) we choose g> = £ in (2); conversely, to obtain (2) we choose p = 5o 0 @)

LSI is an isoperimetry condition and implies, among others, concentration of measure and sub-
Gaussian tail property [38]. LSI was first shown by Gross [30] for the case of Gaussian v. It was
extended by Bakry and Emery [6] to strongly log-concave v; namely, when f = — log v is a-strongly
convex, then v satisfies LSI with constant . However, LSI applies more generally. For example,
the classical perturbation result by Holley and Stroock [33] states that LSI is stable under bounded
perturbation. Furthermore, LSI is preserved under a Lipschitz mapping. In one dimension, there is
an exact characterization of when a probability distribution on R satisfies LSI [9]. Moreover, LSI
satisfies a tensorization property [38]]: If v1, v» satisfy LSI with constants a1, ae > 0, respectively,
then 11 ® v, satisfies LST with constant min{ay, e} > 0. Thus, there are many examples of
non-logconcave distributions v on R” satisfying LSI (with a constant independent of dimension).
There are also Lyapunov function criteria and exponential integrability conditions that can be used to
verify when a probability distribution satisfies LSI; see for example [14} 115,151,161} [7].

2.2.1 Talagrand inequality

Recall the Wasserstein distance between p and v is
Wa(p,v) = inf En[| X - Y2 5)

where the infimum is over joint distributions I of (X, Y") with the correct marginals X ~ p,Y ~ v.
Recall we say v satisfies Talagrand inequality with a constant o > 0 if for all p:

S Walp,v)? < Hy(p). (©6)

Talagrand’s inequality implies concentration of measure of Gaussian type. It was first studied by
Talagrand [58]] for Gaussian v, and extended by Otto and Villani [54] to all v satisfying LSI; namely,
if v satisfies LSI with constant o > 0, then v also satisfies Talagrand’s inequality with the same
constant [54, Theorem 1]. Therefore, under LSI, KL divergence controls the Wasserstein distance.
Moreover, when v is log-concave, LSI and Talagrand’s inequality are equivalent [54, Corollary 3.1].
We recall in Appendix the geometric interpretation of LSI and Talagrand’s inequality from [54].



2.3 Langevin dynamics

The Langevin dynamics for target distribution v = e~/ is a continuous-time stochastic process
(Xt)i>0 in R™ that evolves following the stochastic differential equation:

dX, = =V f(X;) dt + V2 dW, 7)
where (IW;)>¢ is the standard Brownian motion in R™ with Wy = 0.

If (X;):>0 evolves following the Langevin dynamics (7), then their probability density function
(pt)e>0 evolves following the Fokker-Planck equation:
Op

_ v _v. pe
S =V (V) +Ap = V- (VI0g ). ®)

Here V- is the divergence and A is the Laplacian operator. We provide a derivation in Appendix [A.3]
From (8), if p = v, then % = 0, so v is the stationary distribution for the Langevin dynamics (7).
Moreover, the Langevin dynamics brings any distribution X; ~ p; closer to the target distribution v,
as the following lemma shows.

Lemma 2. Along the Langevin dynamics (1) (or equivalently, the Fokker-Planck equation (8))),

d

%HV(pt) = *Ju(pt)- 9

We provide the proof of Lemmagin Appendix E.I.Z. Since J,(p) > 0, the identity (9) shows KL
divergence is decreasing along the Langevin dynamics, so indeed the distribution p; converges to v.

2.3.1 Exponential convergence of KL divergence along Langevin dynamics under LSI

When v satisfies LSI, KL divergence converges exponentially fast along the Langevin dynamics.

Theorem 1. Suppose v satisfies LSI with constant o > 0. Along the Langevin dynamics (),
Hu(ﬂt) < G_QQtHu(PO)- (10)

Furthermore, Wa(py,v) < \/2H,(po) e~ *".

