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Abstract

In this paper, we study large-scale convex optimization algorithms based on the
Newton method applied to regularized generalized self-concordant losses, which
include logistic regression and softmax regression. We first prove that our new
simple scheme based on a sequence of problems with decreasing regularization
parameters is provably globally convergent, that this convergence is linear with a
constant factor which scales only logarithmically with the condition number. In
the parametric setting, we obtain an algorithm with the same scaling than regular
first-order methods but with an improved behavior, in particular in ill-conditioned
problems. Second, in the non-parametric machine learning setting, we provide
an explicit algorithm combining the previous scheme with Nystrom projection
techniques, and prove that it achieves optimal generalization bounds with a time
complexity of order O(ndfy), a memory complexity of order O(df}) and no
dependence on the condition number, generalizing the results known for least-
squares regression. Here n is the number of observations and df, is the associated
degrees of freedom. In particular, this is the first large-scale algorithm to solve
logistic and softmax regressions in the non-parametric setting with large condition
numbers and theoretical guarantees.

1 Introduction

Minimization algorithms constitute a crucial algorithmic part of many machine learning methods,
with algorithms available for a variety of situations [10]. In this paper, we focus on finite sum
problems of the form

. )\ ) . 1 n
mip (o) = F(o) + GllelP, with ) = 237 fila).
where H is a Euclidean or a Hilbert space, and each function is convex and smooth. The running-
time of minimization algorithms classically depends on the number of functions n, the explicit (for
Euclidean spaces) or implicit (for Hilbert spaces) dimension d of the search space, and the condition
number of the problem, which is upper bounded by k = L/, where L characterizes the smoothness
of the functions f;, and X the regularization parameter.

In the last few years, there has been a strong focus on problems with large n and d, leading to first-
order (i.e., gradient-based) stochastic algorithms, culminating in a sequence of linearly convergent
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algorithms whose running time is favorable in n and d, but scale at best in /x [[15], 22 [14] 4].
However, modern problems lead to objective functions with very large condition numbers, i.e., in
many learning problems, the regularization parameter that is optimal for test predictive performance
may be so small that the scaling above in \/ is not practical anymore (see examples in Sect. [5).

These ill-conditioned problems are good candidates for second-order methods (i.e., that use the
Hessians of the objective functions) such as Newton method. These methods are traditionally
discarded within machine learning for several reasons: (1) they are usually adapted to high precision
results which are not necessary for generalization to unseen data for machine learning problems [9],
(2) computing the Newton step Ay (z) = V2 fy(2) "1V fi(x) requires to form the Hessian and solve
the associated linear system, leading to complexity which is at least quadratic in d, and thus prohibitive
for large d, and (3) the global convergence properties are not applicable, unless the function is very
special, i.e., self-concordant [24] (which includes only few classical learning problems), so they often
are only shown to converge in a small area around the optimal z.

In this paper, we argue that the three reasons above for not using Newton method can be circumvented
to obtain competitive algorithms: (1) high absolute precisions are indeed not needed for machine
learning, but faced with strongly ill-conditioned problems, even a low-precision solution requires
second-order schemes; (2) many approximate Newton steps have been designed for approximating
the solution of the associated large linear system [} 27, 25} 8]; (3) we propose a novel second-
order method which is globally convergent and which is based on performing approximate Newton
methods for a certain class of so-called generalized self-concordant functions which includes logistic
regression [6]. For these functions, the conditioning of the problem is also characterized by a more
local quantity: x, = R?/), where R characterizes the local evolution of Hessians. This leads
to second-order algorithms which are competitive with first-order algorithms for well-conditioned
problems, while being superior for ill-conditioned problems which are common in practice.

Contributions. We make the following contributions:

(a) We build a global second-order method for the minimization of fy, which relies only on
computing approximate Newton steps of the functions f,,, x > A. The number of such
steps will be of order O(clog k¢ + log %) where ¢ is the desired precision, and c is an

explicit constant. In the parametric setting (# = R?), ¢ can be as bad as /K¢ in the
worst-case but much smaller in theory and practice. Moreover in the non-parametric/kernel
machine learning setting (# infinite dimensional), ¢ does not depend on the local condition
number K.

(b) Together with the appropriate quadratic solver to compute approximate Newton steps,
we obtain an algorithm with the same scaling as regular first-order methods but with an
improved behavior, in particular in ill-conditioned problems. Indeed, this algorithm matches
the performance of the best quadratic solvers but covers any generalized self-concordant
function, up to logarithmic terms.

(¢) In the non-parametric/kernel machine learning setting we provide an explicit algorithm
combining the previous scheme with Nystrom projections techniques. We prove that it
achieves optimal generalization bounds with O(ndfy) in time and O(df3) in memory,
where 7 is the number of observations and df is the associated degrees of freedom. In
particular, this is the first large-scale algorithm to solve logistic and softmax regression in
the non-parametric setting with large condition numbers and theoretical guarantees.

1.1 Comparison to related work

We consider two cases for # and the functions f; that are common in machine learning: % = R¢ with

linear (in the parameter) models with explicit feature maps, and H infinite-dimensional, corresponding

in machine learning to learning with kernels [32]. Moreover in this section we first consider the
10, T

quadratic case, for example the squared loss in machine learning (i.e., f;(z) = (v 2; — y;)? for

some z; € H,y; € R). We first need to introduce the Hessian of the problem, for any A > 0, define
H(z) = V2f(2),  Ha(x):= V2fi(2) = H(z) + AL

in particular we denote by H (and analogously H ) the Hessian at optimum (which in case of squared
loss corresponds to the covariance matrix of the inputs).



Quadratic problems and H = R? (ridge regression). The problem then consists in solving a
(ill-conditioned) positive semi-definite symmetric linear system of dimension d x d. Methods based
on randomized linear algebra, sketching and suitable subsampling [17, |18l 11] are able to find the
solution with precision ¢ in time that is O((nd+min(n, d)®) log(L/\e)), so essentially independently
of the condition number, because of the logarithmic complexity in A.

Quadratic problems and 7 infinite-dimensional (kernel ridge regression). Here the problem
corresponds to solving a (ill-conditioned) infinite-dimensional linear system in a reproducing kernel
Hilbert space [32]. Since however the sum defining f is finite, the problem can be projected on a
subspace of dimension at most n [3]], leading to a linear system of dimension n X n. Solving it
with the techniques above would lead to a complexity of the order O(n?), which is not feasible on
massive learning problems (e.g., n =~ 107). Interestingly these problems are usually approximately
low-rank, with the rank represented by the so called effective-dimension df 5 [13]], counting essentially
the eigenvalues of the problem larger than \,

dfy = Tr(HH ). (1

Note that df\ is bounded by min{n, L/A} and in many cases df , < min(n, L/\). Using suitable
projection techniques, like Nystrom [34] or random features [26] it is possible to further reduce the
problem to dimension df , for a total cost to find the solution of O(ndf i ). Finally recent methods [29],
combining suitable projection methods with refined preconditioning techniques, are able to find the
solution with precision compatible with the optimal statistical learning error [13] in time that is
O(ndfylog(L/\)), so being essentially independent of the condition number of the problem.

Convex problems and explicit features (logistic regression). When the loss function is self-
concordant it is possible to leverage the fast techniques for linear systems in approximate Newton
algorithms [25] (see more in Sec. [2), to achieve the solution in essentially O(nd + min(n, d)3)
time, modulo logarithmic terms. However only few loss functions of interest are self-concordant,
in particular the widely used logistic and soft-max losses are not self-concordant, but generalized-
self-concordant [6]. In such cases we need to use (accelerated/stochastic) first order optimization
methods to enter in the quadratic convergence region of Newton methods [2], which leads to a
solution in O(dn + dv/nL/\ + min(n, d)?) time, which does not present any improvement on a
simple accelerated first-order method. Globally convergent second-order methods have also been
proposed to solve such problems [21]], but the number of Newton steps needed being bounded only
by L/, they lead to a solution in O(L/\ (nd + min(n,d)?)). With X that could be as small as
10~'2 in modern machine learning problems, this makes both these kind of approaches expensive
from a computational viewpoint for ill-conditioned problems. For such problems, with our new
global second-order scheme, the algorithm we propose achieves instead a complexity of essentially
O((nd + min(n, d)?) log(R?/Xe)) (see Thm. .
Convex problems and 7 infinite-dimensional (kernel logistic regression). Analogously to the
case above, it is not possible to use Newton methods profitably as global optimizers on losses that
are not self-concordant as we see in Sec.[3] In such cases by combining projecting techniques
developped in Sec. ] and accelerated first-order optimization methods, it is possible to find a
solution in O(ndf + dfx4/nL/\) time. This can still be prohibitive in the very small regularization
scenario, since it strongly depends on the condition number L /. In Sec. E] we suitably combine our
optimization algorithm with projection techniques achieving optimal statistical learning error [23] in
essentially O(ndfy log(R?/\)).

First-order algorithms for finite sums. In dimension d, accelerated algorithms for strongly-
convex smooth (not necessarily self-concordant) finite sums, such as K-SVRG [4]], have a running time
proportional O((n + /nL/\)d). This can be improved with preconditioning to O((n + /dL/\)d)
for large n [2]]. Quasi-Newton methods can also be used [20], but typically without the guarantees
that we provide in this paper (which are logarithmic in the condition number in natural scenarios).

2 Background: Newton methods and generalized self concordance

In this section we start by recalling the definition of generalized self concordant functions and motivate
it with examples. We then recall basic facts about Newton and approximate Newton methods, and



present existing techniques to efficiently compute approximate Newton steps. We start by introducing
the definition of generalized self-concordance, that here is an extension of the one in [6].

Definition 1 (generalized self-concordant (GSC) function). Let H be a Hilbert space. We say that f
is a generalized self-concordant function on G C H, when G is a bounded subset of H and f is a
convex and three times differentiable mapping on ‘H such that

Vo € H, Vh,k € H, VO f(2)[h, k, k] < supyeg lg - h| V2 f(2)[k, k).

We will usually denote by R the quantity sup ¢ (|| < oo and often omit G when it is clear from
the context (for simplicity think of G as the ball in # centered in zero and with radius R > 0,
then sup,cg |g - h| = R||h[). The globally convergent second-order scheme we present in Sec.
is specific to losses which satisfy this generalized self-concordance property. The following loss
functions, which are widely used in machine learning, are generalized-self-concordant, and motivate
this work.

Example 1 (Application to finite-sum minimization). The following loss functions are generalized
self-concordant functions, but not self-concordant:

(a) Logistic regression: f;(x) = log(1 + exp(—y;w, x)), where z,w; € R% and y; € {—1,1}.

(b) Softmax regression: f;(x) = log (Z?:l exp(a:iji)) — xlwZ where now © € Rk gnd
y; € {1,...,k} and z; denotes the j-th column of x.

(c) Generalized linear models with bounded features (see details in [7) Sec. 2.1]), which include
conditional random fields [33].

(d) Robust regression: fi(x) = ¢(y; —w; ) with p(u) = log(e® + e ™).

Note that these losses are not self-concordant in the sense of [25]]. Moreover, even if the losses f; are
self-concordant, the objective function f is not necessarily self-concordant, making any attempt to
prove the self-concordance of the objective function f almost impossible.

Newton method (NM). Given xg € H, the Newton method consists in doing the following update:
xt—',—l = Tt — A)\(It), AA(ZZ?t) = H;l(ﬁCt)Vf)\(It) (2)

The quantity Ay (z) := Hy ' (2)V f\(2) is called the Newton step at point , and © — Ay (z) is the
minimizer of the second order approximation of fy around x. Newton methods enjoy the following
key property: if zq is close enough to the optimum, the convergence to the optimum is quadratic and
the number of iterations required to a given precision is independent of the condition number of the
problem [12].

However Newton methods have two main limitations: (a) the region of quadratic convergence can be
quite small and reaching the region can be computationally expensive, since it is usually done via
first order methods [2] that converge linearly depending on the condition number of the problem, (b)
the cost of computing the Hessian can be really expensive when n, d are large, and also (c) the cost
of computing A (x;) can be really prohibitive. In the rest of the section we recall some ways to deal
with (b) and (c). Our main result of Sec. [3]is to provide globalization scheme for the Newton method
to tackle problem (a), which is easily integrable with approximate techniques to deal with (b) ans (c),
to make second-order technique competitive.

Approximate Newton methods (ANM) and approximate solutions to linear systems. Comput-
ing exactly the Newton increment A (), which corresponds essentially to the solution of a linear
system, can be too expensive when n, d are large. A natural idea is to approximate the Newton
iteration, leading to approximate Newton methods,

s =2~ Ax(@), Ay As(w). 3)
In this paper, more generally we consider any technique to compute Ay (z¢) that provides a relative

approximation [16] of A (z;) defined as follows.

Definition 2 (relative approximation). Let p < 1, let A be an invertible positive definite Hermitian
operator on H and b in H. We denote by LinApprox(A, b, p) the set of all p-relative approximations
of z* = A71b, i.e, LinApprox(A,b,p) = {z € H |||z — 2*||a < plz*|la}-



Sketching and subsampling for approximate Newton methods. Many techniques for approxi-

mating linear systems have been used to compute A, in particular sketching of the Hessian matrix
via fast transforms and subsampling (see [25| 18| 2] and references therein). Assuming for simplicity
that f; = ¢;(w; =), with £; : R — R and w; € H, it holds:

1 n
H(r) = - > 07 (w] 2jwiw] =V, Ve, “)
=1

with V, € R"™4 = D, W, where D, € R™ " is a diagonal matrix defined as (D,); =
() (w] 2))/2 and W € R"*4 defined as W = (wy, ..., w,)".

Both sketching and subsampling methods approximate z* = Hjy(z) 'V f\(z) with Z2 =
H)(z)"'Vfi\(z), in particular, in the case of subsampling H(z) = Z?:l pjwijw;; where
Q < min(n,d), (p;)j-, are suitable weights and (ij)?zl are indices selected at random from
{1,...,n} with suitable probabilities. Sketching methods instead use ﬁ(x) = 173;‘775, with
V, = QV, with Q € RP*" a structured matrix such that computing V,, has a cost in the order
of O(ndlogn); to this end usually €2 is based on fast Fourier or Hadamard transforms [25]]. Note that
essentially all the techniques used in approximate Newton methods guarantee relative approximation.

In particular the following results can be found in the literature (see Lemmas[28|and 29]in Appendix|l]
and [25]], Lemma 2 for more details).

Lemma 1. Let x,b € ‘H and assume that ZEQ) < a for a > 0. With probability 1 — ¢ the following
methods output an element in LinApprox(Hy (z), b, p), in O(Q*d+ Q3 +c) time, O(Q? +d) space:
(a) Subsampling with uniform sampling (see [27,28]), where Q = O(p~2a/\log %) and c = O(1).
(b) Subsampling with approximate leverage scores [27) 131 28]), where Q = O(p~2dfy log 1/)\d),c =
O(min(n, a/A)dF,\Q) and dfy = Te(WTW (W TW + \/al)~1) [30]. Note that dfy < min(n,d).

(c) Sketching with fast Hadamard transform /23], where Q = O(p~2dfy loga/Ad),c = O(ndlogn).

3 Globally convergent scheme for ANM algorithms on GSC functions

The algorithm is based on the observation that when f) is generalized self concordant, there exists
a region where ¢ steps of ANM converge as fast as 27¢. Our idea is to start from a very large
regularization parameter )\, such that we are sure that x is in the convergence region and perform
some steps of ANM such that the solution enters in the convergence region of fy,, with Ay = ¢)\¢
with ¢ < 1, and to iterate this procedure until we enter the convergence region of f. First we define
the region of interest and characterize the behavior of NM and ANM in the region, then we analyze
the globalization scheme.

Preliminary results: the Dikin ellipsoid. We consider the following region that we prove to be
contained in the region of quadratic convergence for the Newton method and that will be useful to
build the globalization scheme. Let ¢, R > 0 and f) be generalized self-concordant with coefficient R,
we call Dikin ellipsoid and denote by D (c) the region

Dia(c) := {z | va(z) < cﬁ/R}, with vy (z) := ||Vf>\(x)HH;1(x),

where v () is usually called the Newton decrement and ||z|| o stands for || A2z

Lemma 2. Let A > 0,c < 1/7, let fy be generalized self-concordant and x € Dy(c). Then it
holds: tvx(z)* < fa(z) — fr(z}) < va(z)® Moreover Newton method starting from xo has
quadratic convergence, i.e., let x:; be obtained via t € N steps of Newton method in Eq. [2), then
va(zy) < 2_(2t_1)u,\(x0). Finally, approximate Newton methods starting from xy have a linear
convergence rate, Le., let x; given by Eq. , with A; € LinApprox(Hy(xt), Vfa(zt), p) and
p < 1/7, then vy(x) < 27wy ().

This result is proved in Lemma [T1]in Appendix The crucial aspect of the result above is that
when z¢ € Dy (c), the convergence of the approximate Newton method is linear and does not depend
on the condition number of the problem. However D) (c) itself can be very small depending on

VA/R. In the next subsection we see how to enter in D (c) in an efficient way.



Entering the Dikin ellipsoid using a second-order scheme. The lemma above shows that D) (c)
is a good region where to use the approximate Newton algorithm on GSC functions. However the

region itself is quite small, since it depends on v/\/R. Some other globalization schemes arrive to
regions of interest by first-order methods or back-tracking schemes [2} [1]. However such approaches
require a number of steps that is usually proportional to 4/ L/ making them non-beneficial in machine
learning contexts. Here instead we consider the following simple scheme where ANM, ( fx, x,t) is the
result of a p-relative approximate Newton method performing ¢ steps of optimization starting from x.

The main ingredient to guarantee the scheme to work is the following lemma (see Lemma [13]in

Appendix [C.1] for a proof).

Lemma 3. Let > 0,c < landx € H. Let s = 1 + R||z||/c, then for ¢ € [1 —2/(3s),1)
D,.(c/3) € Dgpulc).

Now we are ready to show that we can guarantee the loop invariant z, € D, (c). Indeed assume that

-1 € Dy, ,(c). Thenv,, ,(xr—1) < c/Hk—1/R. By taking t = 2, p = 1/7, and performing

xp = ANM,(fu,_1s Th—1,t), Dy Lemma Vi1 (1) < 1/4v,,  (zk—1) < ¢/4 /ik—1/R, ie.,
x € Dy, (c/4). If gy is large enough, this implies that ), € D, ., ,(c) = D, (c), by Lemma
Now we are ready to state our main theorem of this section.

Proposed Globalization Scheme

Phase I: Getting in the Dikin ellispoid of f

Start with zg € H, o > 0,¢,T € N and (qx)gen € (0,1].
Fork e N

Tpy1 < ANM,(fu,, Tk, t)

BE4+1 < qr+1ME
Stop when px4+1 < A and set zj45¢ — Xk

Phase II: reach a certain precision starting from inside the Dikin ellipsoid

Return Z < ANM,(fx, Ziqst, T')

Fully adaptive method. The scheme presented above converges with the following parameters.
Theorem 1. Let € > 0. Set g = 7TR||V f(0)]|, o = 0, and perform the globalization scheme above
forp <1/7,t=2 and q = %W’ T = [logy /1 V (Ae~1/R?)]. Then denoting by K the
number of steps performed in the Phase I, it holds:

@) - f@) <e K< [(3+ 1R og(TRIVAO) /)]

Note that the theorem above (proven in Appendix|C.3)) guarantees a solution with error € with K steps
of ANM each performing 2 iterations of approximate linear system solving, plus a final step of ANM
which performs T iterations of approximate linear system solving. In case of f;(z) = £;(w, z), with

l; - R — R, w; € H with ZZ(.Q) < a, for a > 0, the final runtime cost of the proposed scheme to
achieve precision €, when combined with of the methods for approximate linear system solving from
Lemma(i.e. sketching), is O(Q? + d) in memory and

O((ndlogn +dQ* + Q?) (RHx;H log % + log i)) intime, @ = O(dF’\ log %)’

Re
where df ,, defined in Lemma measures the effective dimension of the correlation matrix W W
with W = (w1, ..., w,)" € R"*9, corresponding essentially to the number of eigenvalues of W T W/

larger than \/a. In particular note that dfy < min(n, d, rank(W), ab?/)\), with b := max; ||w;]|,
and usually way smaller than such quantities.

