
A Algorithm Details370

Algorithm 1: Sibling Rivalry
Given

• Environment, Goal-reaching task w/ S, G, A, ⇢(s0, g), d(, ), � and max episode length
• Policy ⇡ : S ⇥G⇥A! [0, 1] and Critic V : S ⇥G⇥G! R with parameters ✓ and

on-policy learning algorithm A
• Inclusion threshold ✏

for cycle = 1...K do
Initialize transition buffer D
for episode = 1...M do

Sample s0, g ⇠ ⇢
⌧ a  ⇡✓(...)|s0,g # Collect rollout
⌧ b  ⇡✓(...)|s0,g # Collect sibling rollout
Relabel ⌧ a reward using r0 and s̄ sb

T

Relabel ⌧ b reward using r0 and s̄ sa
T

if d(sa
T , g) < d(sb

T , g) then
⌧ c  ⌧ a

⌧ f  ⌧ b

else
⌧ c  ⌧ b

⌧ f  ⌧ a

if d(sc
T , sf

T ) < ✏ or d(sc
T , g) < � then

Add ⌧ f and ⌧ c to buffer D
else

Add ⌧ f to buffer D

Apply on-policy algorithm A to update ✓ using examples in D

The above algorithm describes the procedure for integrating Sibling Rivalry into an existing on-policy371

learning algorithm. We intend for this description to be as general as possible. It should be noted,372

however, that one requirement of our method is that updates are scheduled according to complete373

rollouts. This may pose some difficulty for tasks that would benefit from mid-episode updates based374

on a transition horizon rather than the episode horizon we implement. This requirement is based on375

the choice to select anti-goals using the terminal state of the sibling rollout. In future work, we intend376

to explore the flexibility of this choice and the possibility of using truncated trajectories within our377

proposed approach.378

B Controlling the Inclusion Hyperparameter379

Sibling Rivalry makes use of a single hyerparameter ✏ to set the distance threshold for when to380

include the closer-to-goal trajectory ⌧ c in the parameter updates. When ✏ = 0, ⌧ c is only included if381

it reaches the goal. Conversely, when ✏ = Inf, the algorithm always uses both trajectories (while382

still encouraging diversity through the augmented reward r0). We find that this parameter can be used383

to tune learning towards exploration or exploitation (of the distance-to-goal reward).384

This is most evident in the impact of ✏ on learning progress in the 2D point maze environment, where385

local optima are numerous (and, in our observation, learning progress is most sensitive to ✏). For the386

sake of demonstration, we performed a set of experiments for each of ✏ 2 [0, 1, ...10] distance units.387

The 2D point maze itself is 10x10, giving us good coverage of options one might consider for ✏ in388

this environment. Interestingly, we observe three modes of the algorithm: over-exploration (✏ too389

low), successful learning, and under-exploration (✏ too high). We observe these modes to be clearly390

identifiable using the metrics reported below (Figure 6). In practice a much coarser search over this391

hyperparameter should be sufficient to identify the optimal range.392
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Figure 6: Effect of Inclusion Threshold ✏ on Sibling Rivalry. We re-run the 2D point maze
experiments using SR with each of the ✏ settings shown. Rows report success rate, distance to goal,
and distance to anti-goal (that is, distance between sibling rollouts) across training for each of the
settings. Line plots and heatmap plots provide different views of the same data. This analysis identifies
roughly 3 modes of behavior exhibited by our method in this environment. The first, over-exploration,
occurs for the lower range of ✏, where closer-to-goal trajectories are more aggressively discarded.
Close inspection shows slow progress towards the goal and a tendency to increase inter-sibling
distance (the latter trend appears to reverse near the end of the training window). The second mode
corresponds to sucessful behavior: the agent can exploit the distance-to-goal signal but maintains
enough diversity in its state distribution to avoid commitment to local optima. The third mode,
under-exploration, occurs for the higher range of ✏, where inclusion of the closer-to-goal trajectory
is more permissive. These settings lead the agent to the same pitfall that prevents learning from
naive distance-to-goal shaped rewards. That is, it quickly identifies a low-distance local optimum
(consistently, the top corridor of the maze) and does not sufficiently explore in order to find a
higher-reward region of the maze.

C Implementation Details and Experimental Hyperparameters393

Here, we provide a more detailed description of the environments, tasks, and training implementations394

used in our experiments (Section 4). We first provide a general description of the training algorithms395

as they pertain to our experiments. We follow with task-specific details for each of the environments.396