We provide the proof of Theorem|[I]in Appendix [B.1.3. We also recall the optimization interpretation
of Langevin dynamics as the gradient flow of KL divergence in the space of distributions with
the Wasserstein metric [36] 60, 54]. Then the exponential convergence rate in Theorem [T is a
manifestation of the general fact that gradient flow converges exponentially fast under gradient
domination condition. This provides a justification for using the Langevin dynamics for sampling
from v, as a natural steepest descent flow that minimizes the KL divergence H,, .

3 Unadjusted Langevin Algorithm

Suppose we wish to sample from a smooth target probability distribution v = e~/ in R”. The
Unadjusted Langevin Algorithm (ULA) with step size ¢ > 0 is the discrete-time algorithm

xk+1:xk—er(xk)+@zk (11)

where z, ~ N(0,I) is an independent standard Gaussian random variable in R™. Let pj, denote the
probability distribution of x, that evolves following ULA.

As e — 0, ULA recovers the Langevin dynamics (7) in continuous-time. However, for fixed € > 0,
ULA converges to a biased limiting distribution v, # v. Therefore, KL divergence H, (py) does not
tend to 0 along ULA, as it has an asymptotic bias H,(v,) > 0.

Example 1. Let v = N(0, L1). The ULA iteration is x4y = (1 — ea)y, + V/2ez. For 0 < e < 2,
the limit is ve = N (0, ﬁ) and the bias is H, (v.) = %(ﬁ +log(1 — <)). In particular,
2 2

2 2

HV(VE) S ﬁ = O(E2>'



3.1 Convergence of KL divergence along ULA under LSI

When v satisfies LSI and a smoothness condition, we can prove a convergence guarantee in KL
divergence along ULA. Recall we say v = e~/ is L-smooth if —LI < V?f(z) < LI for all z € R",
A key part in our analysis is the following lemma which bounds the decrease in KL divergence along
one iteration of ULA. Here x4 ~ pk41 is the output of one step of ULA from xj ~ pg.

Lemma 3. Suppose v satisfies LSI with constant o > 0 and is L-smooth. If 0 < € < 175, then along
each step of ULA (1)),
H,(pry1) < e *H,(pi) + 6€nL>. (12)

We provide the proof of Lemma [3]in Appendix [B.2.T. The proof of Lemma [3|compares the evolution
of KL divergence along one step of ULA with the evolution along Langevin dynamics in continuous
time (which converges exponentially fast under LSI), and bounds the discretization error; see Figure 2]
for an illustration. This comparison technique has been used in many papers. Our proof structure is
similar to that of Cheng and Bartlett [[17]], whose analysis needs v to be strongly logconcave.

With Lemma 3] we can prove our main result on the convergence rate of ULA under LSI. We provide
the proof of Theorem 2]in Appendix [B.2.2|

Theorem 2. Assume v = e~/ satisfies log-Sobolev inequality with constant o > 0 and is L-smooth.
ULA with step size 0 < € < ;75 satisfies

—QER €N 2
H,(pr) < e *FH,(po) + 8L,

For0 < 6§ < 4n, ULA with e < 16‘2‘5% reaches error H,(pi) < § after k > é log M”T(po) iterations.

In particular, suppose & < 4n and we choose the largest permissible step size € = © ( L”;‘sn ) Suppose

we start with a Gaussian pg = N (z*, %I ), where x* is a stationary point of f (which we can find,
e.g., via gradient descent), so H,(py) < f(z*) + Zlog & = O(n) by Lemma E Theoremlz

states that to achieve H, (py) < &, ULA has iteration complexity k = 6] i zg) Since LSI implies

Talagrand’s inequality, Theorem 2 also yields a convergence guarantee in Wasserstein distance. As
k — oo, Theoremg implies the following bound on the bias of ULA under LSI. However, we note
the bound O(e) may be loose, since from Examplewe see H,(v.) = O(€?) in Gaussian case.

@

Corollary 1. Suppose v satisfies LSI with constant o > 0 and is L-smooth. For 0 < ¢ < 375, the
2 2
biased limit v of ULA with step size € satisfies H,, (v.) < 8"TLE and Wo(v,v.)? < 163755.