Remark 1. The proposed method does not depend on the condition number of the problem L]\, but
on the term R||z%|| which can be in the order of R//X in the worst case, but usually way smaller.
For example, it is possible to prove that this term is bounded by an absolute constant not depending
on \ if at least one minimum for f exists. In the appendix (see Proposition[7), we show a variant of
this adaptive method which can leverage the regularity of the solution with respect to the Hessian,
i.e., depending on the smaller quantity R\/\||z% ||H;1(m;) instead of R|x%]|.

Finally note that it is possible to use g = ¢ fixed for all the iterations and way smaller than the one
in Thm. [T] depending on some regularity properties of H (see Proposition[§]in Appendix[C.2).



4 Application to the non-parametric setting: Kernel methods

In supervised learning the goal is to predict well on future data, given the observed training dataset.
Let & be the input space and ) C RP? be the output space. We consider a probability distribution P
over X x ) generating the data and the goal is to estimate g* : X — ) solving the problem

g" =argminL(g), L(g) = E[l(g9(z),y)], (5)

gX—=Y

for a given loss function £ : ) x ) — R. Note that P is not known, and accessible only via the
dataset (z;, ;). with n € N, independently sampled from P. A prototypical estimator for g* is
the regularized minimizer of the empirical risk £(g) = LN €(g(x:),y;) over a suitable space of
functions G. Given ¢ : X — H a common choice is to select G as the set of linear functions of ¢(x),
thatis, G = {w ' ¢(-) | w € H}. Then the regularized minimizer of £, denoted by g, corresponds to

ga(z) = @) ¢(x), W= argg{inizzl:l filw) + Awl?, fi(w) = Lw" d(zi),y;).  (6)

Learning theory guarantees how fast g converges to the best possible estimator g* with respect
to the number of observed examples, in terms of the so called excess risk L(gx) — L(g*). The
following theorem recovers the minimax optimal learning rates for squared loss and extend them to
any generalized self-concordant loss function.

Note on df y. In this section, we always denote with df , the effective dimension of the problem in
Eq. (5). When the loss belongs to the family of generalized linear models (see Example([T)) and if the
model is well-specified, then df is defined exactly as in Eq. (1)) otherwise we need a more refined
definition (see [23]] or Eq. (30) in Appendix [D).

Theorem 2 (from [23]], Thm. 4). Let A > 0,0 € (0,1]. Let £ be generalized self-concordant with
parameter R > 0 and sup,cx ||[¢(x)]] < C < oo. Assume that there exists g* minimizing L.
Then there exists co not depending on n, \,d,df , C, g*, such that if \/df \/n,by < /\1/2/R, and
n > C/Xlog(§1C/N) the following holds with probability 1 — §:

. . df .
L(gr) = L(g7) < CO(TA + b?\) log(1/4), bx = Alg" [[g 2 g0y (7

Under standard regularity assumptions of the learning problems [23]], i.e., (a) the capacity condition
o;(H(g*)) < Cj=* fora > 1,C > 0 (i.e., a decay of eigenvalues o;(H(g*)) of the Hessian at the
optimum), and (b) the source condition g* = H(g*)"v, with v € H and r > 0 (i.e., the control of the
optimal g* for a specific Hessian-dependent norm), dfy < C’A~1/* and b3 < C”\1*2", leading to
the following optimal learning rate,

L(gx) — L(g") < cn” Tratara log(1/6), when \=n TFaiza, (8)

Now we propose an algorithmic scheme to compute efficiently an approximation of g that achieves
the same optimal learning rates. First we need to introduce the technique we are going to use.

Nystrom projection. It consists in suitably selecting {Z1,...,Zy} C {x1,..., 25}, with M < n
and computing gz, i.e., the solution of Eq. (@ over Hyr = span{p(Z1),. .., ¢(Z )} instead of H.
In this case the problem can be reformulated as a problem in R as

. N g
gux = T o(2), aprx = argmin fy(a), fla) = - E fila) + Mlal?, (9
a€RM i—1

where f;(a) = L(v(z;)"T ', 3;) and v(z) € RM, v(z) = (k(x,Z1),...,k(z,Zp)) with
k(z,2') = ¢(x)"¢(2') the associated positive-definite kernel [32], while T is the upper trian-
gular matrix such that K = TTT, with K € R™*M with K;; = k(Z;,%;). In the next theorem
we characterize the sufficient M to achieve minimax optimal rates, for two standard techniques of
choosing the Nystrom points {Z1, ..., Zas }.
Theorem 3 (Optimal rates for learning with Nystrom). Let A > 0,6 € (0, 1]. Assume the conditions
of Thm.|2| Then the excess risk of g, is bounded with prob. 1 — 26 as in Eq. (with ¢} « ¢1),
when

(1) Uniform Nystrom method [28)29]] is used and M > C1/X log(Cs/)\d).

(2) Approximate leverage score method [31 28, 29]] is used and M > Cj5 dfy log(Cy/Ad).
Here C,C4,Cy, Cy do not depend on A\, n, M, df ., 9.



Thm. [3] generalizes results for learning with Nystrom and squared loss [28]], to GSC losses. It is
proved in Thm. [6] in Appendix As in [28], Thm. 3] shows that Nystrom is a valid technique
for dimensionality reduction. Indeed it is essentially possible to project the learning problem on a
subspace H ps of dimension M = O(c/A) or even as small as M = O(df) and still achieve the
optimal rates of Thm. 2] Now we are ready to introduce our algorithm.

Proposed algorithm. The algorithm conceptually consists in (a) performing a projection step with
Nystrom, and (b) solving the resulting optimization problem with the globalization scheme proposed
in Sec. based on ANM in Eq. . In particular, we want to avoid to apply explicitly T~ to each
v(z;) in Eq. @) which would require O(nM?) time. Then we will use the following approximation
technique based only on matrix vector products, so we can just apply T~! to « at each iteration,
with a total cost proportional only to O(nM + M?) per iteration. Given a, V f (), we approximate
2* = Hy(a) "1V (), where H, is the Hessian of f)(«), with Z defined as

Z = prec-conj-grad,(Hx(a), Vfr(a)),

where prec—conj—grad, corresponds to performing ¢ steps of preconditioned conjugate gradi-
ent [[19] with preconditioner computed using a subsampling approach for the Hessian among the ones
presented in Sec.[2] in the paragraph starting with Eq. ). The pseudocode for the whole procedure
is presented in Alg.[I] Appendix [E] This technique of approximate linear system solving has been
studied in [29] in the context of empirical risk minimization for squared loss.

Lemma 4 ([29]). Let A > 0, ,b € RM. The previous method, applied with t = O(log 1/p), outputs
an element of LinApprox(Hy (), b, p), with probability 1 — & with complexity O((nM + M?Q +
M3 + c)t) in time and O(M? + n) in space, with Q = O(C1 /A log(C1/A6)), c = O(1) if uniform
sub-sampling is used or Q@ = O(Cydfy log(C1/\d)), ¢ = O(df3 min(n, 1)) if sub-sampling with
leverage scores is used [30].

A more complete version of this lemma is shown in Proposition[T2)in Appendix [D.5.1] We conclude
this section with a result proving the learning properties of the proposed algorithm.

Theorem 4 (Optimal rates for the proposed algorithms). Let A > 0 and ¢ < \/R2. Under the
hypotheses of Thm. 3] if we set M as in Thm.[3| Q as in Lemma || and setting the globalization
scheme as in Thm.[I] then the proposed algorithm (Alg.[I} Appendix|E) finishes in a finite number of
newton steps N,,s = O(R||g*| log(C/ ) + log(C/€)) and returns a predictor gq ar,x of the form
go.m.x = o T~ Yu(z). With probability at least 1 — 6, this predictor satisfies:

L(go.m) — £(g7) < %(—A +b3 + 6) log(1/0),  ba:=Alg"lu;rgey-  (10)

n

The theorem above (see Proposition [T4 Appendix [D.6] for exacts quantifications) shows that the
proposed algorithm is able to achieve the same learning rates of plain empirical risk minimization as
in Thm. [2] The total complexity of the procedure, including the cost of computing the preconditioner,
the selection of the Nystrom points via approximate leverage scores and also the computation of the
leverage scores [30] is then

O (R||g*||log(R?/A) (n dfylog(CA™'67 1) ex + + df log?(CA™'671) + min(n, C/)) df}))

in time and O(df3 log®(CA~'61)) in space, where cx is the cost of computing the inner product
k(x,2) (in the kernel setting assumed when the input space X is X = R? itis ¢ = O(p)).
As noted in [30], under the standard regularity assumptions on the learning problem seen above,
dff\ < df /A < n when the optimal X is chosen. So the total computational complexity is

O (Rlog(R?/\) log®(CA™Y6~ 1Y) |lg*|| - m - dfy - cx) intime, O(df3-log?(CA~1671)) in space.
A

First note, the fact that due to the statistical properties of the problem the complexity does not depend
even implicitly on 1/C/\, but only on log(C/\), so the algorithm runs in essentially O(ndf ),
compared to O(df yy/nC/A) of the accelerated first-order methods we develop in Appendix E and

the O(ndfy+/C/\) of other Newton schemes (see Sec. . To our knowledge, this is the first
algorithm to achieve optimal statistical learning rates for generalized self-concordant losses and with

complexity only 9] (ndfy). This generalizes similar results for squared loss [29} [30].



21.0 29.0

o . —— second order c o — secondorder [ 109-1 £
8 20.8 \ K-SVRG 10—1 =} 8 28.8 K-SVRG =]
5 200 g £ 0 B
= 28.6 S
< 204 102 & c 52
[e) (o) [e) 8.4 1072 O
-~ e .
5o w8 1042
& 200 ] S 282 o
1] 1] -5
0 19.8 S A 280 1075 &
T 106 10745 o B
G 19 2 O -6.2
19.4 © 2 s
“0 20 40 60 80 100 120 20 40 60 80 100 120
passes over data passes over data

Figure 1: Training loss and test error as as function of the number of passes on the data for our
algorithm vs. K-SVRG. on the (left) Susy and (right) Higgs data sets.

5 Experiments

The code necessary to reproduce the following experiments is available on GitHub at https:
//github.com/umarteau/Newton—-Method-for-GSC-losses—.

We compared the performances of our algorithm for kernel logistic regression on two large scale
classification datasets (n ~ 107), Higgs and Susy, pre-processed as in [29]. We implemented the
algorithm in pytorch and performed the computations on 1 Tesla P100-PCIE-16GB GPU. For Susy
(n = 5 x 10% p = 18): we used Gaussian kernel with k(x,z’) = e~llz=2"lI’/(20*)  with ¢ = 5,
which we obtained through a grid search (in [29], 0 = 4 is taken for the ridge regression); M = 10*
Nystrom centers and a subsampling () = M for the preconditioner, both obtained with uniform
sampling. Analogously for Higgs (n = 1.1 x 107, p = 28): , we used a Gaussian kernel with 0 = 5
and M = 2.5 x 10* and Q = M, using again uniform sampling. To find reasonable \ for supervised
learning applications, we cross-validated ) finding the minimum test error at A = 10710 for Susy
and A\ = 10~? for Higgs (see Figs. andin Appendix [F) for such values our algorithm and the
competitor achieve an error of 19.5% on the test set for Susy, comparable to the state of the art (19.6%
[29]) and analogously for Higgs (see Appendix[F). We then used such \’s as regularization parameters
and compared our algorithm with a well known accelerated stochastic gradient technique Katyusha
SVRG (K-SVRG) [4]], tailored to our problem using mini batches. In Fig.|l|we show the convergence
of the training loss and classification error with respect to the number of passes on the data, of our
algorithm compared to K-SVRG. It is possible to note our algorithm is order of magnitude faster in
achieving convergence, validating empirically the fact that the proposed algorithm scales as O (ndf )
in learning settings, while accelerated first order methods go as O((n + /nL/\)dfy). Moreover,
as mentioned in the introduction, this highlights the fact that precise optimization is necessary to
achieve a good performance in terms of test error. Finally, note that since a pass on the data is much
more expensive for K-SVRG than for our second order method (see Appendix [F] for details), the
difference in computing time between the second order scheme and K-SVRG is even more in favour
of our second order method (see Figs. dand [5]in Appendix [F).
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Organization of the Appendix

[Al [Main results on generalized self-concordant functions|

Notations, definitions and basic results concerning generalized self-concordant functions.

[Results on approximate Newton methods|

In this section, the interaction between the notion of Dikin ellipsoid, approximate Newton
methods and generalized self-concordant functions is studied. The results needed in the
main paper are all concentrated in Appendix [B23] In particular the results in Lemma 2] are
proven in a more general form in Lemma|[T1]

[Proof of bounds for the globalization scheme]

In this section, we leverage the results of the previous two sections to analyze the globaliza-
tion scheme.

(Main technical lemmasl
We start by proving the result on the inclusion of Dikin ellipsoids (Lemma [3)).
[Proof of main theorems|
In particular, a general version of Thm.[I]is proven. Moreover Remark [I]is proven in
Proposition 7| while the fixed scheme to choose (¢x)ken is proven in Proposition
[Proof of Thm, 1]

Finally, we prove the properties of the globalization schemes presented in Thm. [T}

[Non-parametric learning with generalized self-concordant functions]

In this section, some basic results about non-parametric learning with generalized self-
concordant functions are recalled and the main results of Sec. @ are proven.

[D.1l [General setting and assumpfions, stafistical result for regularized ERM
More details about the generalization properties of empirical risk minimization as well
as the optimal rates in Thm. [2]are recalled.
[Reducing the dimension: projecting on a subspace using Nystrom sub-sampling.|
[Sub-sampling techniques]
The basics of uniform sub-sampling and sub-sampling with approximate leverage
scores are recalled.

Selecting the A/ Nystrom points|
Thm. 3]is proven in a more general version in Thm. [

[Performing the globalization scheme to approximate 5,/ »|
A general scheme is proposed to solve the projected problem approximately using the
globalization scheme.
D.51l [Performing approximate Newton steps|
We start by describing the way of computing approximate Newton steps. A gener-
alized version of Lemmafd]is proven in Proposition 12}
[Applying the globalization scheme to control 7/ (5|
We then completely analyse the approximating of 5,7, from an optimization point
of view (see Proposition[T3).
[Final algorithm and results|
Finally, the proof of Thm.4]is provided, using the results of the previous subsections.

[El
In this section, the pseudocode for the algorithm presented in Sec.[d]and analyzed in Thm. [7]
is provided.

[E. [Experiments

In this section, more details about the experiments are provided.

ISolving a projected problem to reduce dimension|

In this section, more details about the problem of randomized projections are provided.
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[Relating the projected to the original problem|
In particular, results to relate the ERM with the projected ERM in terms of excess risk
are provided for generalized self-concordant functions.

ML Relations between statistical problems and empirical problem.|

In this section, we provide results to relate excess expected risk with excess empirical risk
for generalized self-concordant functions.

Il Multiplicative approximations for Hermitian operators|

In this section, some general analytic results on multiplicative approximations for Hermitian
operators are derived. Moreover they are used to provide a simplified proof for the results in
Lemmall] See in particular Lemmas 28] and [29]and [25]], Lemma 2.

A Main results on generalized self-concordant functions

In this section, we start by introducing a few notations. We define the key notion of generalized self-
concordance in Appendix[A.T] and present the main results concerning generalized self-concordant
functions. In Appendix[A.2] we describe how generalized self-concordance behaves with respect to
an expectation or to certain relaxations.

Notations Let A > 0 and A be a bounded positive semidefinite Hermitian operator on . We
denote with I the identity operator, and

|z)|a = ||AY 22|, (11)
Ay = A+ AL (12)

Let f be a twice differentiable convex function on a Hilbert space H. We adopt the following notation
for the Hessian of f:

Vo € H, Hy(x) := V2f(x) € L(H).
For any \ > 0, we define the \-regularization of f:
A
Po=f 50
fx is A-strongly convex and has a unique minimizer which we denote with 2. Moreover, define
Vx € H, vak(l‘) = VQf)\(x) = Hf(x) + A, l/f,,\(l’) = Hv‘f)\(l‘)HH;lA(f)
The quantity v »(z) is called the Newton decrement at point 2 and will play a significant role.
When the function f is clear from the context, we will omit the subscripts with f and use H, Hy, vy....
A.1 Definitions and results on generalized self-concordant functions

In this section, we introduce the main definitions and results for self-concordant functions. These
results are mainly the same as in appendix B of [23]].

Definition 3 (generalized self-concordant function). Let H be a Hilbert space. Formally, a general-
ized self-concordant function on H is a couple ( f,G) where:

i G is a bounded subset of H; we will usually denote ||G|| or R the quantity sup ¢ [|g < oo;
ii fisaconvex and three times differentiable mapping on H such that

Vo € M, Vh ke H, VO f(z)[h, k, k] < suplg-h| V2f(2)[k, k].
geg
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To make notations lighter, we will often omit G from the notations and simply say that f stands both
for the mapping and the couple (f,G).

Definition 4 (Definitions). Let f be a generalized self-concordant function. We define the following
quantities.

e VheH, ty(h) :=sup,glh-g

>

o VxeH, VA>0, rea(x) =

1 .
SuPgeg l‘g‘|H;,1>\(T>,
e YVc>0,VA>0, va)\(c) = {l‘ : I/f7)\(l‘) < crf7>\(:c)}.
We also define the following functions:

b1 l—et t_q
=S == a = (13)

50 _ o
¢(t)

Once again, if f is clear, we will often omit the reference to f in the quantities above, keeping only
t,ry, Dy...

Note that 1, ¢ are increasing functions and that ¢ is a decreasing function. Moreover,

We condense results obtained in [23|] under a slightly different form. The proofs, however, are exactly
the same.

While in [23]], only the regularized case is dealt with, the proof techniques are exactly the same to
obtain Proposition[I} Proposition [2]is proved explicitly in Proposition 4 of [23] and Lemma [3] is
proved in Proposition 5.

Omitting the subscript f, we get the following results.

Proposition 1 (Bounds for the non-regularized function f). Let f be a generalized self-concordant
Sfunction. Then the following bounds hold (we omit f in the subscripts):

Ve e H, Vhe H, e *™WH(z) < H(z + h) < ™WH(z), (14)
Va,h € H, YA > 0, V(@ +h) = V(@) g 1) < o)Al @), (15)

Vo, h € Hy (=t(h) [l < Flo+h) = f(2) = V()b < pEM)hlf).  (16)

We get the analoguous bounds in the regularized case.