For all experiments, we distribute rollout collection over 20 parallel threads. Quantities regarding397

rollouts, epochs, and minibatches are all reported per worker.398
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Proximal Policy Optimization (PPO). Many of the experiments we perform use PPO as the399

backbone learning algorithm. We focus on PPO because of its strong performance and because it400

is well suited for the constraints imposed by the application of Sibling Rivalry. Specifically, our401

method requires the collection of multiple full rollouts in between network updates. PPO handles402

this well as it is able to make multiple updates from a large batch of transitions. While experimental403

variants that do not use SR do not require scheduling updates according to full rollouts, we do so for404

ease of comparison. The general approach we employ cycles between collection of full trajectories405

and multiple optimization epochs over minibatches of transitions within those trajectories. We406

apply a constant number of optimization epochs and updates per epoch, varying the sizes of the407

minibatches as needed based on the variable length of trajectories (due to either episode termination408

after goal-reaching or trajectory exclusion when using SR). We confirmed that this modification of409

the original algorithm did not meaningfully affect learning.410

We standardize our PPO approach as much as possible to avoid results due to edge-case hyperparam-411

eter configurations, using manual search to identify such generally useful parameter settings. In the412

ant maze task, this standardized approach applies specifically to training the high-level policy. We413

also use PPO to train the low-level policy but adopt a more specific approach for that based on its414

unique role in our experiments (described below).415

For PPO variants, the output head of the policy network specifies the ↵ 2 R2 and � 2 R2 control416

parameters of a Beta distribution to allow sampling actions within a truncated range (Chou et al.,417

2017). We shift and scale the sampled values to correspond to the task action range. We also include418

entropy regularization to prevent the policy from becoming overly deterministic early during training.419

Table 1: Implementation details for experiments using PPO

Point maze Ant maze (high) Bit flipping
Hyperparameter PPO +SR +ICM PPO +SR +ICM PPO +SR +ICM

Rollouts per Update 4 4 4
Epochs per Update 4 2 4

m.Batches per Epoch 4 4 4
Learning Rate (LR) 0.001 0.001 0.001

LR Decay 0.999 1.0 0.999
Entropy Reg � 0.025 0.025 0.025 0.0 0.025

GAE � 0.98 0.98 0.98
Bootstrap Value N Y N Y N Y
Discount Factor 1.0 0.98 1.0 0.98 1.0 0.98

Inclusion thresh. (✏) 5.0 10.0 0.0

Intrinsic Curiosity Module (ICM). We base our implementation of ICM off the guidelines pro-420

vided in Burda et al. (2018a). We weigh the curiosity-driven intrinsic reward by 0.01 compared to421

the sparse reward. Note that in the settings we used, ICM is only accompanied by sparse extrinsic422

rewards, meaning that it only experiences the intrinsic rewards until it (possibly) discovers the goal423

region. During optimization, we train the curiosity network modules (whose architectures follow424

similar designs to the policy and value for the given task) at a rate of 0.05 compared to the policy and425

value network modules.426

2D point maze navigation. The 2D point maze is implemented in a 10x10 environment (arbitrary427

units) consisting of an array of pseudo-randomly connected 1x1 squares. The construction of the428

maze ensures that all squares are connected to one another by exactly one path. This is a continuous429

environment. The agent sees as input its 2D coordinates and well as the 2D goal coordinates, which430

are always somewhere near the top right corner of the maze. The agent takes an action in a 2D space431

that controls the direction and magnitude of the step it takes, with the outcome of that step potentially432
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Table 2: Implementation details for off-policy experiments

Hyperparameter Point maze Ant maze (high) Bit flipping

Rollouts per Update 4
m.Batches per Update 40

m.Batches size 64 128 128
Learning Rate (LR) 0.001

Action L2 � 0.25 0.0002 NA
Behavior action noise 0.1 ⇥ action range NA

Behavior action epsilon 0.2
Polyak coefficient 0.95

Bootstrap Value Y
Discount Factor 0.98

Table 3: Environment details

Setting S 2 G 2 A 2

Point maze R2 R2 [�0.95, 0.95]2

Ant maze (high) R30 R2 [�5, 5]2

Ant maze (low) R30 R2 [�30, 30]8

Bit flipping {0, 1}13⇥13⇥2 {0, 1}13⇥13 {0...9}

Minecraft
sv 2 R80⇥120⇥3,

{0...Nb}11⇥11⇥3 {0...20}
sc 2 {0...Nb}11⇥11⇥3

Table 4: Task details

Setting m(s) d(, ) � Max. T

Point maze I L2 0.15 50
Ant maze (high) [s0, s1] L2 1.0 25 (=500 env steps)
Ant maze (low) [s0, s1] L2 NA 20 (env steps)

Bit flipping s : , : ,0 L1 0.0 50
Minecraft sc

P
xijk 6= yijk 0.0 100

affected by collisions with walls. The agent does not observe the walls directly, creating a difficult433

exploration environment. For all experiments, we learn actor and critic networks with 3 hidden layers434

of size 128 and ReLU activation functions.435

Ant maze navigation with hierarchical RL. The ant maze experiment borrows a similar set up436

to the point maze but trades complexity of the maze for complexity in the navigation behavior. We437

use this as a lens to study how the different algorithms handle HRL in this setting. We divide the438

agent into a high-level and low-level policy, wherein the high-level policy proposes subgoals and the439

low-level agent is rewarded for reaching those subgoals. For all experiments, we allow the high-level440

policy to propose a new subgoal gL every 20 environment timesteps. From the perspective of training441

the low-level policy, we treat each such 20 steps with a particular subgoal as its own mini-episode. At442