4 Review of Rényi divergence along Langevin dynamics

4.1 Rényi divergence

Rényi divergence [56] is a family of generalizations of KL divergence. See [59, [11] for properties of
Rényi divergence.

For ¢ > 0, ¢ # 1, the Rényi divergence of order ¢ of a probability distribution p with respect to v is

Ryu(p) =

—1 log Fq-,V(p) (13)

where

F,.(p)=E, {(g)q} _ /n y(m)iéiiz de = /Rn V’(’gquda:. (14)

Rényi divergence is the relative form of Rényi entropy [56]: H,(p) = qfll log [ p(x)? dz. The case
q = 11is defined via limit, and recovers the KL divergence (I): Ry, (p) = lim,1 Ry (p) = H,(p).
Rényi divergence has the property that R, ,,(p) > 0 for all p, and R, ,,(p) = 0 if and only if p = v.
Furthermore, the map ¢ — R, (p) is increasing (see Section|B.3.1). Therefore, Rényi divergence
provides an alternative measure of “distance” of p from v, which becomes stronger as ¢ increases. In

particular, R, (p) = log || 2 ||OO = log sup,, 2 Eg is finite if and only if p is warm relative to v. It is

possible that R, ,,(p) = oo for large enough g, as the following example shows.



Example 2. Let p = N(0,0%1) andv = N (0, \2I). If 0® > N2 and q > 02%2/\2 then Ry, (p) = oc.
Otherwise, Ry, (p) = 5 log 2—2 - ﬁ log (¢ — (¢ — 1)‘)’\—2)

The following is analogous to Lemma[I] We provide the proof of Lemmafd]in Appendix|[B.3.2]
Lemma 4. Suppose v = ¢~/ is L-smooth. Let p = N (z*, %I) where x* is a stationary point of f.
Then forall g > 1, Ry, (p) < f(z*) + % log &.

4.1.1 Log-Sobolev inequality

For ¢ > 0, we define the Rényi information of order g of p with respect to v as
q 2 q—2 2 4 g
Gote) =B |(Z) [ Vre 7 | = |(5)" V5[ ] = 2= (¥ (5)°
v v v v q v

The case ¢ = 1 recovers relative Fisher information (3): G1,,(p) = E, [f ||V10g L ||2} = Ju(p).

We have the following relation under log-Sobolev inequality. Note the case ¢ = 1 recovers LSI ().
We provide the proof of Lemma5]in Appendix [B.3.3]

Lemma 5. Suppose v satisfies LSI with constant o > 0. Let ¢ > 1. For all p,

G (p) < 2
———— > =R, .(p). 16
Fq,y(p) — q2 q, (p) ( )

2}. (15)

4.2 Langevin dynamics

Along the Langevin dynamics ((7) for v, we can compute the rate of change of the Rényi divergence.

Lemma 6. For all g > 0, along the Langevin dynamics (7)),

d Gy, (pt)
dth,V(pt) = qu,y(,Dt) . (17)
We provide the proof of Lemmalg in Appendix [B.3.4. In particular, %Rq,y(pt) < 0, so Rényi
divergence is always decreasing along the Langevin dynamics. Furthermore, analogous to how the
Langevin dynamics is the gradient flow of KL divergence under the Wasserstein metric, one can
also show that the Langevin dynamics is the the gradient flow of Rényi divergence with respect to a
suitably defined metric (which depends on v) on the space of distributions; see [[13l].

4.2.1 Convergence of Rényi divergence along Langevin dynamics under LSI

When v satisfies LSI, Rényi divergence converges exponentially fast along the Langevin dynamics.
Note the case ¢ = 1 recovers the exponential convergence rate of KL. divergence from Theorem

Theorem 3. Suppose v satisfies LSI with constant oo > 0. Let ¢ > 1. Along the Langevin dynamics,
_ 20t
Rqu(pr) <e” o Rgu(po).