Proposition 2 (Bounds for the regularized function f)). Let f be a generalized self-concordant
Sunction and A > 0 be a regularizer. Then the following bounds hold:

Vo, h € H, e *WH, (z) < Ha(z + h) < efWH, (2), (17

Vo, h € 1, pt(h)|[hllas @) < V(@ +h) = Vi@ g o) < o)A@,  (18)

Va,h € H, p(=t(h))l|hlr, @) < fale +h) = falz) = V(@).h < ()bl @) (19)

Corollary 1. Let f be a G generalized self-concordant function and X > 0 be a regularizer, and x?,
the unique minimizer of fx. Then the following bounds hold for any x € H:

otz —2)))lle — 2}l @) < IVA@) g @) < 0t —2X)lle — 23w, (20)
—_— —————

va(z)

Y(=tlx — X))l = 23, o) < (@) = fal@d) <otz =2z - 23l @y @D

Moreover, the following localization lemma holds.
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Lemma 5 (localization). Let A > 0 be fixed. If 222 < 1, then

r(z)

t(z —z}) < —log (1 - Mm)) . 22)

In particular, this shows:
Ve<1l, VA>0, z€Dy(c) = t(x —x}) < —log(l—c).

We now state a Lemma which shows that the difference to the optimum in function values is equivalent
to the squared newton decrement in a small Dikin ellipsoid. We will use this result in the main paper.

Lemma 6 (Equivalence of norms). Let A\ > 0 and x € Dy (). Then the following holds:
1
ZV/\(x)Q < fal@) = fal@) < va(a)?.

Proof. Apply Lemmaknowing z € DA(}) to get t(x — a}) < log(7/6). Then apply Eq. and
Eq. (I8) to get:

@) = fa(@}) < ot —2X)llz — 231, @
< e g(t(@ — a3)) e — 23l o)
t(z—xy) e
€ 1/)("(95 ‘,E)\))V)\(x)?

T o(tr —23))?

Replacing with the bound above, we get
1
YA >0, Vo € DA(?), (@) — fal@y) < va(z)?

For the lower bound, proceed in exactly the same way. O

A.2 Comparison between generalized self-concordant functions

The following result is straightforward.

Lemma 7 (Comparison between generalized self-concordant functions). Let Gy C G C H be
two bounded subsets. If (f,G1) is generalized self-concordant, then (f,Gs) is also generalized
self-concordant. Moreover,

Ve € H, VA > 0, r(f7g1)7/\(33) > I’(f7g2)7/\(117).

In particular, we will often use the following fact. If (f, G) is generalized self-concordant, and G is
bounded by R, then (f, By (R)) is also generalized self-concordant. Moreover,

>\+>\min H:(x \/X
r(vaH(R)),A(m) = \/ R( f( )) > R

We now state a result which shows that, given a family of generalized self-concordant functions, the
expectancy of that family is also generalized self-concordant. This can be seen as a reformulation of
Proposition 2 of [23].

Proposition 3 (Expectation). Let Z be a polish space equipped with its Borel sigma-algebra, and H
be a Hilbert space. Let ((f,G.)).cz be a family of generalized self-concordant functions such that
the mapping (z,x) — f,(x) is measurable.

Assume we are given a random variable Z on Z, whose support we denote with supp(Z), such that

e the random variables | fz(0)|, ||V fz(0)|, Tr(V2fz(0)) are are bounded;
o § = Uzesupp(z) G. is a bounded subset of H.

Then the mapping [ : © € H — E[fz(x)] is well defined, (f,G) is generalized self-concordant, and
we can differentiate under the expectation.
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Corollary 2. Let n € N and (f;,Gi)1<i<n be a family of generalized self-concordant functions.
Define

f@) == 3" fitw). 6 = | 6

Then (f,G) is generalized self-concordant.
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B Results on approximate Newton methods
In this section, we assume we are given a generalized self-concordant function f in the sense of

Appendix[A] As f will be fixed throughout this part, we will omit it from the notations. Recall the
definitions from Definition 4t

1 va(z
va(z) = ”vf)\(x)”H;l(m)a @ = Slelg ”g”H;l(z), Da(c) == {:C : A (@) < C} .
g

Define the following quantities:

o the true Newton step at point x for the A-regularized problem:
Ax(z) := Hy Y (2)V fr(2).

e the renormalized Newton decrement Uy (x):

DA(m) =

Moreover, note that a direct application of Eq. yields the following equation which relates the
radii at different points:

YA >0, Vo e H, Vhe H, e Wiy (z) < ra(z + h) < e Pry(2). (23)

In this appendix, we develop a complete analysis of so-called approximate Newton methods in
the case of generalized self-concordant losses. By "approximate Newton method", we mean that
instead of performing the classical update x;+1 = x; — A)(x¢), we perform an update of the form

ZTe+1 = o — Ay where A, is an approximation of the real Newton step. We will characterize this
approximation by measuring its distance to the real Newton step using two parameters p and €g:

I8¢ = Ax(e)|| < prala) + <o.

We start by presenting a few technical results in Appendix We continue by proving that
an approximate Newton method has linear convergence guarantees in the right Dikin ellipsoid in
Appendix In Appendix we adapt these results to a certain way of computing approximate
Newton steps, which will be the one we use in the core of the paper. In Appendix we mention
ways to reduce the computational burden of these methods by showing that since all Hessians are
equivalent in Dikin ellipsoids, one can actually sketch the Hessian at one given point in that ellipsoid
instead of re-sketching it at each Newton step. For the sake of simplicity, this is not mentioned in the
core paper, but works very well in practice.

B.1 Main technical results

We start with a technical decomposition of the Newton decrement at point © — A fora given AcH.

Lemma 8 (Technical decomposition). Let A >0, z € H be fixed. Assume we perform a step of the
form x — A for a certain A € H. Define

L
The following holds:
(@ = A) < PO [, (2) + 8) (7 (2) + ) + 8] ; (24)
va(z — Ay (z)) < eP@F9 [w@(x) +8)(Ba(x) + 8)(wa(z) + 6) + 5} . (25)

Proof. Note that by definition, V fx () = Hy(x)Ax(x). Hence
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va/\(m - 8)”}1;1(95) = va/\(m - 8) - Vf)\(x) + H/\('I)A)\(:I;)”H)_\l(aj)
< V@ = B) = V(@) + Ha(@)B g )
+ [ HA(2) (A (@) = D)l

1
S CEESE NE RN,

1
< / IH, 2 (@) Ha(z — sA)H, () — I||ds [|A ]|y (0 + 6.

Now using Eq. , one has ||H;1/2(33)H,\(x - sﬁ)H;UQ(m) -1 < &) _ 1, whose integral
on s is P (t(A))t(A) where 1 is defined in Deﬁnition Morever, bounding
1Al @) < 1A = Ax(@) 11, (@) + (AN @)1, () = 8+ va(@),

it holds _ L
IV 2@ = Al @) < PEADHA) (2 (2) +6) + 6.

1. Now note that using Eq. 1) it holds: v (z — A) < et(ﬁ)/zHVf)‘ (x — K)HH;l(I) and hence:
va(@ = B) < 72 (p(t(B)t(A) (na(2) +9) + ). (26)

2. Moreover, using Eq. (23),

e = 8) < '@ (Y(EB)A) (@) +3) +9) 27)

Noting that

o _ Al @ _ - <
t(A) < —22 < 0

( )— I’A(.’I}) _VA(‘I)+ )
and bounding Eq. 126) simply by taking et(B)/2 < tA) e get the two bounds in the lemma.

O

We now place ourselves in the case where we are given an approximation of the Newton step of the

following form. Assume A and x are fixed, and that we approximate A (x) with A such that there
exists p > 0 and ¢y > 0 such that it holds:

1A = Ax (@)l () < prafe) + co.
We define/prove the three different following regimes.
Lemma 9 (3 regimes). Let x € Dy (1) and A > 0 be fixed. Let

1 €0
— >0s.t &g =
70 0=k <0 ra(x)

1
0<p< < .
=P= - 21

Let A be an approximation of the Newton steps satisfying | A — Ay (z) l#1, (2) < pva(w) + €o. The
three following regimes appeatr.
o If\(z) > pand Uy (x)? > &y, then we are in the quadratic regime, i.e.

100y (z — Ax(z)) - (10%(:5)

- 2 ) (e — An(2)) < E—OEA(x)VA(x).
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o If p > vy\(x) and pvy(xz) > €, then we are in the linear regime, i.c.

10 _

< e = Ax(z)) < (?) (?m@;)) cua(m — A(a)) < ?ﬁ)\(x)l/)\(x).

o Ifeog > Ua(x)?, p Ur(x), then the maximal precision of the approximation is reached, and
it holds:

Ua(z — Ax(x)) <36 < =, vale — Ax(z)) < 3ep.

1
7

Proof. Using the previous lemma,
(= Ax(@)) < eI [y ((1 4 p)i (@) + &) (1 + p)Pa() + &) + pia () + &)
< Dh(a(@), p, €0) Da(2)? + D2(Pa(2), p, &) pia(@) + Da(a(), p, €) €,
and
va(e — Ax(x)) < O1(Ea (@), p, &) Ta(@)wa (@) + Da(0a (@), p, ) pra(x) + Os(?a(2), p, ) €0,

where the following defintions are used:

Oy (7, p, €0) := eITAPTOY((1 4 p)T + &) (1 + p)?,
Oa(7, p, &) 1= el T774%,

s (7, p, &) := TP+ [20((1 + p)o + &) (1 + p)o + 1]
Now assume ¢y < %, va(z),p < % Replacing these values in the functions above bounds Uy, [l
and s, and using the case distinction, we get the result. O

B.2 General analysis of an approximate Newton method

The following proposition describes the behavior of an approximate newton method where p and €,
are fixed a priori.

Proposition 4 (General approximate Newton scheme results). Let ¢ < % be fixed and xo € D(c)
be a given starting point.

Let p < % and g such that eg < 7 rx(xo).

Define the following approximate Newton scheme:

V>0, mpq = a0 — Ay, 1A¢ = Ax(@)llE, @) < praa:) + co.
The following guarantees hold.

o Vt >0, 2 € Dy(c).

o Lett, = {1og2 log, ﬁJ + 1L

vt < i,

10’17)\(1',5) < max( 1260 22t)
3 - r,\(aco)’ ’

~ t—t.+1
w0, 10 (120 (1097
3 I’,\(.’L‘o) 3
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o We can bound the relative decrease for both the Newton decrement and the renormalized
Newton decrement:

2t 1
1
vt < t., va(zy) < max (360, (2) 1/,\(3:0)> ,

e () ”“‘””‘”) |

1 t—t 41
vt > t07 l/)\(l't) < max <3€0a <Op) I/A(.I‘Q) )

Ux(zy) < max

3

Proof. Start by noting, using Eq. (23),

1 6 7
vy (1) 2= A Bt < (@) < grafeo) @8)
In particular, this holds for any z € Dj(c), ¢ < 1. Thus,
1 €0 C €0 C
Ve< -,V D <- =V D < -.
ez Y ebao) Ty <3 N

1. Proving the first point is simple by induction. Indeed, assume 7y (z;) < c. We can apply
Lemma 9] since the conditions on ¢ and p guarantee that the conditions of this lemma are satisfied.
If we are in either the linear or quadratic regime, the fact that 197”, M < % show that
Ua(ze1) < 2005 (2) < c.

If we are in the last case, U (z41) < rf(?t) <c

2. Letus prove the second bullet point by induction. Start by assuming the property holds at ¢. By
the previous point, the hypothesis of Lemma 9] are satisfied at ; with p and €. Assume we are in the
limiting case; we easily show that in this case,
1017)\ ($t+1) < 10 €0 3560
3 -3 I’)\(It) - 3r)\($0).
Here, the last inequality comes from Eq. (28). If we are not in the limiting case, let us distinguish
between the two following cases.

Ift <t.—1,

10’17)\(.13“_1) < 105)\(56,5) max 105)\(3,}) @
3 - 3 3 "3

o [0 0@ (1 2 10p
X X - —_—
- ?)I’)\(Io)7 3 2 "3 ’

where the last inequality comes from using the induction hypothesis and the fact that %(“) <1

Using once again the induction hypotheses and the fact that ¢ < Llog2 log, %J which implies

% < (%)2 , we finally get

_ t+1
1005\ (x441) < max 35¢g 1 2
3 - 3ra(zo)  \ 2 '
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The fact that the second property holds for ¢ = ¢, is trivial Now consider the case where ¢t > ..
Using the same technique as before but noting that in this case

107x () _ 35¢0  (10p) "ttt 35¢o  10p
— ) <max | ———, | — <max|-——,— |,
3 3rx(zo) 3 3ra(zo)’ 3

We easily use Lemma [9]to reach the desired conclusion.

3. Lett < t.. Then using Lemma[9

10p 10wy (zs
Vs <t, vp(Ts4+1) < max <3eo,max(3p, W\;J?))VA(ISO .

109 (. 35¢ 112°%).
L) < max(gey, (5)°):

Using the fact that for any s < ¢,

35 . 100 /1\%
Vs <t, va(Ters) < max (360, ffj((jo)),max<j, (2) ()

and hence

Now using the fact that for any s < ¢, Uy (zs) < % we see that ’r’:((””o) < Ipy(xs) <

o)
35¢g Va(zs) : 10p (1\2°\ _ (1\2° .
Tom < 3¢€o. Moreover, since s < ¢ < t., max(—3?, (5) )= (5) . Thus:

1\*
Vs <t, vx(xs+1) < max <360, (2> l/)\(xs)> .

Combining these results yields:

1 2t+l_q
VA(T¢41) < max (360, <2) VA(%)) :

This shows the first equation, that is:

2t -1
1
Vit < te, va(2:) < max (360, <2> V)\(LU())> )

The case for ¢ > t. is completely analogous. We can also reproduce the same proof to get the same
bounds for 7, since the bounds in Lemma@] are the same for both.

O

B.3 Main results in the paper

In the main paper, we mention two types of Newton method. First, we present a result of convergence
on the full Newton method:

Lemma 10 (Quadratic convergence of the full Newton method). Let ¢ < % and xo € Dy (c). Define

Ti41 = T — A)\(l‘t).

Then this scheme converges quadratically, i.e.:

valxy) vx(xy)
va(zo0) U

vt €N, < 9-('-1,

Ux(20)
Thus :
o Vt € N, x; € Dy(c).
e Forany¢ < cthenVt > [log, (1 +1log, £)], @ € Da(€).

e Foranye >0, Vt > {log2 (1 + log, L\/?)ﬂ s oa(ze) < Ve, faz) — fa(z}) < e
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o [f we perform the Newton method and return the first x; such that vy(x;) < \/e, then the
number of Newton steps computations is at most 1 + |logy (1 + log, L\/?))—‘

Proof. A full Newton method is an approximate Newton method where p,ey = 0. Thus apply
Proposition |4; note that in this case . = 400. The last point shows that if ¢ < L and if we perform
the Newton method with a full Newton step, then

Yt >0, Da(z) < 27 Doy (a0), Da(ze) < 27 Dy (20).

This shows the quadratic convergence, and the first two points directly follow. For the third point, the
result for vy (z;) directly follows from the previous equation, and the one on function values is a
direct consequence of Lemmal6]and the fact that z; € D (1/7).

For the last point, note that v;(z;) = V fx(x:) - Ax(a¢) is accessible. Moreover, the bound on ¢ is
given in the point before, and since one has to compute Ay () for 0 < s < ¢, there are at most ¢ + 1
computations. O

In the main paper, we compute approximate Newton steps by considering methods which naturally
yield only a relative error p and no absolute error €y. Indeed, we take the following notation.

Approximate solutions to linear problems. Let A be a positive definite Hermitian operator on

‘H, b in H, and a wanted relative precision p.

We say that x is a p-relative approximation to the linear problem Ax = b and write * €
LinApprox(A, b, p) if the following holds:

A7 —z]la < pllblla-1 = pl| A7 0] -
Note that if € LinApprox(A, b, p) for p < 1, then

(1 =p)lblla-r <z-b< (1+p)[bla-r-

The following lemma shows that if, instead of computing the exact Newton step, we compute a
relative approximation of the Newton step belonging to LinApprox(Hy(z), V fa(z), p) for a given
p < 1, then one has linear convergence. Moreover, we show that we can still perform a method which
automatically stops.

Proposition 5 (relative approximate Newton method). Let A > 0, p < %, c< % and a starting point
xo € Dx(c). Assume we perform the following Newton scheme:

Vit Z O7 Ti41 = Tt — &t, At c LinApprox(H)\(xt), Vf)\(.'lft), p)

Then the scheme converges linearly, i.e.

V)\(l‘t)
Vie N, ——= —
va(zo) Ua(zo)

Thus,
o Vt € N, x; € Dy(c).

e Forany¢ < cthen¥t > [log, £|, @ € DA(C).

For any ¢ > 0, Vt > {logQ ”A\(/%O)—‘ s ua(z) < Ve, fa(z) = fa(zy) <e

€

If the method is performed and returns the first x,; such that x; - Et < gs, then at most

Ve
and vy(z1) < /e, fa(z) — falz}) < e

2+ LlogQ (\/g M)J approximate Newton steps computations have been performed,
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Proof. Apply Propositionwith €o =0and p = %, since if p < 1, then a fortiori the approximation
satisfies the condition for p = % The last point clearly states that

INCOINED (1o)t »
vVt e N, , = < (=) <27°
va(zo)” Ux(z0) 21

From this, using Lemma [6] for the third point, the first three points are easily proven.
For the last point, note that since A; € LinApprox(Hx (), Vfa(z:), p), the following holds:

V(@) - Ay = va(x0)? + V() - (&t - H;l(xt)Vf,\(a:t)) Now bound

VA - (B = By @) V@) ) | < vale) 18— By (@) V@), e < pva@n)?.
Thus: _
(1= p)va(:)? < Vha(ae) - Ay < (1+ p)uala)®.
Since p = %, we see that if V f (zy) - ﬁt < ga, then vy (x4)? < €. Moreover, since we stop at the

first t where V f(z) - Kt < gs, then if ¢ denotes the time at which we stop,

6 ~ 8 3
§5 < Vix(xez1) - Apoq < ?V,\(fEtA)Q = uv(r1)? > 1°

Since vy (x;_1)? < 272Dy, ()2, this implies in turn that t — 1 < log, (ﬂ%) Thus,

necessarily, ¢ < 1+ {log2 ( %”A\(/?) )J, and since we compute approximate Newton steps for

5 =0, ..., t, we finally have that the number of approximate Newton steps is bounded by
4 Ux (.130)
2 1 - .
+ { 0gy (\/; NG

Last but not least, we summarize all these theorem in the following simple result.

Lemma 11. Let A > 0,c < 1/7, let f) be generalized self-concordant and x € Dy (c). It holds:
(@) < falz) = fa(@}) < val@)® Moreover, the full Newton method starting from zo has
quadratic convergence, i.e. if x, is obtained via t € N steps of the Newton method Eq. (2), then

va(zy) < 2-(2"=1)y, (z0). Finally, the approximate Newton method starting from x has linear con-

vergence, Le. if xy is obtained viat € N steps of Eq. , with A, € LinApprox(H, (z¢), V. fx(24), p)
and p < 1/7, then vy (x;) < 27wy ().

Proof. The three points are obtained in the following lemmas, assuming x € D»(1/7).

o For 2ux(x)? < fa(z) — fa(2}) < va(x)?, see Lemmal6]in Appendix [A.1]

e The convergence rate of the full Newton method starting in Dy (1/7) is obtained in
Lemma[I0l

e The convergence rate of the approximate Newton method starting in D (1/7) is obtained in
Proposition 5}

O

B.4 Sketching the Hessian only once in each Dikin ellispoid

In this section, we provide a lemma which shows in essence that if we are in a small Dikin ellipsoid,
then we can keep the Hessian of the starting point and compute approximations of H} ' (z0)V £ (24);
they will be good approximations to Hy ' (z,)V fy(z¢) as well.
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Lemma 12. Let c < 1 and xg € Dy(c) be fixed.
Let H be an approximation of the Hessian at x, approximation wich we quantify with
ti= |[H; (o) (i (o) — ) H; Y (20)]|.
Assume
1+t <2(1-c)
Letb € H. Ifﬁ € LinApprox(PNIA7 b, p), then

(p—1)(1—c)®+ (1+1)

Va € Da(c), A € LinApprox(H, (z),b, p), p = - 01D

In particular; if c < 30, xo € Dyx(c),

.