the end of the full episode, we perform 2 epochs of PPO training to improve the low-level policy,443

using distance-to-subgoal as the reward.444

14



The limits of the maze are [�4, 20] in both height and width. The agent starts at position (0, 0)445

and must navigate to goal location g = (xg, yg) with coordinates sampled within the range of446

xg 2 [�3.5, 3.5] and yg 2 [12.5, 19.5]. It should be noted that, compared to previous implementations447

of this environment and task (Nachum et al., 2018), we do not include the full range of the maze448

in the distribution of task goals. For the agent to ever see the sparse reward, it must navigate from449

one end of the U-maze to the other and cannot bootstrap this exploration by learning from goals that450

occur along the way. As one might expect, the learning problem becomes considerably easier when451

this broad goal distribution is used; we experiment in the more difficult setting since we do not wish452

to impose the assumption that a task’s goal distribution will naturally tile goals from ones that are453

trivially easy to reach to those that are difficult.454

At timestep t, the high-level controller outputs a 2-dimensional action at 2 [�5, 5]2, which is used to455

compute the subgoal gL
t = m(st) + at. In other words, the high-level action specifies the relative456

coordinates the low-level policy should achieve. From the perspective of training the high-level457

policy, we only consider the timesteps where it takes an action and consider the result produced by458

the low-level policy as the effect of having taken the high-level action.459

In all experiments, both the high- and low-level actor and critic networks use 3 hidden layers of size460

128 and ReLU activation functions.461

2D bit flipping task. We extend the bit flipping example used to motivate HER (Andrychowicz462

et al., 2017) to a 2D environment in which interaction with the bit array depends on location. In this463

setting, the agent begins at a random position on a 13x13 grid with none of its bit array switched464

on. Its goal is to reproduce the bit array specified by the goal. To populate these examples, we465

procedurally generate goal arrays by simulating a simple agent that changes direction every few steps466

and toggles bits it encounters along the way.467

We include this example mostly to illustrate (i) that our method can work in this entirely discrete468

learning setting and (ii) that naive distance-to-goal based rewards are exceptionally prone to even469

brittle local optima, such as the ones created when the agent learns to avoid taking the toggle-bit470

action.471

We report the (eventually) successful performance using vanilla DQN but point out that this required472

modifying the reward delivery for this particular agent. In all previous settings, agents trained on473

shaped rewards receive that reward only at the end of the episode (and no discounting is used). While474

it is beyond the scope of this work to decipher this observation, we found that DQN could only learn475

if the shaped reward was exposed at every time step (using a discounting of � = 0.98). The variant476

that used the reward-at-end scheme never learned.477

For all bit flipping experiments, we use 2D convolution to encode the states and goals. We pool478

the convolution output with MaxPooling, apply LayerNorm, and finally pass the hidden state479

through a fully connected layer to get the actor and critic outputs.480

3D construction in Minecraft. To test our proposed method at a more demanding scale, we481

implement a custom structure-building task in Minecraft using the Malmo platform. In this task, we482

place the agent at the center of a “build arena” which is populated in one of several full Minecraft483

worlds. In this particular setting, the agent has no task-specific incentive to explore the outer world484

but is free to do so. Our task requires the agent to navigate the arena and control its view and485

orientation in order to reproduce the structure provided as a goal (similar to a 3D version of the bit486

flipping example but with richer mechanics and more than one type of block that can be placed). All487

goals specify a square structure made of a single block type that is either 1 or 2 blocks high with488

corners at randomly chosen locations in the arena. For each sampled goal, we randomly choose those489

configuration details and keep the sampled goal provided that it has no more than 34 total blocks (to490

ensure that the structure can be completed within a 100 timestep episode). The agent begins each491

episode with the necessary inventory to accomplish the goal. Specifically, the goal structures are492

always composed of 1 of 3 block types and the agent always begins with 64 blocks of each of those493

types. It may place other block types if it finds them.494

The agent is able to observe the first-person visual input of the character it controls as well as the 3D495

cuboid of the goal structure and the 3D cuboid of the current build arena. The agent therefore has496

access to the structure it has accomplished but must also use the visual input to determine the next497

actions to direct further progress.498
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The visual input is process through a shallow convolution network. Similarly, the cuboids, which499

are represented as 3D tensors of block-type indices, are embedded through a learned lookup and500

processed via 3D convolution. The combined hidden states are used as inputs to the policy network.501

The value network uses separate weights for 3D convolution (since it also takes the anti-goal cuboid502

as input) but shares the visual encoder with the policy.503

Owing to the computational intensity and long run-time of these experiments, we limit our scope to504

the demonstration of Sibling Rivalry in this setting. However, we do confirm that, like with the bit505

flipping example, naive distance-to-goal reward shaping fails almost immediately (the agent learns to506

never place blocks in the arena within roughly 1000 episodes).507

For the work presented here, we compute the reward as the change in the distance produced by508

placing a single block (and use discounting of � = 0.99). We find that this additional densification of509

the reward signal produces faster training in this complex environment.510
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