We provide the proof of Theorem [3|in Appendix[B.3.5! Theorem|[3|shows that if the initial Rényi diver-
gence is finite, then it converges exponentially fast. However, even if initially the Rényi divergence is
00, it will be finite along the Langevin dynamics, after which time Theorem [3|applies. This is because
when v satisfies LSI, the Langevin dynamics satisfies a hypercontractivity property [30} 10, 60]; see
Section @ Furthermore, as shown in [13]], we can combine the exponential convergence rate
above with the hypercontractivity property to improve the exponential rate to be 2«, independent of
g, at the cost of some initial waiting time; here we leave the rate as above for simplicity.

5 Rényi divergence along ULA

In this section we prove a convergence guarantee for Rényi divergence along ULA under the
assumption that the biased limit satisfies LSI. As before, let v = e—f, and let v, denote the biased
limit of ULA with step size € > 0. We note that the bias R, ,, (v.) may be oo for large enough gq.



Example 3. As in ExamplesandEl letv =N(0,21), s0v. =N(0, Q(%TQ)]) The bias is
sy (alog (1- %) —log (1 - %)) if1<g<Z,
o0 ifg> 2.

Rq,u(ye) = {

Thus, for each fixed ¢ > 1, there is an asymptotic bias R, , (v.) which is finite for small enough e.
In Example [3 we have R, , (v.) = O(e?). In general, we assume for each ¢ > 1 there is a growth
function g, (€) that controls the bias: R, ., (v.) < g,(€) for small € > 0, and lim._,o g,(¢) = 0.

5.1 Decomposition of Rényi divergence

For order ¢ > 1, we have the following decomposition of Rényi divergence.
Lemma 7. Let q > 1. For all probability distribution p,

1

-3

Ryu(p) <

av(p) < <q 1

We provide the proof of Lemma|[7 in Appendix [B.4.1. The first term in the bound above is the

Rényi divergence with respect to the biased limit, which converges exponentially fast under LSI (see

Lemma . The second term in is the bias, which is controlled by the growth function gaq—1 (€).

) Rog.v.(p) + Rag—1,,(ve). (18)

5.2 Rapid convergence of Rényi divergence with respect to v, along ULA

We show Rényi divergence with respect to the biased limit v, converges exponentially fast along
ULA, assuming v itself satisfies LSI.

Assumption 1. The probability distribution v, satisfies LSI with a constant 8 = 3. > 0.

We can verify Assumption [T]in the Gaussian case. However, it is unclear how to verify Assumption |I]
in general. One might hope to prove that if v satisfies LSI, then Assumption [T holds.

Example 4. Let v = N(0, 21), so v = N (0, ﬁ[) satisfies LSI with 3 = o1 — ).
2

Under Assumption[I] we can prove an exponential convergence rate to the biased limit v.

Lemma 8. Assume Assumpti0n|z. Suppose v = eI is L-smooth, and let 0 < € < min {i, ﬁ}
For q > 1, along ULA (11),

Bek

@ Ry, (po)- (19

We provide the proof of Lemmal(8]in Appendix In the proof of Lemma 8] we decompose each
step of ULA as a sequence of two operations; see Figure [3 for an illustration. In the first part we
take a gradient step, which is a deterministic bijective map, so it preserves Rényi divergence. In the
second part we add an independent Gaussian, which is evolution along the heat flow, and we derive a
formula on the decrease in Rényi divergence (which is similar to along the Langevin dynamics).

Ryv. (pr) < e

5.3 Convergence of Rényi divergence along ULA under LSI

We combine Lemma[7]and Lemma|§]to obtain the following characterization of the convergence of
Rényi divergence along ULA under LSI. We provide the proof of Theorem d]in Appendix[B.4.3]

Theorem 4. Assume Assumption Suppose v = e~ is L-smooth, and let 0 < ¢ < min { L1 }