~ 1 ~
Va € Da(c), Vb € H, A € LinApprox(Hy(zo), b, %) =—> A € LinApprox(H)(z),b -

Proof. First, start with a general theoretical result.
1. Let A and B be two positive semi-definite hermitian operators. Let A > 0, b € H and
A € LinApprox(B,, b, p). Decompose
[AS"0 = Allay < IA3"0 =By b]la, + 1By — Alla,
1/2/ 5 — —1ya1/2 1/25—1/2 - X
< AV (AR = BIOAY? bllo - + IAYZBL 2] B — Al

Now using the fact that A7 — B! = B;'(B - A)A !,

1/2 _ _ 1/2 —1/2 —1/2 1/24+— 1/2

1A (AT - ByHAY?| < |AT2(B - A)A 2| |AYPBTAY
—1/2 —1/2 1/2 —1/2

= |A (B~ A)AL?| AV B

Moreover, _
B0~ Allp, < Allbllg-r < |AY2B-12 1Bl A

Putting things together, and noting that from LemmaH ||A1/2B 1/2||2 S 1A 7B ! YN
A

as soon as ||AA1/2(B A)A 1/2|| < 1, it holds:
p+\|A PB-A)A

Ae LinApprox(Ay, b, p), p = .
AT B - M)A

The aim is now to apply this lemma to A = H(z) and B = H.

2. Letxz,z € Dy(c). Using Lemma[22] we see that
1 |[H 2 (@) (- H(2)) H, 2 (@) < (1+ 81+ [y V2 (2) (H(wo) — H(z))H, 2 (@)]).
Using Eq. (I7), it holds:
(e™H@mm0) — 1)L < H, V2 () (H(xo) — H(x))H, /?(2) < (eH@0~) — 1)L
Thus,
12 (2) (F(20) — H(2))H, V2 ()| < max(1 — etz 7o0) etloma) _ 1) = etlommo) g,
Finally, using the fact that 2o, z € D (c) for ¢ < 1 yields t(z — zo) < 2log *—. Hence

1 G ) (o) ~ ()M )] < _1C)2'

Thus, _
~1/2/ 7/ H; '/ +
[H, " (z)(H - H(z))H,"""(z)] < TSE

The result then follows. O

— 1.
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C Proof of bounds for the globalization scheme
In this section, we prove that the scheme of decreasing i towards A converges.

C.1 Main technical lemmas

Lemma 13 (Next ). Let pp > 0, ¢ < 1.

Ji Vi L BV g )
c /I H ~._ 3~ ¢
vu(x) < 3R vp(z) <c ‘R’ H=aH = R\/ﬁ”zﬁnflm ’
"

1 HHJJHH;HI)

e o o o3 e

veD,(3) = 7ebile),  Fmam g2t

Proof. For any i < p, note that

—1/2 (H(I =
Vo € H, |[H; P (@)Y (2)] = ) 7 S VAR
This shows that || - ||H Ly S \[H ||H z),andlnpartlcularthatr @ < /i rM(T
Using this fact, it holds:
N IV fa(@) a1 )
O
19 Fu() = (1~ )l
B ra()
V fu(z “1(p BT || gp=1
SQH u( )Hu()+<£1:1>” HHM().
H ru(z) ru(e)

Hence, if 7, (x) < £, a condition to obtain 7/;(2) < cis the following:

N 3+t el gz (o
g(£+t)§c+t<ﬁ>u2uc/ + = e (o)
fo\3 c+t ru(z)

This yields the second point of the lemma. The analysis is completely analoguous for the first.

Lemma 14 (Useful bounds for g). Let i > 0. Then the following hold:

T
vo e H, W < R el < Rlall
ru(z) "

Moreover, we can bound all of these quantities using x},:
o Foranyc <1,z € H, ifx € D,(c/3), then the following holds:
uIIxHH—l L . Iz, HHfl(xm.
cru(z 3 lfc/3 L—c/3  cru(zy)

RV“ (z)

e Foranyc < 1l,x € H, if < £, then the following holds:

Ry/illzll gz (o) el 1+ Ry/pllw) Ml Hap)
c 1-¢/3 1—c/3 c

Likewise, it can be shown that under the same conditions:

(e )

C
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Proof. The first bound is obvious. Moreover, the fact that v, (z) < £ implies that t(x — 7)) <
log ﬁ Thus, we get the classical bounds on the Hessian using Eq. :

e tETH(z) < H(z}) = e T H ().
1. Bound on yif|z||g-1(,). Using Egs. and ,

Wl ) = 9 0) = V7(@) + T7) =V F @) gt

1

< () +/O [HL ()P () (@ — @) | dt + IV f (@)l 0 @0 = ta+ (1= 1)z,
Now bound |[H,,(2)~/*H(x¢)(x — a})| < [[Hu(z)™V2 Hy(z)'?|| o — 2} |lere,) and use
Eq. (I7) and Eq. (T4) to get:
1L, (2) 72 H () (@ — )| < e 17| — a |-
Integrating this yields:
1
/O [H,, ()72 () (@ — a) || dt < b(t(x — 2})) |2 — @) ag) < 77 v (@).

Where the last inequality is obtained using the bounds between gradient and hessian distance Eq. (T8).

Finally, using the bound on t(z — z7,),

1 1 x
pllz g 0y < (1+ 1_c/3> vu(®) + 4/ _C/g\IVf(:cu)IIH;I(x;y

2. Bound on R||z|. Start by decomposing
Rlz|| < Rllay, | + Rz — x|

Now bound B
Rllx — 27| < ﬁ”iﬂ — 2|1, (2)-
Using Eq. , |z — 2} llH, ) < ¢(—log(1 — ¢/3))v,(x). Hence:
— Ry, (x)
R||z|| < R||z%|| + ¢(—log(1 — ¢/3)) —L==.
I < Rl; Vi
3. Now assume = € D, (c/3). Using the bound on u||a:HH;1(I), and noting that
1 < etlo—a)/2 1 ,
ru() ru(z))
it holds: | |
|- Byt
wll HH,J(;E) < 1 14 1 n 1 pllE; “).
cru(z) 3 1—c¢/3 1—¢/3  cru(a})
4. Now assume RV“T;(LI) < 5. . Weknow that in particular, € D, (c/3) and hence:

Rullat g2 o
Rl < (14— ) Be@ ] 1 ple )
H," (2) 1-c¢/3 N 1—¢/3 N
1 C 1
<1 IR - * o
< (14 ) 5 TR A
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Hence

Ry/f||| g Ry/plla]
VAl ||H“, (z) <(1+ 1 }-l- VAl H,,
c 1-¢/3/3 1 fc/3 c

Rll=ll RHw*II
C

Likewise:

¢( og(1 —¢/3)).

We can get the following simpler bounds.

Corollary 3 (Application to ¢ = %). Applying Lemmal|l4|to c = % we get the following bounds. Let
w> 0.

e Forany x € H, if x € D,,(c/3), then the following holds:
7u||;v\\H;1(z) s SHMI’HHHA(:,:;)-
ru(z) ru(z,)

R%I < 5, then the following hold:

TRyl gy (o) < 14+ SRV 2] e

TR|z|| < 7R|x}| + 1.

o Foranyc <1, x € H, if

C.2 Proof of main theorems

In this section, we bound the number of iterations of our scheme in different cases.

Recall the proposed globalization scheme in the paper, where ANM,(f, x, t) is a method performing ¢
successive p-relative approximate Newton steps of f starting at x.

Proposed Globalization Scheme
Phase I: Getting in the Dikin ellispoid of f
Start with zg € H, o > 0,¢,T € Nand (qx)ken € (0,1].
Fork € N
Tpy1 < ANM,(fu,, Tiy t)

Hk+1 < qk+1M1K
Stop when pp41 < A and set zjq5¢ < k. K < k

Phase II: reach a certain precision starting from inside the Dikin ellipsoid
Return Z < ANM,(fx, Ziqst, T')

Throughout this section, we will denote with K the value of k when the scheme stops, i.e. the first
value of k such that pp 41 < A.

Adaptive methods We start by presenting an adaptive way to select pix11 from pg, with theoretical
guarantees. The main result is the following.

Proposition 6 (Adaptive, simple version). Assume that we perform phase I starting at x( such that

RVMU(‘TO) <}
Vi T T

Assume that at each step k, we compute xy1 using t = 2 iterations of the p-relative approximate
Newton method. Then if at each iteration, we set:

3+ TR|zn |

He4+1 = qk4+1 Mk, dk+1 ‘"= 550 -
A T 14 TRz

Then the following hold:



Ryuk (Zk)

<

=

2. The decreasing parameter qyy1 is bounded above before reaching K :

3+ TR
[ = 2+ 7Rl

4
44 7R|z*
Vk < K < 3 L
= = S TRy,

k |
3. K is finite,

log o
K < #
— 2+7R||z} ||

< |3+ 11R|z3) 105 |
log =2+ A
SH7R[23 ]l

RV)\(ZEK+1) <

1
and N =

Proof. Let us prove the three points one by one.
1. This is easily proved by induction, the keys to the induction hypothesis being:

o Using the induction hypothesis, x5, € D, (c) and hence, using Proposition [5|shows that
after two iterations of the approximate Newton scheme, V‘;’“L(:S) < % which implies
g (Th
Rvy, (Tr41) <<
vV HE — 3"

e Now using Lemma([T3] we see that that since

Rlapn Ry/pkllerr1 bz (a0)
- b

TR =
sl = =2 -

the hypotheses to guarantee the bound for g1 hold, hence
RyﬂkJrl(a:k'"Fl) <c

vV HE+1

2. Using the second bullet point of Cor. 3] we see that the previous point implies

4/3 + TR|z}, ||

Vk< K, TR < TR|z%, 1 = < —— 4
< K TRl | < TRl +1 = an < 5o

Now using the fact that for any k < K, x> A, we can use the simple fact that ||z} || > ||z}, || to
get the desired bound for g .

3. Using the previous point clearly shows the following bound:

4 k
+7R||m;||)
VE<K+1, up < [ 3—— A1 .
= ik = <2+7R||x;|| °

As this clearly converges to 0 when k goes to infinity, K is necessarily finite. Applying this for
k = K, we see that:

4 * K
s+ 7R
A< < (3 - ”“”) 0
2+ TR|xx||
HO
This shows that K < %

The final bound is obtained noting that
2+ TR[l2x| 1

21
ST gy C 0 t=24 ZR||2,
5+ 7R||z3 |l t g [l
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and using the classical bound:

— <t+ 1L

log(1 + %)
Finally, the fact that % < cis just a consequence of the fact that g1 < A < px and thus
that A\ = qug with ¢ > qx 11, which is shown to satisfy the condition in Lemma Hence, the
lemma holds not only for 11 but also for A.

Remark 2 (). In the previous proposition, we assume start at xg, j1o such that

RVHO (xO) < }

Vio T T
A simple way to have such a pair is simply to select:

zo =0, po = TRI[VF(0)],

R||Vf(O _
since Brmato) _ BV Oliio)  pyvso)

VKo Ho - Ho

Alternatively, if one can approximately compute |||/ -1 (z)» ODE Can propose the following variant,
m
whose proof is completely analogous.

Proposition 7 (Adaptive, small variant version). Assume that we perform phase I starting at xo such

that
RVMO (:17) < l
wo 7

Then if at each iteration, we set:

7 . 1
tey1 = 7\/;R,/pk,/xk+1 “Skt1,Sk+1 € LinApprox(H,,, (xx+1), Tk+1, ?),
and )
- .3 + tk+1
Hk41 = Qi4+-1 Mk, dk+1 = 1 tos i .

Then the following hold:

1. VkSK,MS

1
vV MKk 7

2. The decreasing parameter qj1 is bounded above before reaching K :

7 *
<K q < sup + 10R/pl|2 =1 (o - T4 10R||3 |
B T pozpza 3+ 1OR\//Z||$Z||H;1(37;) ~ 3+ 10R|23|l

3. K is finite,

9 Ho
K< <2 +15 sup R\/H”Z‘;”H#l(l_;)> log bR

A<u<Lpo

and f@x+l) <

1
VoY T

Proof. The main thing to note is that because of the properties of %-approximations, if sp41 €
LinAppI‘OX(H”k (xk+1)a Lh+1, %)’

1 2 1 2
(= Dowsals, oy Somesmen < (04 Dlanalyg,

Hence,

7 4
ok i1l ey < ﬁm < \/gxkﬂimgum-
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Hence, tj41 > TR\/[ik || Trt1 || g1 and we can apply Lemmato get the first point.

g (Th1)’
To get the second point, we bound ¢ above:

4
tet1 < 7\/;3\/ 1k || Tt HH;;(;E,CH)'

Now use Cor. 3 to find:

4 * *
tey1 < \/g (1 + SRVNkaukHH;;(mk)) <2+ 1ORV/’Lk“x;Lk|‘H;]:($;k)'

Thus,
< T+ 10R /x|y, a2 o, )
dk+1 > .
3+ 10RV/hklla, Nlez o )

Note that as long as k > K,

5 H10RVEllw) g o) T4 10R|2]|
k41 < SUp < 3 A
p>x 3+ 10R\//7||37u||H;1(z;) 3+ 10R|J3 ||

This guarantees convergence.

For the last point, the proof is exactly the same as in the previous proposition.
O

General non-adaptive result. As mentioned in the core of the article, in practice, we do not select
qr+1 at each iteration using a safe adaptative value, but rather decrease j;,+1 = qui with a constant
g, which we see as a parameter to tune. The following result shows that for ¢ large enough, this is
justified, and that the lower bound we get for ¢ depends on the radius of the Dikin ellipsoid r,,(z),

instead of % in the previous bounds, which is somewhat finer and shows that if the data is structured
such that this radius is very big, then ¢ might actually be very small.

Proposition 8 (Fixed q). Assume that we perform phase I starting at xo such that
1
To € D/”'O(?)'

Assume we perform the method with a fixed qi4+1 = q, satisfying

.
Wl 1 o

> su 3 + ru(z;)
1=.22, PIEF T
T2 E =
Then the following hold:
1. VE<K+1, zp € DM(%).
2. K is finite,
1 Ho
K< ——1log—
ST

and T 11 € D,\(%).
Proof. Let us prove the two points.
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1. Let us prove the result by induction. The initialization is trivial. Now assume z3, € D, (%)
Performing two iterations of the approximate Newton method guarantees that

1
ﬁ)a

as show in Proposition|5| Now using Lemma we see that 2341 € Dy, (%) provided that

Tr1 € DlLk (

7Hk“95k+1”H;1

1 (p41)
RN ey
q = 7“’“H$’“+IHH;£(%+1)
Fug (Th+1)
Now using Cor.[3] we get that
7Mkl|mk+1||H;;(mk+1) 8“k||x2k||H;§(:r;k) <1+8 sup ”‘lx/*L”Hll(””ﬁ)
P (Tt 1) N s (Iﬁk) N A<p<po i (IZ)

Hence the result.

2. This point just follows, using the bound lo; T < g
q

C.3 Proof of Thm. [Tl

Using Remark 2| the fact that xp = 0 and o = 7R||V f(0)||, as well as the hypotheses of the
theorem, we can apply Proposition 6] and show that the number of steps K performed in the first
phase is bounded:

K < [(3+ 11R|23) log(TR[[V f(0)[|/A)] -
Moreover, this proposition also shows that Rvy (24st)/ VA< % Hence, we can use Proposition if

>\ _1 as
t2T = L% Rw > [lom, 201,

then it holds v5 (Z) < v/ and f\(Z) — fa(z}) <e. O
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D Non-parametric learning with generalized self-concordant functions

In this section, the aim is to provide a fast algorithm in the case of Kernel methods which achieves
the optimal statistical guarantees.

D.1 General setting and assumptions, statistical result for regularized ERM.

In this section, we consider the supervised learning problem of learning a predictor f : X — ) from
training samples (z;, ¥;)1<i<» Which we assume to be realisations from a certain random variable
Z =(X,Y) € Z =X x ) whose distribution is p. In what follows, for simplification purposes, we
assume )Y = R; however, this analysis can easily be adapted (although with heavier notations) to the
setting where ) = RP. Our aim is to compute the predictor of minimal generalization error

inf L(f) = By [6(/ ()], 29)

where H is a space of candidate solutions and ¢, : R — R is a loss function comparing the prediction
f () to the objective y.

Kernel methods. Kernel methods consider a space of functions H  implicitly constructed from
a symmetric positive semi-definite Kernel K : X x X — and whose basic functions are the
K, :t € X — K(z,t) and the linear combinations of such functions f = Z;”:l a; Ky, .

It is endowed with a scalar product such that: V1,20 € X, K,, - K;, = K(x1,22), and as a
consequence, H g satisfies the self-reprocucing property:

Vo e X, Vf e, f(z)=(f, Ki)n.

In order to find a good predictor for Eq. (29), the following estimator, called the regularized ERM
estimator, is often computed:

- L~ 1< A
fri= arfgerjrimL)\(f) = ;fz(f(xz)) + §||f||3-t

The properties of this estimator have been studied in [13]] for the square loss and [23]] for generalized
self-concordant functions. In Appendix [H] we recall the full setting of [23]], and extend it to include
the statistical properties of the projected problem.

Assumptions In this section, we will make the following assumptions, which are reformulations of
the assumptions of [23]], which we recall in Appendix [H} in order to have the statistical properties of
the regularized ERM. First, we assume that the (z;,y;) are i.i.d. samples.

Assumption 1 (i.i.d. data). The samples (z;)1<i<n = (Ti,¥i)1<i<n € Z" are independently and
identically distributed according to p.

In the case where ) = R, we make the following assumptions on the loss, which leads to the self
concordance of the mappings f — £, (f(x)) and that of L, L...

Assumption 2 (Technical assumptions). The mapping (z,t) € Z x R — {,(t) is measurable.
Moreover,

o there exists Ry < 0o such that for all z € supp(Z),
e R, [(7(1)] < RelZ(2),
o the random variables |£7(0)|, |¢';(0)|, ¢, (0)| are are bounded;
e The kernel is bounded, i.e. Vx € supp(X), K (z,x) < k? for a certain k.

Using these assumptions, we see that the following properties are satisfied. Define L, (f) := £.(f(x)).
Then the L, satisfy the following properties:
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e Forany z € Z, (L,,{R/K,}) is a generalized self-concordant function in the sense of
Definition 4]

e The mapping (z, f) € Z x H — L,(f) is measurable;

e the random variables || Lz (0)||, [[VLz(0)||, Tr(V?L(0)) are bounded by |¢£(0)], x|¢%(0)],
K215 (0)];

o G:={RyK, : z € supp(Z)} is a bounded subset of H, bounded by R = Ryk.

This shows that Assumption [7]and Assumption [§]are satisfied by the L. and hence, using Proposi-
tion[I6]in the next appendix, L is well-defined, generalized self-concordant with G. Moreover, the

empirical loss
n
§ in )
i=1

is also generalized self-concordant with C? ={ReK,, : 1<i<n}.

E:

S|

Finally, as in Appendix [H] we make an assumption on the regularity of the problem; namely, we
assume that a solution to the learning problem exists in .

Assumption 3 (Existence of a minimizer). There exists f* € H such that L(f*) = inf peqy L(f).

We adopt all the notations from Appendix [H] doing the distinction between expected an empirical
problems by adding a™ over the quantities related to the empirical problem. We continue using the
standard notations for L: for any f € H and A > 0,

L) = LD+ 51017 Ea() = E(H) + SIAIP

H(f) = V2L(f),  Ha(f) = VZLA(f) = H(f) + AL
H(f) = V2L(f),  H\(f) = VLA(f) = H(f) + AI

Recall that f,\ is defined as the minimizer of L A-

Define the following bounds on the second order derivatives:

VfeH, by(f)= sup LI(f(x)).

z€supp(Z)

Statistical properties of the estimator The statistical properties of the estimator fy have been
studied in [23]] in the case of generalized self concordance, an are reported in the main lines in
Appendix [H] The statistical rates of this estimator and the optimal choice of X is determined by two
parameters, defined in Proposition[T7)and which we adapt to the Kernel problem here.

e the bias by = |[H(f*) 2V LL(f*)| = )\||f*||H;1(f*), which characterizes the regular-
ity of the optimum. The faster by decreases to zero, the more regular f* is.

o the effective dimension
dfs = E [[HL(F) /29 L4 ()2 (30)

This quantity characterizes the size of the space H with respect to the problem; the slower it
explodes as A goes to zero, the smaller the size of H.

For more complete explanations on the meaning of these quantities, we refer to [23].

Moreover, as mentioned in Proposition[I7] one can define

B*
Bl := sup [[VL.(f9)[, B3 := sup T(V’L.(f")), Q"= —==,
z€supp(Z) z€supp(Z) \/ B§

We assume the following regularity condition on the minimizer f*, in order to get statistical bounds.

by = ba(f*). (31)
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Assumption 4 (Source condition). There exists v > 0 and g € H such that f* = H"(f*)g. This
implies the following decrease rate of the bias:

ba < LAY L= gl

This is a stronger assumption than the existence of the minimizer as > 0 is crucial for our analysis.

We also quantify the effective dimension df 5: (however, since it always holds for & = 1, this is not,
strictly speaking, an additional assumption).

Assumption 5 (Effective dimension). The effective dimension decreases as dfy < QA~1/<,

If these two assumptions hold, define:

@ (1+2r)«

P=iratrzy YT ita(io)

Under these assumptions, one can obtain the following statistical rates (which can be found in [23]] or
in Cor.[d).

Proposition 9. Let 6 € (0,1/2]. UnderAssumptionstoE] whenn > N and A = (Co/n)?, then
with probability at least 1 — 29,

L(R) — LU < Cinlog 3,

with Cy = 256(Q/L)?, C; = 8(256)Y (Q L'=7)2 and N defined in [23|], and satisfying N =
O(poly(B1, B3, L, Q, R, log(1/9))).

D.2 Reducing the dimension: projecting on a subspace using Nystrom sub-sampling.

Computations Using a representer theorem, one of the key properties of Kernel spaces is that,
owing to the reproducing property,

f/;\ eH, = {Zaini :(ay) € R"}.
i=1

This means that solving the regularized empirical problem can be turned into a finite dimensional

problem in «. Indeed ]?)\ = Z?:l a; K, where o« = (;)1<i<n, is the solution to the following
problem:

R A
o = argmin — Zﬁz’i (aTKnnei) =+ 704TKTmOz, K, = (K(l‘i,l‘j))1<i,j<n c R™*"™,
acRn T =1 2 -

The previous problem is usually too costly to solve directly for large values of n, both in time and
memory, because of the operations involving K,,,,. A solution consists in looking for a solution
in a smaller dimensional sub-space H s constructed from sub-samples of the data {Z1, ..., Zpr} C

{1‘1, "'7x’n}:

M
Hyr = Z&jKij RS R]w
Jj=1

In this case, the minimizer fM,A = argmingeqy,, E,\(f) can be written fM,A = Zﬁl a;jKz,,
where & is the solution to the following problem:

1 & A

& = arg min — Zﬁzi (aTKMnei) + Za " Kyuma,
aceRM TV P 2

where

Koy = (K(24, %)) 1<i<n » Karn = Kpar, Ko = (K (34, 75))1<i j<m-
1<i<M
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Let T be an upper triangular matrix such that T TT = K. One can re-parametrize the previous
problem in the following way. For any 3 € RM, define f5 = Z;Vil [TTB]; Kz,. This implies in
particular that || f3||% = ||3||g» . Then fM’A = fBar.r» Where

n

Lo~ 1 A
Bux = argmin L\ (B) == — Zézi (e; KnntTT8) + = |18]1%.
ﬁE]RM n i1 2
Using the properties the £, one easily shows that 5 +— Ezi(eiTKnMTTﬂ) is {RgT*TKMnel-}
generalized self-concordant, and ||R,T~ " Kasne;| < Re/K (24, ;). Thus, L M 1s also generalized

self-concordant, and the associated G,  is bounded by R = Ryk. It will therefore be possible to apply
the second order scheme presented in this paper to approximately compute 5y .

Statistics Let Uy 5/(3) denote the Newton decrement of L a0 at point 5 and Py, denote the
orthogonal projection on Hp;. Then the following statistical result shows that provided j is a good
enough approximation of the optimum, and provided #,; is large enough, then fz has the same

generalization error as the empirical risk minimizer f).
Recall the following result proved in Proposition[T9)in Appendix

Proposition 10 (Behavior of an approximation to the projected problem). Suppose that Assumptions|]]
to[3|are satisfied. Letn € N, 6 € (0,1/2], 0 < X\ < B3. Whenever

B5  8I°B} dfy vV (Q5)2 . 2 AY2 AL/2
> Ap—21 1-2 \/A log 2 <2 < __
n = 1 B\ 0og 2\ ) Cl n Og5 - R ) Clbk_ R 5
if
\/i )\1/2
HY2(MI-Py)l? < A==, 1260 <
| (f*)( M)l —/\480’ 6UM A (B) < R

the following holds, with probability at least 1 — 24.

dfy v (Q*)?

2 ~ *
L(f3) = L") < Ky B} + Ko log = +Ks Bya(8), Rlfs — Sl < 10,

where K < 6.0e4, Ky < 6.0e6 and K3 < 810, C; is defined in Lemma and the other constants
are defined in Thm.[S}

In particular, if we apply the previous result for a fixed A, the following theorem holds (for a proof,
see Appendix [H.4).
Theorem 5 (Quantitative result with source r > 0). Suppose that Assumptions|[I|toB]are satisfied.

Letn > N and 6 € (0, %] If\= ((%)2 %) Q(HMH, and if
2
E2() T Pan) | € A2 Fara(8) < Q7 L0,

then with probability at least 1 — 26,
. _a2 1 2 N
L) ~ LU <K@ L) S10g2 RIfs— s < 10,
where N is defined in Eq. (@#2)) and K < 7.0¢6.

The proof of the previous result is quite technical and can be found in Appendix [H} in Thm. [9]

D.3 A note on sub-sampling techniques

Let Z be a random variable on a Polish space Z and (v, ),cz be a family of vectors in H such that
|[v]| Lo (2) = SUP,esupp(2) V2]l < oo is bounded. Assume that 21, ..., 2y, are i.i.d. samples from Z.
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Define the following trace class Hermitian operators:

~ 1 &
A=Ejvz®vz], A= ﬁ;vzi ® v, .
Define
NA) = Tr(AT'A),  NAN) = sup  [|A 0.2 32)
z€supp(Z)
We typically have:
HUH%oc(z)

NAEQ) SNEN) < —

We define the leverage scores associated to the points z; and A:

V1<i<mn, Vt>0, 18 = |A; 0., = n ((Gun + tn1) ' Goy)

i 7

(33)
where G, = (vz; - V2, )1<i,j<n denotes the Gram matrix associated to the family v, .

As in [28]], definition 1, we give the following definition for leverage scores.

Definition 5 (g-approximate leverage scores). given to, a family (I (t))1<i<n is said to be a family

of q-approximate leverage scores with respect to A if

K2

1 -
V1 <i<m, Vt>tg, —I2(t) <I2(t) < qI2(1).
q

We say that a subset of m points {21, ..., 2., } C {z; : 1 <i<n}is:

e Sampled using g-approximate leverage scores for ¢ if the Z; = z;, where the i; are m
)

i.i.d. samples from {1, ..., n} using the probability vector p; = STINLOL In that case, we
A o m 1 ~ ‘. =1 4
define A, := - ZFI o vz, ® vz,
o Sampled uniformly if the {¢; : 1 < j < m} is a uniformly chosen subset of {1,...,n} of
size m. In this case, we define A, 1= + S, vz, @ s,

In Appendix [[.T] we present technical lemmas which allow us to show that if mn is large enough, the
following hold:

e |A,(I-P,,)|? <3n, where P,, is the orthogonal projection on the subspace induced by
the vz, ;
° KW,\ is equivalent to _/1,\.
Remark 3 (cost of computing g-approximate leverage scores). In [30], one can show that
the complexity of computing q-approximate leverage scores can be achieved in: Cgapp =

O(PNA(N)2min(n, 1/))) time (where a unit of time is a scalar product evaluation) and
O(NA(N)? + n) in memory.

D.4 Selecting the M Nystrom points

In order for Thm. [5[to hold, we must subsample the M points such as to guarantee |[H'/2(f*)(I —

Py)|? < %-

Since we must sub-sample the A points a priori, i.e. before performing the method, it is necessary
to have sub-sampling schemes which do not depend heavily on the point. Define the covariance
operator:

Y=E[Kx®Kx].
Since H(f*) = E[0%(f(X)) Kx ® Kx], it is easy to see that H(f*) < b5X. Note that for X,
since 3 = % Soiy Ky ® K, the leverage scores have the following form:

Vi<i<mn, liz(t) =n ((KmL + )\nI)fle,,)A .

i
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Proposition 11 (Selecting Nystrom points). Let é > 0. Let n = min(||X]], W‘gw)). Assume the
2

samples {Z1, ..., Tpr } are obtained with one of the following.

IL.n>M> (10 + 160N = (77)) log 81%2 using uniform sampling;

2. M > (6 +486¢°N'= (77)) log % using q-approximate leverage scores with respect to 3 for
t=mn,tyV %log% <, n > 405k> \/67/<;21og%.
Then it holds, with probability at least 1 — §:

. V2
I/ Pan)l| < 30 = [HV2 (/) ~Par)|* < A

Proof. The proof is a direct application of the lemmas in Appendix Indeed, note that since
Y = E[Kx ® Kx|, then the results can be applied with Z + X and v, < K. Indeed, from
Assumption 2] it holds:
sup ([P < 2.
z€supp(X)

O

We can now combine Proposition [IT]and Proposition [I0]to obtain the following statistical bounds for
the optimizer of the projected Nystrom problem [z .

Theorem 6. Suppose that Assumptions |I|to |3| are satisfied. Letn € N, 6 € (0,1/2], 0 < XA <
B3 A 720v/2(b3 v 1)||Z]|. Assume

B5  8I°B} dfy v (Q5)2 . 2 A2 AL/2
> A—21 122 \/A log = < 2 <2
n = 1 B\ 0og 2\ ) Cl Og(; - R ) Clbk =R 5

A2
T420(biV1)"

1L.n>M > (10 + 160N Z(n)) log 87%2 using uniform sampling;
2. M > (6 + 486¢°*N'® (77)) log 87%2 using q-approximate leverage scores with respect to X for
t=mn, toV 12 log & < 5, n > 405K V 67k log 1267,

n

The following holds, with probability at least 1 — 36.
dfy v (Q*)?2
n

Letn = Assume the samples {Z1, ..., Zpr} are obtained with one of the following.

2
L(fﬁM,A) - L(f*) <Ki bi +Ks log g’ RHBM,)\H < R”f*H + 10,

where K1 < 6.0e4, Ky < 6.0e6 and K3 < 810, Cy is defined in Lemmal[I9| and the other constants
are defined in Thm.

Proof. This is simply a reformulation of Proposition noting that Ups x(Bar,n) = 0 and that
Proposition[TT]implies the condition on the Hessian at the optimum. O

Provided source condition holds with r > 0, the conditions of this theorem are not void.

D.5 Performing the globalization scheme to approximate 3,/
In order to apply Proposition one needs to control Uz » ().

We will apply our general scheme to L M, 1n order to obtain such a control.

D.5.1 Performing approximate Newton steps

The key element in the globalization scheme is to be able to compute %—approximate Newton steps.

Note that at a given point 5 and for a given 1 > 0 the Hessian is of the form:
~ 1 —
Hyy(8) = —T7 TRy Do (B)Knn T + pllag,
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where D,,(8) = diag((d;(8))1<i<n) is a diagonal matrix whose elements are given by d;(3) =
é;’l (e;rKnMT_IB)

Note that we can always write
R 1 n B
Hu(8) = - Zui(ﬂ)ui(ﬂ)T +ul, wi(B) = Vdi(B)T™ ' Kame;
i=1

The gradient can be put in the following form:

~ 1
VL, (8) = ﬁTﬁTKMnU + us, v = (Elzi(eiTKn]bfTilﬂ))lgignn

Computing the gradient at one point therefore costs O(nM + M?), this being the cost of computing
K1 times a vector costs O(nM) and computing T~! times a vector takes O(M?) since T is
triangular. Moreover, the cost in memory is O(M?2 + n), M? being needed for the saving of T and n
for the saving of the gradient; K,, s times a vector can also be done in O(n) memory, provided we
compute it by blocks.

On the other hand, computing the full Hessian matrix would cost n.M? operations, which is un-
tractable. However, computing a Hessian vector product can be done in O(nM + M?) time, as for
the gradient, which suggest using an iterative solver with preconditioning.

Computing « € LinApprox(A, b, p) through pre-conditioned conjugate gradient descent. As-
sume we wish to solve the problem Az = b where A € RM*M ig a positive definite matrix and b is
a vector of RM . If one uses the conjugate gradient method starting from zero, then if x;, denotes the
k-the iterate of the conjugate gradient algorithm, Theorem 6.6 in [31]] shows that

k
. /Cond(A) —1
€ LinA A,b, p), —o | VO T 2
), € LinApprox(A, b, p) p ( Cond( A)+1>

where Cond(A) is the condition number of the matrix A, namely the ratio %‘ If Cond(A) is

large, this convergence can be very slow. The idea of preconditioning is to compute an approximation
matrix A such that

1~ 3~
-A<A=<-A. 34
2 - T2 34)

We then compute B a triangular matrix such that BTB = A using a cholesky decomposition, which
can be done in O(M 3 ), and note that B TAB 'is very well conditioned; indeed, its condition
number is bounded by 3.

Perform a conjugate gradient method to solve the pre-conditioned problem B~ TAB~ 'z = B~ b,
and denote with z, the 7-th iteration of this method. Then using the bound on the condition number,
we find

1\
z; € LinApprox(B"TAB~}, B~ b, p), p=2 <\/§ > ,

V3+1

which in turn implies that by setting =, := B~1z,,

5-1)
2, € LinApprox(A,b, p), p=2 <\[ > .

V3+1

This shows that after at most 7 = 3 iterations, provided A satisfies Eq. ll Tr €
LinApprox(A, b, 1). The cost of this method is therefore O(M? + nM) in time, and O(n + M?)
due to the computing of the preconditioner and computing matrix vector products by block. This

does not include the cost of finding a suitable A.
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Computing a suitable approximation of H ., (B)  To compute a good pre-conditioner, we will
subsample () points i1, ..., %g points from {1, ..., n}, and sketch the Hessian using these () points.

Proposition 12 (Computing approximate newton steps). Let § > 0. Let f € RM and pn > ),

and assume M log 2= < A and n > 405by(f3)k* V 67ba(f5)K? log M. Let ji =
min(u, |H(f3) ||) Assume one of the following properties is satisfied

1. Q> (10 + 160N fﬂ)( )) log M with uniform sampling of the {iy,...,iq}. We set
Do — ding(£2, (fa(e:,)hesco

2. Q> (6 + 486¢*N'H(fs )(ﬁ)) log W using g-approximate leverage scores associated to

(f8(zi;))
H(fg) fort = ji. We set Do = diag (:) , Where the p;; are the probabilities computed
ij

from the leverage scores.

Assume we use a pre-conditioner B such that

1 .
B'B=_—T "KygDoKouT ' +puly,  Kou = (K(2,,3)) 1<j<q -
Q 1<k<M

If we perform T = log(p/2)/log((v/3 + 1)/\/3 — 1) iterations of the conjugate gradient descent
on the pre-conditioned Newton system using B as a preconditioner, then with probability at least
1 — 0, this procedure is returns A € LinApprox(Hps A(8), VL A(B), p), and the computational

time is of order O(T(Mn + M?*Q + M3 + Coanp)), and the memory requirements can be reduced
to O(M? + n). Here c samp Stands for the complexity of computing Nystrom leverage scores, and

using Remark 3| or [30, Csamp = O(1) if uniform sampling is used, and ¢ sapp = OWNHUB) ()2 /)
if Nystrom sub-sampling is used. Note that for T = 3, p = %
Proof. Start by defining the following operators:

o K, :fet— (f(zi))i<i<n € R

o Ky i f €M — (f(&j)h<jcm € RM;

o V= K}\*/IT’I, where T is an upper triangular matrix such that T'T=Kyy= Ky Ky

Note that K,,V = K, T~

Now note that
~ 1 &
VfeH, H(f) :E[’UZ®UZ]7 H(f) = gzvzi X Uz, Uz = E/z/(f(l‘))Kév
Since for any f € H, H(f) = LK Dy (f) Ky, where D, (f) = diag(£) (f(x;))), we see that
ﬁM,u(B) = V*PAI(f,@)V + plar.

Thus, the last lemma of Appendixcan be applied, using the fact that ||v,[|? < ba(f)k?, to get that
in both cases of the proposition, under the corresponding assumptions:

1 /1 _ ~ 31 ___ _
5 (QT TKuoDoKouT™! +,UIM> = Hu . (8) = 5 (QT TKuoDoKou T + MIM> .

The rest of the proposition follows from the previous discussion.
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D.5.2 Applying the globalization scheme to control 7y, x(5)
In order to apply Proposition|12[to each point 5 in our method, we need to have a globalized version
of the condition of this proposition.

First, we start by localizing the different values of 3 we will visit throughout the algorithm.

Definition 6 (path of regularized solutions). Let A > 0, ¢ > 0. Define the path of regularized
solutions

TV = {Bary > A} (35)
And the € approximation of this path:

o = {5 eRM . 4(8,TM) < g}. (36)

Note that we always have fi” C Bgras (|| Bar,x1]). We now state a lemma proving that all the values
visited during the algorithm will lie in an approximation of this path.

Lemma 15. Define Let 3 € RM such that U p(B) < “;—;;for some |, > M. Then the following
holds: R
Bel}, .

'6R

Proof. Bound

R 1 Runr,.(B)
R||B3 — < — B - . < M
197 Pl < G = Pl = GG =Bar) w2
Just apply Eq. (18) to obtain R||3 — Baz,,|| < §. O

We now introduce the following quantities which will allow to control the number of sub-samples
throughout the whole algorithm.

Definition 7. Define
[ Bg = supﬁefM b2(f6)~

X,1/6R

° NH()\) = Supﬁef;ul NH(fB)(/\)

/6R

L] W?O(A) = Supﬁefiul o Ng(fﬁ)()\)

/6R
o TH] = mingery IH(f)

Proposition 13 (Performance of the globalization scheme). Lete > 0, 6 > 0, A = min(\, [[H|).
Assume % log 55 < Xandn > 405by k2 V 67bak? log %.
Assume we perform the globalization scheme with the parameters in Thm. |I| where in order to

compute any p approximation of a regularized Newton step, we use a conjugate gradient descent on
the pre-conditioned system, where the pre-conditioner is computed as in Proposition[I2|using

1.Q > (10 + 160N2(5\)) log % if using uniform sampling

2.Q > (6 + 486q2NH(5\)) log % if using Nystrém leverage scores

Recall that t denotes the number of approximate Newton steps performed at for each 11 in Phase
I and T denotes the number of approximate Newton steps performed in Phase II, and that using

Thim |l t =2 and T = [log, \/1V (Ae™1/R?)]. Moreover, recall that K denotes the number of
steps performed in Phase I. Define

N =2 (34 LLR| Bas ) loga (TRIV Ear (0)]1/A) | + oz, TV (e~ T/RE)].