3L’ 98
Let q > 1, and suppose R, (po) < co. Then along ULA (11),

1
5 _ Bek
i) Raqu.(po)e” 27 + gag—1(e). (20)

q
Rqv <
g (Pk) (q

For 6 > 0, let g; ' () = sup{e > 0: g(e) < 6}. TheoremEstates that to achieve R, , (p) < 0,

it suffices to run ULA with step size e = © (min {1,g5."; (§)}) for k = O( 5 log RQ%E(””))

iterations. Suppose ¢ is small so gz_ql_1 (é) < % Note v, is

5 %-smooth, so if we choose pg

2



to be a Gaussian with covariance 2¢I, we have Ry, (po) = O(n) by Lemma lﬁ Therefore,

Theorem |4 yields an iteration complexity of k = O(M). For example, if g4(e) = O(e),
2q—1

then g, ' (6) = Q(0), so the iteration complexity is k = O(%) with e = O(4). If g,(€) = O(€?), as
in Example then g, ' (9) = Q(V/4), so the iteration complexity is k = O(ﬁ) with € = ©(/0).

6 Poincaré inequality

We recall v satisfies Poincaré inequality (PI) with a constant « > 0 if for all smooth g: R™ — R,
Var, () < B [|[Vglf?) @D
where Var, (g) = E,[g?] — E,[g]? is the variance of g under v. Poincaré inequality is an isoperimetry
condition which is weaker than LSI. LSI implies PI with the same constant; in fact, Pl is a linearization
of LSI (@), i.e., when p = (14ng)v asn — 0 [57,/60]]. Furthermore, it is known Talagrand’s inequality
implies PI with the same constant, and PI is also a linearization of Talagrand’s inequality [54].
Poincaré inequality is better behaved than LSI [15], and there are various Lyapunov criteria and
integrability conditions to verify when a distribution satisfies Poincaré inequality [J5, 151} [19].

6.1 Convergence of Rényi divergence along Langevin dynamics under Poincaré inequality

When v satisfies Poincaré inequality, Rényi divergence converges along the Langevin dynamics. The
convergence is initially linear, then becomes exponential once Rényi divergence falls below 1.
Theorem 5. Suppose v satisfies Poincaré inequality with constant o > 0. Let ¢ > 2. Along the
Langevin dynamics,

Ry (pt) < R_qﬁpo) B % l:qu,l/(PO) > 1and as long as Ry, (pt) > 1,
e Rou(po)  if Ryw(po) < 1.

We provide the proof of Theoremin Appendix|[B.5.2. Theoremstates that starting from R, ,,(po) >
1, the Langevin dynamics reaches Ry, (p;) < dint < O (£ (Rq,.(po) +log 1)) time.

6.2 Rapid convergence of Rényi divergence with respect to v, along ULA

We assume the biased limit v, satisfies Poincaré inequality.
Assumption 2. The distribution v, satisfies Poincaré inequality with a constant 3 = 3. > 0.

Under Assumption 2] we can show Rényi divergence with respect to v, converges at a rate similar to
the Langevin dynamics; see Lemma|[T8|in Appendix [B.5.3]

6.3 Convergence of Rényi divergence along ULA under Poincaré inequality

We combine Lemma([7]and Lemma [[8]to obtain the following convergence of Rényi divergence along
ULA under Poincaré inequality. We provide the proof of Theorem[6]in Appendix

Theorem 6. Assume Assumption Suppose v = e~ 1 is L-smooth, and let 0 < ¢ < min {ﬁ, ﬁ}
Let ¢ > 1 and assume 1 < Ray, . (po) < oo. Along ULA (1), for k > ko := %(qu,ye (po) — 1),

1
q— 35\ _Belth—ko)
Ryulpr) < (q - i) eI e (6) @)

This yields an iteration complexity for ULA under Poincaré which is a factor of n larger than the
complexity under LSI; see Appendix

7 Discussion

In this paper we proved convergence guarantees on KL and Rényi divergence along ULA under
isoperimetry and bounded Hessian, without assuming convexity or bounds on higher derivatives.
It would be interesting to verify when Assumptions [I and [2 hold or whether they follow from
isoperimetry and bounded Hessian of the target density. Another intriguing question is whether there
is an affine-invariant version of the Langevin dynamics. This might lead to a sampling algorithm with
logarithmic dependence on smoothness parameters, rather than the current polynomial dependence.
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