Then with probability at least (1 — §)Nns:
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o The method presented in Proposition|12|returns a 1/7- approximate Newton step at each
time it is called in the algorithm.

e If 5 denotes the result of the method, Ups \(5) < /e

) The number of approximate Newton steps computed during the algorithm is bounded by

N,.s; the complexity of the method is therefore of order O(N,,s(M? max(M, Q) +nM +

Csamp(N))) in time and O(MQ + M? + n) in memory, where Cs.np()) is a bound on the
complexity associated to the computing of leverage scores (see [|30] for details).

The algorithm is detailed in Appendix[E] in algorithm[I} Note however that the notations are those of
the main paper, which are slightly different from the ones used here.

Proof. If we take the globalization scheme, using the parameters of Thm. [I] Assume that all previous
approximate Newton steps have been computed in a good way. Then the 5 at which we are belongs
to I‘iw’l /6R" Thus, the hypotheses of this proposition imply that the hypothesis of Proposition |12|are
satisfied; and hence, up to a (1 — §) probability factor, we can assume that the next approximate
Newton step is performed correctly, continuing the globalization scheme in the right way. Thus, the
globalization scheme converges as in Thm. [I]

D.6 Statistical properties of the algorithm

The following theorem describes the computational and statistical behavior of our algorithm.

Proposition 14 (Behavior of an approximation to the projected problem). Suppose that Assumptions|]]
toB]are satisfied.

Letn € N,e>0,6 € (0,1/2], 0 <X <B3. -

Define A\ = min(\, |[H||) and assume Lj’g log 55 < A n > 405bok? V 67byk? log %, and

n >/ "‘ log 85)\58"‘ Assume

9 1/2 1/2 1/2

Cl\/df)‘vn(Q*)2 10g3§%, Cleg%, 1264/ < %
Assume that the M points &1, ..., Ty are obtained through Nystrom sub-sampling using n = || 3| A
W\@vl)’ with either

1. M > (10 + 160NOZC(77)) log tfusmg uniform sampling;

2. M > (6 + 48642 N=(n )) log lf using q-approximate leverage scores for 1, associated to the
co-variance operator 3.

Assume we perform the globalization scheme as in Proposition i.e. with the parameters in
Thm. [I} where in order to compute any p approximation of a regularized Newton step, we use a
conjugate gradient descent on the pre-conditioned system, where the pre-conditioner is computed as
in Proposition[[2|using

1.Q > (10 + 160NI;(5\)) log 8b2“ if using uniform sampling

2.Q> (6 + 486q2WH(~)) log 8b2"‘ if using Nystrom leverage scores

Let N, 5 be defined as in Proposmon- /3| Recall Ny is an upper bound for the number of approximate
Newton steps performed in the algorithm. One can bound

nvaMamw [ V2T

Npys <2 \‘(113 + 11R||f*||) logy 3 logy, — A

Moreover, with probability at least 1 — (N5 + 2)0, the following holds:

L(fs) — L(f*) < Ky b3 + Ky

where Ky < 6.0e4, Ky < 6.0e6 and K3 < 810, C; is defined in Lemma and the other constants
are defined in Thm.[S}

f *)2 2
VO 2 ke
n 1)
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Proof. This is a simple combination between Propositions [T0} [[T]and [I3] To bound the number of
Newton steps N,,s, one simply uses the fact that under the conditions of the theorem, R||Sps 5| <
10+ R||f*]|-

Remark 4 (Complexity). Let L = byor?. The complexity of the previous method using leverage
scores computed for X for the Nystrom projections and for H( fg) for choosing the Q) points at the
different stages is the following. The total complexity in time will be of order:

0 (an (nj\fﬁ()\) log(ZA"167Y) + baAN=(A)3 log® (LA~167 1) + L/A BﬁNz(AF)) .

The memory complexity can be bounded by
OB NE(N)21log?(LA1671) + n).
Here, we use the fact that H < by 3.

We can now write down the previous proposition by classifying problems using Assumptions 4] and [3]
and in order to get optimal rates.

Theorem 7 (Performance of the scheme using pre-conditioning). Let § > 0. Assume Assumptions|]]

; S 5 o 2 1\ aaFenTT
toare satisfied. Let n > N, where N is characterized in the proof, A\ = ((%) %) e

Assume that the M points Z1,...,Tp; are obtained through Nystrom sub-sampling using n =
)\\/ﬁ . .
Wbé‘\/l)’ with either
2
1. M > (10 4+ 160N Z(n)) log 817% if using uniform sampling;
2
2. M > (6 + 486¢°N'= (77)) log 877% if using q-approximate leverage scores for n, associated to the
co-variance operator 3.
Assume we perform the globalization scheme as in Proposition [I3] i.e. with the parameters in
Thm. [1} where in order to compute any p approximation of a regularized Newton step, we use a
conjugate gradient descent on the pre-conditioned system, where the pre-conditioner is computed as
in Proposition[I2using
——H N
1.Q > (10 + 160/\[00()\)) log Sbfg‘z if using uniform sampling

2.Q> (6 + 486q2NH()\)) log ngg“Q if using Nystrom leverage scores

Let N, be defined as in Proposition[I3] Recall N, is an upper bound for the number of approximate
Newton steps performed in the algorithm. One can bound

Ny < (227 + 22R| £*]) ( 1og, (7RIVIar(0 og, ™= | + [10g, -
we < (227 + 22B] 7)) ( [togz (7RIVZa(0)]) | + |logs gz | + [loms 7| )
Moreover, with probability at least 1 — (N5 + 2)0, the following holds:

e all of the approximate Newton methods yield %-approximate Newton steps

e The scheme finishes, and the number of approximate Newton steps is bounded by N, s. The
total complexity of the method is therefore

O((nM + M3 + M?Q + Coump)Nps) in time O(n + M?) in memory.

o The returned (3 is statistically optimal:
2

L(fs) ~ L(F) < K (@ L) Llog 2,

where K is defined in Thm.

Proof. The proof consists mainly of combining Propositions[TT]and [I3]and Thm. 5]

Recall that we set A\ = (Q—2l> alrEnH .

L2 n
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1. Start by defining N such that:

e N > N where N is defined in Thm.

¥n > N, X < |[H]||. This is possible as T3oTT

is a strictly positive exponent.

~ ™ 2 . . .
e Vn > N, 19"2%1% 35 < A; this is possible as soon as i

afsensr < L ie. thisis
satisfied since r > 0;

N > 405by V 1 52V 67by V 1 52 log 12221

Y A
* Vn =N, 1440£v1) < [I=[.

We see that such a N can be defined explicitly.

2. Combining the assumptions on N with the ones on M, we see that all the assumptions of
Proposition[TT]are satisfied and thus that with probability at least 1 — ¢, all the hypotheses for Thm.
are satisfied except the bound on Uz »(5).

1 , we see that
n

3. Applying Proposition taking /¢ = Q¥ L'="n~"/2 and \ = (%2
under these hypotheses,

. nl2\ saF2FT 1 /nl2)\ sasen+
Nowi=2 |3+ 1Rl ogs  TRIVEw(0)] (g ) +1oes ( 7 (g ) .

Now we can bound this harshly:

) a(1+3ﬂ")+1

N a2 [ 1]
Nos < (74 22R]Basa ) { 1o (TRIVIw O)]]) | + [loms T | + [log 77| ) -

Now bounding R||Bar,x|| < 10+ R|| f*

, we get

. - T2l [ 1]
Nos < (227 + 22R| f )([1og2 (TRIVIm()])] + logy gz | + 1082 7 )

4. Finally, we use a union bound to conclude. O
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E Algorithm

Algorithm 1 Algorithm efficient non-parametric learning for generalized self-concordant losses with
optimal statistical guarantees discussed in Sec. [ of the main paper.

Input: (z;,y:)i=1, n € N, £ loss function, k kernel function and A > 0.

Return: estimated functiong : X — R

Parameters: Q, M, T € N, uo > 0, (qx)ken-

Fixed parameters: ¢ = 2 from Thm.[I] 7 = 3 from Proposition[T2]in Appendix [D.5.1}
(ijj)jvil < leverage-scores—sampling((z;)i=i, M, A k)

K« kernel—matrix((a_cj);-il, (@);il)

T < cholesky-upper-triangular(K)

define the function v(-) = (k(Z1,), ..., k(Zwm,-)) € RM

define compute-preconditioner:

Input: o € RM A>0

¢+ VI@(w(x;))TT 1o, y;) foralli =1,...,n

define the function k' (o, @) as k’(0, ) := co X ce X k(xo,Ts) foro,e € {1,...,n}
(hS)SQ:1 + leverage-scores-sampling((i)iz,, @, \, k')

G ¢+ kernel-matrix((Z;)M,, (xhs)f?:l, k)

H« T x G x diag((c},)j_,) x GT x T~

B« cholesky—upper—triangular(éH + M)

return B

define preconditioned-conj—grad:

Input: « € RM ;1 > 0,7 ¢ RM 7 € N,B € RM*M

p 7,50 < ||Ir|[%, 8 0

Fori=1,...,7
2 uB T B lp+ 13" @ (v(a) T e, i) (v(z) T TTIBT ) BT T Tu(a)
a+ s0/(p"2)
B pB+ap
rr—az s+ |r
p <1+ (s1/50)p
So < S1

return 3

[

define appr-linear-solver:

Input: o € RM ;1> 0,9 € RM

B < compute-preconditioner(e, u)

u ¢ preconditioned-conjugate-gradient(a,u, B~ "Tg,7 = 3,B)
return B~

define approximate-Newton:
Input: ap € RM 4> 0,t €N
Forj=1,...,1
g paji+ =30 LD (0(@) TT a1, 4i) T To(i)
aj ¢ aj—1 —appr-linear-solver(a;—1, 4, 9)
return oy
Qo < 0
Fork € N
Q41 ¢ approximate-Newton(ak, pk,t = 2)
Hk+1 < Gr+1Mk
Stop when fip+1 < A and set st < Qi
O + approximate-Newton(gst, A, T')
return §(-) == v(-) T T™'a

Let N,M € Nwith M < N. In Alg. I} leverage-scores-sampling((z;)N,, M, k,\)
returns a subset of (z;)X, of cardinality M sampled by using (approximate) leverage scores at
scale A > 0 and computed using the kernel k. An explicit example of an algorithm computing
leverage-scores—sampling is in [30]. Moreover kernel-matrix((z;)N,, ()M, k)

computes the kernel matrix K € RN*M where K;; = k(x;, «;), with N, M € N. l
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F Experiments

We present our algorithm’s performance for logistic regression on two large scale data sets: Higgs and
Susy. We have implemented our method using pytorch, and performed computations on one node of a
Tesla P100-PCIE-16GB GPU. Recall that in the case of logistic regression, £(, ,(t) = log(1+e¥").

In what follows, denote with n the cardinality of the data set and d the number of features of this
data set. The error is measured in terms of classification error for both data sets. In both cases, we
pre-process the data by substracting the mean and dividing by the standard deviation for each feature.
The data sets are the following.

Susy (n =5 x 105, d = 18, binary classification). We always use a Gaussian Kernel with o = 5
for logistic loss (obtained through a grid search; note that in [29], 0 = 4 is used for the square loss),
and will always use 10* Nystrom points.

Higgs (n = 1.1 x 107, d = 28, binary classification). We then apply a Gaussian Kernel with
o = b, as in [29] (we have also performed a grid search).

For these data sets, we do not have a fixed test set, and thus set apart 20% of the data set at random to
be the test set, and use the rest of the 80% to train the classifier.

In practice, we perform our globally convergent scheme with the following parameters.

e We use (Q = M uniform random features to compute the pre-conditioner for each approxi-
mate Newton step;

e In the first phase, we decrease p in a very fast way to A by starting at ¢ = 1 and dividing
1 by 1000 after performing only a single approximate Newton step (using 2 iterations of
conjugate gradient descent);

e In the second phase, we perform 10 approximate Newton steps (each ANS is computed
using 8 iterations of conjugate gradient descent).

Selection of A In the introduction, we claim that in many a learning problem, the parameter A
obtained through cross validation is often much smaller than the ones obtained in statistical bounds
which are usually of order % This leads to very ill conditioned problems.

For both data sets, we select A (and o, but we omit the double tables from this paper) by computing
the test loss and classification errors for different values of A, and report the evolution of these losses
as a function of the parameter \ in Fig. [2]for the Higgs data set, and Fig. [3| for the Susy data set. We
see that the optimal )\ yield strongly ill-conditioned problems.

27.140 0.53950
—
o
. 45 4
& 27.1351 0.53945
c 0n
o & 0.539401
= 27.130 -
RS & 0.539351
55’ +—
27.1251
o > 0.53930 1
O
27.120 ‘ : 0.53925 ‘ :
1078 107° 10710 10-1 io-8 107° 10-10 10°1
regularization parameter regularization parameter

Figure 2: (Left) Classification error as a function of the regularization parameter and (Right)
test loss as a function of the regularization parameter, when performing a logistic regression with
M = 2 x 10* Nystrom features on the entire Higgs data set; we select A = 1077,
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5 19.561 0.4238
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19.55 : ‘ ‘ : , ,
io-8 107° 10710 1071 10712 108 107° 10710 1071t 10712
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Figure 3: (Left) Classification error as a function of the regularization parameter and (Right) test loss
as a function of the regularization parameter, when performing a logistic regression with M = 10*
Nystrom features on the entire Susy data set; we select A = 10710,

Comparison with accelerated methods Given the M Nystrom points, our aims to minimize
Lz, . From an optimization point of view, i.e. from a point of view where the aim is to minimize
Lr,x, we compare our method with a large mini-batch version of Katyusha accelerated SVRG (see

[4]).
Indeed, we perform this method using batch sizes of size M; the theoretical bounds pro-
vided in [4] show that the algorithm has linear convergence, with a time complexity of order

O(nM + M3 + M? \/g) log% to reach precision . In the following plots, we compare both
methods in terms of passes and time.

By pass, we mean the following.

e In the case of our second-order scheme, we define a pass on the data to be one step of the
conjugate gradient descent used to compute approximate newton steps.

e In the case of Katyusha SVRG, we define a pass on the data to be either a full gradient
computation or n/M computations of the type K, ;713 where T is an upper triangular
matrix, and K s is a M x M kernel matrix, associated to one batch gradient.

We use this notion to measure the speed of our method as they both correspond to natural O(nM)
operations, and incorporate the essential of the computing time. However, the second point is often
much slower to compute than the first, due to the solving of the triangular system. Thus, the notion of
passes is to take with precaution, as a pass for the accelerated SVRG algorithm takes much longer to
run that a pass for our method. This is confirmed by the time plots (see Fig. [5|for in instance).

Comparison between the two methods - Due to the running time of K-SVRG, we compare both
methods for M = 10000 Nystrom points for both data sets. We compare the performance of these
two algorithm with respect to the distance to the optimum in function values as well as classification
error Fig. ] for the Higgs data set, and in Fig. [5|for the Susy data set.

Note on the need for precise optimization - As noted in the introduction, we see in both Fig.[5|and
Fig. ] that precise optimization of the objective function is needed in order to get a good classification
error. This justifies a posteriori the use of a second order method. In particular, in Fig.[5] one notes
the difference in behavior between the two methods : the second order method converges linearly in
a fast way while the first order method slows down because of the condition number.

Note on ill-conditioning - First note that in order to optimize test error, one gets very poorly con-
ditioned problems. As predicted by the rates, we observe that K-SVRG is more sensible to ill-
conditioning than our second order scheme. Indeed, in Fig.[6] we have plotted the results for Susy
for a smaller condition number with A\ = 10~%, compared to A = 107? to get optimal test error in
Fig.[5] We see that the difference in number of passes needed to reach a certain precision is much
lower when A\ = 10~% in Fig. @ confirming that K-SVRG behaves better when the condition number
is smaller.
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order scheme and K-SVRG to minimize the train loss on Higgs, with 1.0 x 10* Nystrém points and
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Figure 5: (Left) Distance to optimum as a function of time and (Right) distance to optimum and
classification error as a function of the number of passes on the data when performing our second
order scheme and K-SVRG to minimize the train loss on Susy, with 1.0 x 10* Nystrom points and

A=10"19

Performance of our method. In Table [T} we record the performance of the following methods,
taking the \ values we have obtained previously for the different data sets.

For FALKON (see [29]), we take the parameters suggested in the paper (except for the number of
Nystrom points needed for Higgs, as our computational capacity is limited).

Sus Higgs
Method c-error | M . time(m) | c-error ]\ig time(m)
Logistic regression with Katyusha SVRG | 19.64% | 10% 230 27.82 % 10% 500
Logistic regression with our scheme 19.5% | 10* 15 269 % | 2.5 x 10* 65
Ridge Regression with FALKON ([29]]) 19.7% | 10* 5 2716 % | 2.5 x 10* 60

Table 1: Classification error of different methods
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Figure 6: (Left) Distance to optimum as a function of time and (Right) distance to optimum and
classification error as a function of the number of passes on the data when performing our second
order scheme and K-SVRG to minimize the train loss on Susy, with 1.0 x 10* Nystrom points and
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G Solving a projected problem to reduce dimension

G.1 Introduction and notations

In this section, we give ourselves a generalized self-concordant function f whose associated sub-
set we denote with G. Once again, we will always omit the subscript f in the notations associated to f.

The aim of this section is the following. Given f and A > 0, computing an approximate solution to

o} = argmin f(x),
TEH

is often too costly. Instead, we look for a solution in a small subset of H which we see as the image
of a certain orthogonal projector P and which we denote Hp. Usually, this subset will be finite
dimensional and admit an easy parametrization. Thus we will compare an approximation of x} to an
approximation of

A
T} = argmin fy(z) = argmin f(Pz) + =||z||2.
' zep z€H 2

Denote with fp the mapping + € H — f(Px). It is easy to see that, as f is a gener-
alized self-concordant function with G, fp is naturally a generalized self-concordant with
Gp :=PG ={Pg : g € G}. Moreover, TH ) = x}P,/\.

We will adopt the following notations for the quantities related to the generalized self-concordant
function fp. Essentially, we always replace fp simply by P from our definitions in appendix.
e For the regularized function :
A
Ve e H, VA >0, fea(z) = fe(z)+ §||9L“||2
For the Hessians
Ve eH, A>0, HP))\(.Z’) = pr)\(.’l?) = PH(P.’E)P + AL

Vh € H, tp(h) := tg, (h) = t(Ph).
e For the Newton decrement:

Ve eH, A>0, Vp,>\(.’L‘) = pr,,\(x) = ||pr,,\

|H;}A(m) = [PV f(Px) + /\x”HE,ﬁ(z)'

For the Dikin ellipsoid radius:
1

SUPgeg ”PQHH;}P(I) ’

YA >0, Vo e H, rpa(z) :=rpa(z) =

48



e For the Dikin ellipsoid:
YA >0, Vc >0, Dpa(c) :== Dy a(c).
Note that for any € Hp, rp x(z) > ry(x).

We will now introduce the key quantities in order to compare an approximation of xp , to an
approximation of x}.

Definition 8 (key quantities). Define the following quantities
e Forany A > 0, the source term sy := )\||x/\\|H;1(z;) = ||Vf(xA)||H;1(x;);
e Given an orthogonal projector P, A > 0, and x € H, the capacity of the projector
Cp(z,)) == HH(r)l/i(I*P)HQ_
G.2 Relating the projected to the original problem

Given x € Hp, our aim is to bound v (x) given vy p(z) and sy.
Proposition 15. Let x € Hp. If

Sx 1 1 Fp_)\(x)
<. C T < — < .
r,\(xf\) S p(r},A) < 120 vpa(z) < 5

Then it holds:
va(z) < 3(vpa(x) + 1)
Moreover, under these conditions,

o ||z — 23| < TATV2(up a(x) +52);

. /\”‘THH;}/\(m) < 71/1:’7)\(93) + 9s,.

Proof. In this proof, introduce the following auxiliary quantity:

1) Start by bounding t(Pz} — z}). It holds:

t(Pz —23) = sup g - (I - P)a}|

9c€g
1
< oy 10 Pl
1 . —1/2, %
SN Ly (23) /2 (T = PYH(23) 2] [, % (23) 3
A

—1/2, 4
NHE 2 (@3)a3

= (1+CP(x§aA)) r)\(fﬂ’;\)

= (14 Cp (3, M)

2) Then bound t(zp , — Px}) First, bound vp \(Pz3):

vp A (Pz}) = [PV AA(P2Y)|1, pPay) -
< VAP |, ey

Using Eq. , we get ||V fr(Pa}) lm, (pay)—1 < e(7F)73)/20, (Pa}). Using Eq. , we can
bound

vA(Pxy) < ¢(t((I = P)2})) (I - P)a} e, wg) < ST —P)23)) (1+ Cp(2}, A))sn.
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Putting things together,

ve(Pa}) < HITPIPI2G(((1 - P)a})) (1+ Ce (a5, A))sa-

Now
v 1 ey b
rp\(PxY) ra(Pz}) ra(zy)
Hence,
vp(Pz}) e

<ehg tr, tx=(1+Cp(z, A .
I’p,A(PZE;) ¢( >\> A A ( P( A ))7)\

Since t — e’¢(t) t is an increasing function whose value in 0 is 0, we find numerically that for
t= 3. ¢e'¢(t)t < 1. Hence, if (1+ Cp (x5, A)a < 35, then %ﬁfg; < 1. Using Lemma
this shows that

tp(Pz} —2p ) = t(Px} —2p ) < log2.

3) Getting a bound for t(z — x¥). To do so, combine the two previous bounds with the fact that if
5339 (I)

vpa(z) < #5—, then using Lemmawith fe.tp(x — xi@,)\) = t(x — x;)\) < log 2. Thus, if

rp’)\(.’t)

3
(14+Cp(@X, M) < -, vpa(z) < 5

— 10’

then it holds 3
tlx —a3) < 0 + 2log 2.

4) A technical result to bound |[H)(z)~'/2Hp \(2)'/?|| . Using the fact that Pz = z, and
Lemma 23] applied to A = H(z), we get

[ (2) " *Hp A (2)/?] < 14 V/Cp(x, A).

Then, one can easily bound Cp(z, \) < et~ Cp (2%, \).

5) Let us now bound v (). First, decompose the term
va(r) = [VI@) g @) S IPVIA@) g @) + 1T =P)VF@) g1 0

Since z € Hp, |PV fi(z) ||H;1(I) = ||Vipa(x) HH;l(w), and using the previous point, we get

||PVfA(x)||H;1(x) < (1 +etE=m)/2, [Cp (a3, A)) vp ().

Let us now bound the second term. We divide it into two terms:
I )V S @)1 0y < IO = P) (VS ()~ VF@3) lgror oy + 10~ PI @) g -

The second term can be bounded in the following way:

* 1 * * *
=PV F )l y < <5 0PI 20 IV 03 o < 3/1+ Cl5, ) v

For the first term, we proceed in the following way.

I(T=P) (VF(2) = V@) 1y = | / H; '/?(2)(I - P)H(z,)(x — 2}) dt]

1 ! B 1/2(, 1200 V(g — 2*
Sﬁ/o (1= PYHY2(a)|| [HY2(2,) (x — 23)]| dt

<\/Cp(@3,N) d(t(@ — 23)) llo — 23 lmey)

< /Cp(a%, A) ey, ().
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Hence the final bound:

(1 _ Cp(l‘i,/\) et(r—ﬁ})) V)\(J?) < (1 + etl@—23)/2 /CP(I‘;\,)\)) l/p7,\(l‘)—|-\/1 + Cp(x’)‘\,)\) S)-

I\Eow if C)1:>($§\7 A) < 135. we see that /Cp (2%, \) etle—z3) < 1, and hence, using the bound on
t(x — x3),

I/)\(x) < B(VP’)\(.’L') + S)\).

6) Showing the last two points . We leverage the fact that vy (z) < 3(vp x(z) + sx) and t(z —
z3) < 15 +2log 2.
To show the first bound, we plug in the previous results in the following equation:

lz — a5l < A2l — @l ) < AT 2up ().

1
o(t(x — z3))
The last inequality is obtained using Eq. (I8).

To show the second point, we use the fact that x € Hp to show that
/\HIHH;}A(I) < )\Hx”H;\l(z) < Az — 231, @) + A”I;\”H;](;E)'

Then applying Eq. (I7) and Eq. (I8):
1

t(x—axy)/2
/\||x\|H;}A(I) < S =) va(z)+e M2y

We then use the previous results to conclude. O

G.3 Finding a good projector

H,/%(2) (1 - P)|[2 < Cn, then

Lemma 16. If for a certain n < X and for a certain constant C,
C
CP (:L', )\) S Tn .

Proof. This is completely direct, using the fact that H'/2(z) < H}/ %(2). O

51



H Relations between statistical problems and empirical problem.

In this section, we recall and reformulate the framework from [23]].

H.1 Statistical problem and ERM estimator

Let Z be a Polish space and Z be a random variable on Z with distribution p. Let H be a separable
Hilbert space, with norm || - ||, and let (f,).cz be a family of functions on . Our goal is to minimize
the expected risk with respect to x € H:

inf f(z) :=E[fz(x)].

zeH
Given (z;)1, € Z™, we define the empirical risk:

Fw)= 23 £ ),

and consider the following estimator based on regularized empirical risk minimization given A > 0
(note that the minimizer is unique in this case):

~ N A
# = argmin fy(2) := J(a) + 3 o
x€H

where we assume the following.

Assumption 6 (i.i.d. data). The samples (z; )199,, are independently and identically distributed
according to p.

We make the following assumption on the family ( f,) (this is a reformulation of Assumption 8 in
123])

Assumption 7 (Generalized self-concordance). For any z € Z, there exists an associated subset
G. C H such that (f.,G.) is generalized self-concordant in the sense ofDeﬁnition

Moreover we require the following technical assumption to guarantee that f and and its derivatives
are well defined for any x € H (this is a reformulation of Assumptions 3 and 4 in [23]], and the
necessary conditions to obtain Proposition 3).

Assumption 8 (Technical assumptions). The mapping (z,z) € Z X H — f.(x) is measurable.
Moreover,

e the random variables | fz(0)|, |V fz(0)|, Tr(V2fz(0)) are are bounded;
® G :=U.,coupp(z) Y- is a bounded subset of H.

The assumptions above are usually easy to check in practice. In particular, if the support of p is
bounded, the mappings z + £, (0), V£,(0), Tr(V2£.(0)) are continuous, and z +— G, is uniformly
bounded on bounded sets, then they hold.

Proposition 16. Under Assumptions[?]and ES‘I the function (f,G) (or simply f) is generalized self-
concordant.

Moreover, under Assumption[6] define
n
g = U gzi .
i=1

Then (f, QA) (or simply f) is generalized self-concordant. Moreover, note that GcCg.

The main regularity assumption we make on our statistical problems follows (see Assumption 5 in
[23]).

Assumption 9 (Existence of a minimizer). There exists x* € H such that f(z*) = inf,cy f(x).
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Notations We adopt all the notations from Appendix for f and f, which are generalized self-
concordant functions with associated subsets given in Proposition[T6 with the following conventions:

e For all quantities relating to f, we omit the subscript f as usual,

e For all quantities relating to f, we omit the subscript f and instead put a hat over all these
quantities. For instance:

H(z) := H(x) = % Z V2. (@), (@) =7\ (2) = !

SUPgeg Hg‘|ﬁ;1(w)

, etc...

Recall the two main quantities introduced in [23]] to establish the quality of our estimator Z3 (in [23],
this is a mix between Proposition 2 and Definition 3).

Proposition 17 (Bias, degrees of freedom). Suppose Assumptions[7|to[9are satisfied. The following
key quantities are well defined:

e the bias by = ||H, (2*)"V/2V fy (z*)
o the effective dimension dfy = E [||H>\(I*)71/2sz(f*)||2]~

>

Moreover, we also introduce the following quantities:

B*
Bi:= sup |[Vf.(2")]|, BY:= sup Tr(V3f.(z¥)), Q= —L.
z€supp(Z) z€supp(Z) \/ BE

We can now recall the main theorem of [23]] (Theorem 4), which quantifies the behavior of the ERM
estimator:

Theorem 8 (Bound for the ERM estimator). Lern € N, § € (0,1/2], 0 < A < Bj. Whenever
B3 812B3
—=1
PRV
then with probability at least 1 — 20, it holds

TLZAl

*)2
N N !
n

dfy v (Q*)?
n

o . 2
f(z)\) - f(x ) < Chias bi + Car log 3 (37)

where Cyjas, Cuar, 01 < 414, Ay, Ay < 5184,

H.2 Link between a good approximation of 7% and z*

In this paper, we provide an algorithm which can effectively compute a good approximation of z%
(as it is a finite sum problem which can be solved). This algorithm will return a certain x € H,
whose precision with respect to the empirical problem will be characterized by Uy (). The aim of the
following lemma is to see how this approximation x behaves with respect to the statistical problem.

Lemma 17. Suppose the conditions for Thm.[S|are satisfied, i.e. letn € N, § € (0,1/2], 0 < X < B}
and suppose

B3 02B3 df *)2 2
n> A= log : SV \/Az %(Q) log = <ra(a”),  2by <ry(a¥).
Let x be an approximation of T% characterized by its Newton decrement U (). If
@) < 2D 5@ < DO

then with probability at least 1 — 26, it holds

fl@) = f(a*) STA(F(@) = f(a™)) + 300 (2)*.

Proof. Using Eq. (16),
f(x) = f(@3)

IN

(VI@), 2 = B)n + otz — 23))lle — T3, o)

1 N N 1 ~
< IV I g + (96l = 30+ 3 ) o = B3l o

A

53



1. Let us bound ||Vf(§f\)\|H_1(5*

97 @)y < [ TG RGE o)t v = (1= 1) +ta”

= / B 2 @)Y ()| [HY2(20) (33 — 27| dt.
Now using equation Eq. (T4)

H(l‘t) < ett(iifz*)H(f;\)’ H(l‘t) < 6(17t)t(if\fz*).
Thus:

IV 5 @)l ey < €@ 75 - 2 leagen.

Finally, using equation Eq. (I6)

@5 —2%)/2

IV 4@y ) < i —aryyrs V@) - Fla)'2.

2. Let us bound the terms involving ||z — 7} ||m,(z;) Note that using Eq. and Eq. (17)
applied to f,

t@—3)/2

x—7T < Hl/2 FOH 2@ ———Di ().
o= lanos) < PGB @] S
This also leads to:
e 1 1/2 i\ —1/2 ook

He = 25) < o P EH @)1 e - Bl o)

1 1/2 mse 55 —1/2 ele=7)/2
H, HH | —————— .
< oG I EE @ S h @

3. Putting things together In the end, we get

RIGE

f(@) - f(a) < (1 o

P(=t(z5 —27))

R 1 SO ~ e?(ac—ij)/Q N
+ <1/J(t(:13 -3)) + 2) (etm xk)/2‘|Hi/2($§)HA1/2(x§)||7A VA(;L')Q.

) (@) - fa))

o(t(x — %))

Moreover, we bound

* ok

_ fe-73)/2 3
to - 5) < 007 TORE 2 HL2 0B ) )

¢t — 7%)) a(z*)

4. Plugging in previous results Under the assumptions of this lemma, which include the assump-
tions of Theorem 4. in [23]], we get the following bounds.

e In [23],the assumptions of Theorem 4 imply that we can use Lemma 9, which uses Lemma
8 in which we show that with probability at least 1 — §,

r—1/2/ x *
I 2 (@) Hy () V22 < 2.
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o Still using the assumptions of Theorem 4, we see in the proof of this theorem that the
assumptions of Theorem 7 of [23]) are satisfied in the case where by < 2 (; ), and thus that

t(@y — z3) <log2, t(z} —z*) <log2.
Plugging in all these bounds, we get

(H(E—a*)

(l TG =)

1 I - (o-33)/2
t(x — % - t(ZX —z3})/2 H1/2 “VH Y2y 77 ) < 30.

H.3 Bounds when we solve a projected empirical problem

In this section, we place ourselves in the setting of Appendix[G] In this section, we had argued that for
computational purposes, it was less costly to compute an approximate solution to a projected problem.

In this section, we assume that we are going to project the regularized empirical problem, that is solve
approximately

o . A
v~ argmin fp A(r) = f(P) + 5 ol
rEH

for a given orthogonal projection P. Recall from Appendixthat there is a natural way of seeing fp
as a generalized self-concordant function. We import all the notations from this section, keeping a™

over all notations to mark the fact that we are projecting fand not f.

To quantify the quality of the approximation x, we will use the Newton decrement for the empirical
projected problem vp () := v, , ().

As we see in Proposition under certain conditions, bounding 7 (x) amounts to bounding two
terms:

e The empirical source 5 := /\||f§\||ﬁ;1@;),

o The projected empirical Newton decrement Up »(z).

1. Bounding the empirical source term s, Start by bounding the source empirical source term
using quantities we know.

Lemma 18 (Empirical source). Lern € N, § € (0,1/2], 0 < X < Bj. Whenever

B:  8O2B%
> A —21 12
=S TS

The following holds, with probability at least 1 — 26.

dfy vV (Q*)2 log 2
§A§8b,\+80\/ AV (Q)? log 5

df *)2 2
, \/Ag %(Q) logg < ry(z%), 2by < ry(z*).

n

Moreover, we also have the following bound :

dfy v (Q*)? log 2
- .

T2 <3N V2p, 822
A
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Proof. We first decompose the source term into two terms, and then apply different bounds from [23]]
to effectively bound it. We will use the following quantity:

~ 1/2 S-1/2 n
U = Y2 @0H; @)1 VA e o)
It is also defined in equation (23) in [23].

1. Dividing s) into two controllable terms . Decompose

—1/2 j~x 1/2 /~x .
8 = Nl o) < IHL2EOHY GO NGl oy

< 8,2 @B @ (I9AE s @) + 1/ @)l @) ) -

On the one hand, from the previous proof, we get

IV F @)=tz < 72 85 - 2 ey

<e t(zy—x*)/2 (et(w;—x*)”fp\* — ‘T;||H>\(r;) + H.’E;\ — x*|‘H>\(m*)>

t(LEA z*) 1 b )
vy + " " A
ot(ax — a¥))

< et($A_$

7 -a)/2
N (gb(t(x/\ —z3))

In the last line, we use the fact that [|Z3 — 23 [l (23) < HH}\/Z(CE’/{) _1/2( 1IN
and then bound it using Eq. applied to fto get

I9A G s

_mKHﬁA(IX)

=g oy < ——————

1/2/ % —1/2, % N *
Sﬁt(%_m”ﬂ @B @ IVAE) s g

On the other hand, apply successively Eq. to f and fusing the fact that t < t to get

IVAG@E I o5y = IVAGR) = VAGED T s
< e @ 2G(4(TF — a%) 175 — 25 e o)
< @257 — X)) 1B P (@) H P @)l 175
- et(fifmi)/ig(t@} _
Q(t(%\ —x3))

8t(E —1)/2g,

~ a3l o)

7)) 1/2, svir—1/2/ % ~ .
A2 Y2 (@) @) IV A [, @)
=e

Putting things together:

1/2 /~% 1/2 j~x * g 1 R et(‘T;*E:)/Q
S I EI a5 (1 G ) S+ )

2. We now import the results from [23] . The following hypotheses imply those of Thms 4 and 7
in [23]:

Letn € N, 6 € (0,1/2], 0 < A < B. Whenever

B 10 SIBS o, df%«? i

) o
In particular, they imply that with probability at least 1 — 24:

TL>A1
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. *)2 - 2
° VAS%b,\+4D1‘/M;

1/2 y—1/2
I @B @3] < v

t(z* —x}) <log2;

t(7} — 2}) < log2.

Hence, plugging these bounds in the previous equation, we get

dfy Vv (Q*)? log 2
§A§8bA+80\/ A (Qn) %85

3. Note that in what has been done previously, we can bound:

! dfa V (@*)? log 3
Y — 2% o < I —— < b 8 d .
I3 x)\”H)\(I/\) hS Q(t(x’/{ — ff\))VA <b)+ \/ -
Moreover,
* * ]' *
”xk - ||H>\(l‘*) < W||Vf>\(z )”H;l(x*) < 2b,.
Hence:

dfy v (Q*)2 log 2
||5c\§—x*||§3A1/2bA+8>\1/2\/ A (Qn) %85
O

2. Final bound for the projected ERM approximation In this paragraph, denote with Cp(x, \)
112

the quantity w and Cp (z, A) the quantity w
Lemma19. Letn € N, ¢ € (0,1/2], 0 < A < B3. Whenever

B:  SCI2BX df v (Q )2 . 2
n> A2 log 1L cl\/*n(Q) log 2 <nfa’),  Ciby <nafa”),
if
V2 e a(2) ra(a®)
A< 25 <2
Cp(27,4) < g5 PPal@) = =5 126

the following holds, with probability at least 1 — 29.

P\ (z) < ?Ag”), Pa(z) < 2ED

Here, C; = 1008.
Proof. Proceed in the following way.

1. Itis easy to see that the conditions of this lemma imply the conditions of Thm. 8] Hence, as in
the previous proofs, the following hold:

1/2 rr—1/2
o [HY@OH @)l < v
o t(z* — %) <log2;
A

o t(z5 —z}) <log2.
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2. Letus now apply Propositionto f It
/S\)\ 1 -~ ~ 1 ~ ?p,A(LE)
— ) < 2

~ < e C *a)\ S ) < ’
Gy S 17 I S gy Prale) < 7
Then it holds:
~ ~ ~ 3
Ux(x) < 3(Wpa(x) + Sa), t(r—73) < — +2log2. (38)

10
where the second bound is obtained in the proof of this proposition. Now since

1

o < @/ Eq.
n(zy) ~ ra(z3) @
< FET 2 @) @) ] sup ller; oy Def
9€eg
g 1/2, nsy—1/2 o
< @S2 Y2 ()L (23) SUPH9||H;1<m;> gcg
= M@=/ L2 () H Def
e OB e e
ax % . _ 1
S L C VN GVl ey b
A
2v/2
< \[ previous bounds
ra(x*)

In a similar way, we get €P (@5, A) < 2\/§Cp(x*, A). Thus, the conditions above are satisfied if the
following conditions are satisfied:

/S\)\ \@ \@ rp )\(CC)
< == < — < ——.
n(z*) = 16° Cp(2", M) < 1550 7PA(@) 2

Finally, note that under these conditions,
1 e/t\(:vf:’i; )/2 7
= < — < .
a(2) () ra(z*)

using the previous bound and the bound on t(x — 7%).

(39)

3. Letus assume

B V2 V2 e a(x)
<—,C AN < — < ===
) = 160 PN S g PPal@) < 7
According to Eq. (39), and to Eq. (38), if
. N ra(a™
Upa(x)+ 38\ < /\4(12 )7
then it holds R .
i) < 2 () < D)
We simplify this condition as:
- x* R 2ry(z*
VP,)\( )S ( ) 5 < )\( )

126 126
4. Now using the fact that under the conditions of this lemma, those of Lemma are satisfied:

dfy Vv (Q*)2 log 2
§>\§8b)\—|—80\/ A (Qn) 085

Thus, 5) < *(w 20(=7) polds, provided

,dfa Vv (Q*)? 1og%

1 N (I‘*)2 )

where C; = 1008. O

3
Vv
Q
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Proposition 18 (Behavior of an approximation to the projected problem). Letn € N, 6 € (0,1/2],
0 < A < B3. Let x € Hp. Whenever

B3 8I2B3 dfy v (Q*)2 2
B> A2 1og L2 CIJ”Q) log2 < (), Ciby < ra(a),
A A 0
if
V2 Tpa(z) |, ()
* < 7 < : .
Co(@ ) < g PRale) = 57 A g
The following holds, with probability at least 1 — 26.
dfy v (Q*)?2

2 PR
f(z) = f(z*) <Ky by + Ky log 5t Ks Up 5 (2),

where K1 < 6.0e4, Ky < 6.0e6 and Kg < 810, C; are defined in Lemma and the other constants

are defined in Thm. 8|

Remark 5 (Constants). In this result, absolutely huge constants are obtained. They are (of course)
totally sub-optimal. Indeed, this analysis has been simplified by dividing the bound into blocks:
error of the empirical risk minimization with regularization, error of the projection compared to this
empirical risk minimizer. Going back and forth from empirical to statistical, from projected to non
projected induces exponential explosion of the constants. There is a way of doing the analysis directly
by projecting the statistical problem. However, in order to relate to our previous work [23|] and avoid
re-doing all of our work we discarded this. If we were to perform this more direct analysis, we could
keep the constants to a reasonable level, of order 102,

Proof. We apply Lemma([I7} using the previous lemma to guarantee the conditions.

1. Under the conditions of this proposition, applying Lemma|[I9] the conditions of Lemmal[I7 are
satisfied. Thus,
f(@) = f(=*) S UA(F(@3) = f(2")) + 3005 (2)*.
Moreover, from the previous proof,
va(z) < 3(pa(2) + 51,
and seeing as Lemma T8]is satisfied,

dfy vV (Q*)2 log 2
§A§8b,\+80\/ AV (QY)? log 5

n

This therefore yields:

dfy vV (Q*)? log 2

DA (2)? < 27p 5 (z)? + 1726b3 + 172600 -

2. Moreover, from Thm. [§] it holds:

*\2
FE) = f(@*) < 41462 + 414 W

2
log —.
og 5
3. Putting things together:

2 ~
log — + K3 1/%7/\(90).

@) — F(a™) < K B 4Ky L@, 2

‘We bound the constants in the theorem.

Lemma 20. Under the conditions of the previous theorem, the following hold:
® Tal@ = R’
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o AV2|z — 2| < T0p () + 59by + 568/ D2VQ)? los g

n

* 2
o Mlzllg=r (o) < T0pa(x) + 72by + 720 V@) log§
P\

Ml o)

In particular, O <11.

Proof. Let us prove the three statements.

L. Write £ =sup g |\Pg||ﬁ;,1k($). Now

1
[5:230N

sup HPgHﬁ]j/\(@ < sup ||g||ﬁ;1(m) < H@=F%)/2 sup ||9||ﬁ;1(§;)-
9€g ' 9€G 9€g

Now bound

ok ok Tp* —5* 1/2 5—1/2
SUp gl g1z < AT 2 sup gl g ) < TV HY2 @B @) supllgller s
geg geg geg

Finally bound
* * ].
su 1y <@ T2~
gegHgHH* =) = ra(z*

~—

Now using the fact that under the previous assumptions t(z* —2%), t(x} —2%) < log2,t(x —7%) <
2 + 2log 2 and IHY 2 (2X)H 2 (2%)]] < V2, we get the first equation.
2. In order to bound \'/2||z — 2*|, decompose

ANz —a*| < M2 |le = 23]+ AV2)|z5 — 2]

Now use Propositionto bound \'/2||z — % || < 7(Dp A(x) + 5)). Using Lemma under the
conditions above,

dfy V (Q*)2 log 2
§A§8bA+80\/ A (Qn) 085

Hence

dfy v (Q*)? log%
- .

A2z — 35| < T0p A(x) + 56by + 560\/

Moreover, using again Lemma [T§]

dfy Vv (Q*)? log 2
- .

A2 7% — 2| <3by+8 \/

Combining these two inequalities, we get:

dfy v (Q*)? log 2
- .

A2z — 2*|| < TPp A (x) + 59by + 568\/
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3. Inorder to bound A||z||g-2 (x)» USE Propositionto get A|z|| g1 (@) < TP () + 955
P, P,

Now using Lemma|[T8§] the following bound holds:

dfy v (Q*)? log 2
- .

Nlgizs ) < oo () + 7205 + 720\/

Proposition 19 (Simplification). Lern € N, § € (0,1/2], 0 < X\ < B3. Let © € Hp. Whenever

By 8B} dfxV(Q#)2 . 2 VA VA
>N =21 L2 c\/1< Ciby < 22
n =z 1)\0g N 1 o Og5fR7 1Ox = o
if
V2 P
* < — < —
Cpl@™,Y) < 3550 PPa@) < o6
then the following holds, with probability at least 1 — 20.
dfy v (Q*)?2 2 N
Fla) — fat) <Ko b3+ ko VO 1025 ),

where K1 < 6.0e4, Ko < 6.0e6 and Ks < 810, C; are defined in Lemma and the other constants
are defined in Thm.

Moreover, in that case, R||x — *|| < 10.

H.4 Optimal choice of )\, specific source conditions

In this part, we continue to assume Assumptions [0]to[9] We present a classification of distributions p
and show that we can achieve better rates than the classical slow rates, as presented in Appendix F of
[23].

H.4.1 Classification of distributions and statistical bounds for the ERM

We use the following classification for distributions.

Definition 9 (class of distributions). Let o € [1,+00] and r € [0,1/2].
We denote with Py, , the set of probability distributions p such that there exists L, Q > 0,

e by <L )\1+227';
o dfy < Q% AV
where this holds for any 0 < \ < 1. For simplicity, if &« = +00, we assume that Q > Q*.

Note that given our assumptions, we always have

pE€Pio, L=]z*||, Q=B]. (40)

We also define

20
= <§*) Al 41)

such that

2
VA < A, dfy Vv (Q¥)2 < )\?/a'
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Interpretation of the classes

e The bias term by characterizes the regularity of the objective x*. In a sense, if r is big,
then this means x* is very regular and will be easier to estimate. The following results
reformulates this intuition.

Remark 6 (source condition). Assume there exists 0 < r < 1/2 and v € H such that
Pyyr* = H(z")"v.
Then it holds:

1427

YA >0, by < LAES, L= |H(z*) 2.

e The effective dimension df 5 characterizes the size of the space H with respect to the problem.
The higher «, the smaller the space. If H is finite dimensional for instance, o = +00.

In this section, for any given pair («, r) characterizing the regularity and size of the problem, we

associate
1 a(l+2r)

P =iiorsi/a 7T alx2)+1

In [23]] (see corollary 3), explicit bounds are given for the performance of the regularized expected
risk minimizer ¥} depending on which class p belongs to, i.e., as a function of «, 7.

Corollary 4. Let 6 € (0,1/2]. Under Assumptions@ta@] ifp € Por withr >0, whenn > N and
A = (Cy/n)P, then with probability at least 1 — 29,
2
F@3) ~ fa) < Cin log 2,
with Cy = 256(Q/L)?, C1 = 8(256)Y (Q” L'=7)% and N defined in [23], and satisfying N =
O(poly(B1, B3, L, Q, 1?,1og(1/5))).
H.4.2 Quantitative bounds for the projected problem

In this part, the aim is to show that if we approximately solve the projected problem up to a certain
precision, then this approximation has the same statistical rates as the regularized ERM with the good
choice of \. For the sake of simplicity, we will assume that > 0.

In what follows, we define

N = =z (B5 A Xo A Al)fl/ﬁ v (2.1641 —Alog (1.4661 — BA25>) , (42
where A = Bé—lgzﬂ, Ao = (CiLRlog %)*l/r Aland \; = %

Theorem 9 (Quantitative result with source r > 0). Let p € P, and assume v > 0. Let ¢ € (0, %]
Let P be an orthogonal projection, x € H. If

5 B
n>N, A= <(S> 1) , Cp(z™,N) < %, vpa(z) < Q7 Li=vp /2
n

then with probability at least 1 — 29,
— vy L2
f@) - 1) <K@ U Liog?,
where N is defined in Eq. @]) and K < 7.0e6. Moreover, R||xz — x*|| < 10.

Proof. Using the definition of A1, as soon as A < \; ,it holds: df, vV (Q*)? < QAN Ve,

Let us formulate Proposition [T9]using the fact that p € P, ;..

62



Letn € N, 6 €(0,1/2],0 < A < B}, z € Hp. Whenever

By . 8013B} Q2 2 _ A2 AL/2
> A=21 L2 Qo log = < S G LAV < 2
n = 1>\ 0g 2\ ) 1 Al/an Og(s— Ra 1 = ’
if
2
Cp(z™, ) < —;g), Dpa(z) < LAY

The following holds, with probability at least 1 — 24.

2
2
F@) ~ F(@%) < (Ki + KA 4K <5 log 2, Rlle —a*| < 10,

where all constants are defined in Proposition[T9}

Assume that » > 0 . Define
2

Ao = (Ci1LRlog 5

YyTUTAL

Then for any A < Ag:
LAY/24r < i@
- C R’

1) First, we find a simple condition to guarantee
(22 > Gy QQ% log %
We see that if A < \g, thenry > C; LAL/2+r log %. Hence, this condition is satisfied if
A< X, CLENFIHe >, QQ%.

Using the fact that Co = C%, we reformulate:
1

A< AO L2/\1+2r+1/a > Q2*.
— ) — n

2) Now fix

Q2 1 Q2 1 B
)\1+2T+1/a e A= [ = = )
L2 n — L2 n

where 5 =1/(142r+1/X) € [1/2,1).
Using our restatement of Proposition [I8] with probability at least 1 — 24,

2 2
L(z) — L(z*) < <K1 + Ks + Kz log 5) L2ATT2" < K log 5 L2ALF2r,

where K = K; + K3 + Ky < 7.0e6 (see Proposition [T8).
This result holds provided

8012B3
Y

Indeed, it is shown in the previous point that the other conditions are satisfied.

B*
0<)\§B§/\)\0/\)\1,nZA17210g (43)

3) Let us now work to guarantee the conditions in Eq. (3).

. B3 803B;
First, to guarantee n > A17 log 5 , bound

% B B5L20nf B5L28 5
B 82 — 2
A Q¥ log” 2 Q%
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Then apply lemma 15 from [23] with a; = 24\, ap = 16002, A = Bé'gzﬁ. Since 8 > 1/2, using the

bounds in Thm. @ we find a; < 10400 and a2 < 64, hence the following sufficient condition:

> [ 2.1e4 Al 1.4 A= .
n_( el—ﬁ og< 661_5 5))

Then, to guarantee the condition
A<BIA XA AL

we simply need
Q. -1
n> 75 (B3 AN AN /8.
Hence, defining

Q2

s 1 1L\ Y0P
N=— (B3 - 2.1e4 Al 1.4 A=
L2(2/\>\0/\/\1) \% ( 61 ﬁ Og( 661_6 5)) y

we see that as soon as n > N, Eq. holds.
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I Multiplicative approximations for Hermitian operators

In this section, we put together useful tools for approximating linear operators and solving linear
systems with regularization.

In this section, A and B will always denote positive semi-definite Hermitian operators on a Hilbert
space H, and P will denote an orthogonal projection operator. Moreover, given a positive semi-
definite operator A, and A > 0, A, will stand for the regularized operator A + AI.

Lemma 21 (Equivalence of Hermitian operators). Let A and B be two semi-definite Hermitian
operators. Let A > 0. Assume you have access to

—1/2 —1/2
t= AL B - A)ATY.

It holds:
JATYPBY? 2 <14t By < (141)A,.

Moreover, ift < 1,
_ 1
IBY2A%P < +— & (1 - 1AL =B,

Proof. For the first point, simply note that:
—1/25,1/2 —1/2 —1/2 —1/2 12
IATZBY?)? = |ALPBAAL Y| = T+ ATV (B - A) AT <14t
For the second point,

—1 —1
1B A2 = I (AP BAAL ) I = (T4 A B - A) AR

Moreover, we know that if | H|| < 1 with H a Hermitian operator, then ||(I+ H) || < — HHH The
result follows. O

We will now state a technical lemma which describes how combining approximation behaves.

Lemma 22 (Combination of approximations). Ler N > 1. Let (A;)i<i<n+1 be a sequence of
positive semi-definite Hermitian operators. Define

—1/2 ATL/2
ti=[|A (A — ADAL.
Forany 1 <i,j < N + 1, define
1/2 —1/2
= A2 (A - ADAL.
In particular, t; = t;.;41. Then the following holds:
j—1

VI<i<j<N 1+t <[]0+t
k=1

Moreover, if t; < 1, then it holds:

1/2 ~1/2 t;
||A1+1/)\(A A1+1)Az+1 AH =1_
Hence, in that case
j—1 1
V1<j<i<N, 1+tj:isgl_tk

Proof. Let us prove everything for a sequence of three operators; the rest follows by induction. Let
A1, Ay, Aj be three positive semi-definite operators.
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1. Bound
tis = |ATY? (A1 — As) A

< AT (A1 — A2) ALY+ AT (An — As) ALY

<t +—Hzx VAL Ptas

<t + (1 + t1:2)t2:3.
The last line comes from Lemma[2]l Thus

L+tis < 14t +tos +tiatas = (14 t1:2) (1 + ta:3).
2. Letus now bound t5.; knowing t1.o. This will imply the rest of the lemma.
Indeed, simply note that

tar = (145" (A2 — ADA 1/2\\ < A PALRIP e

—1/2 1/2”2
2,\

Using Lemma i

t12

to:1 <
O

Lemma 23 (Projection of Hermitian operators). For any Hermitian operator A and orthogonal
projection P, the following holds:

1/2(7 _ 2
IAT2(A — PAP)AY?| < ( HA a P)||) 1
VA

_ A1 -P)|
ATY2 (PAP + D)2 <1+—H )

In particular,

Moreover, if
|AY2(I-P)|
L A S 1,
VA

then it holds )

la2a-py\?’
2 (14 AR

|AY? (PAP + A1) /2% <

We also always have:
| (PAP + L) ? PA?|? < 1.
Proof. For any Hermitian operator A, the following computation holds:
< 2\|A;1/2(I — P)AA;1/2H n ||A;1/2(I _P)A(I- P)A;1/2||
1/2(1 — 1/2(1 _ 2
_2AVHI-P)| | [AYI-P)|
VA A

_ (1+ ||A1/2%—P>|>2_1.

O

Lemma 24 (Relationship between approximations). Let A and B be two positive semi-definite
hermitian operators. Let A > 0, b € H andp > 0. If

1528 - M)A < 5 A%, K€ LinApprox(By.b.p/d),

then it holds: _
A € LinApprox(Ay, b, p).
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Proof. Assume Ace LinApprox(By, b, p/4) for a certain p. Decompose
IAY'D — Alla, < AL =By 'bla, + B30~ Alla,
1/2 — — 1/2 1/25—1/2 — N
< IAYZ (AT = B)AY? ] bl o+ IAYBL ) B — Alls,

Now using the fact that A} ' — B! = B (B — A)A ",

1/2 _ — 1/2 —1/2 —1/2 1/24+ — 1/2
IAY? (A = BIHAY? < A *(B - A)A 2 |AY B TAY|
= |A (B~ A)AL | A B

Moreover, B
IBy'6 — Alls, < pllbllg s < [IAYZB2][[b]| 51

Putting things together, and noting that from Lemma |AY2B~1/2)2 < AL 1/2(B A7

as soon as ||A;1/2(B —A)A 1/2|| < 1, it holds:
prIIAL (B - A)AT

Ac LinApprox(Ax, b, p), p = iy Gy
L-[|A*(B - A)A 7|

~1/2

Choosing the right values for p and ||A;1/ (B - A)A, /7| yields the result. O

I.1 Results for Nystrom sub-sampling

Recall the notations from Appendix [D]

We write without proof the following lemmas, which are just restatements of lemmas 9 and 10 of
[29].

Lemma 25 (Uniform sampling). Let § > 0. If {21, ..., Z,n } are sampled uniformly, then if 0 < \ <

B[Vl 2
. )

m > (10 + 160N 2 (N)) o ™

Then it holds, with probability at least 1 — §:

—1/2,% —~1/2 1 —1/2 A2 1
AV PA-mAT <5 AR - AR < 5

Lemma 26 (Nystrom sampling). Let § > 0. If {Z1,..., 2., } are sampled using q-approximate
leverage scores fort = A, then if tg V !

12||v

12002y .
og —5—2, if

e (z) V
67||”||L<><:(Z)

8l[vlf 2
. )

m > (6 +486¢°N*()\)) lo ™

Then it holds, with probability at least 1 — §:

IA2(A - A)A?| < 1A A~ A)AL ) <

w\»—‘

Lemma 27. Let A > 0. Assume:

—1/2, % —1/2 ~—=1/2, % N —12
IA2(A - A)A?) < 1A A - A)AL ) <

l\.’)\»—t

1
2 7
Denote with Py, the projection on span(vs, )1<j<m. Then the following holds:
| AP =P < 30,

and for any partial isometry V,

% (V*Kmv n )\I) < VAV 4+ AL <

N w

(V*Kmv + AI) .
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Proof. For the first point, use the well known fact that
I-P,, < AL

m,A
since the range of P,,, contains that of jAXm. Thus,
A3 Po)|? < AIAYZAL P
Now using Lemma [22]
1AL 2R~ AT < L = AR - M)A <1
Hence, again using Lemma 22}
AL (A — M)A <2
and therefore, using Lemma 2T}

IAY?A )% < 3.

m,A

For the second point, this is only a consequence of Lemma [21] [

Now state two results which show that

Lemma 28 (Uniform sampling yielding p-approximation). Let0 < p < landd > 0. Letb € H. If
{Z1, ..., Zm } are sampled uniformly, ,m < nand

48, 5000 A gSHUIIQmm
Y

24 —
p
T € LlnApprox( m.s b, p/4) = x € LinApprox(A,, b, p).

Then it holds, with probability at least 1 — 6:

In particular, with probability 1 — ¢,
K;})\b € LinApprox(Ay,b, p).

Proof. Apply Lemma 9 from [29] with n = {5 < % We find that under the conditions above, with
probability at least 1 — 6,

|ATP A - M)A <, JALA - AAL <
Now use Lemma2]to see that
AT (A~ M)A < (14 0?) — 1< 30 < p/a.
Thus, we can apply Lemma[24]to get the desired result. O
Lemma 29 (Leverage scores Nystrom sampling yielding p-approximation). Leré > 0. If {Z1, ..., Zm }
are sampled using q-approximate leverage scores fort = A, then if to V % log 55 <A<

\/67" 2 1 12“”“%*(z) .
w(z) V 6TV () log ——5— 1f

24 13000¢% ., 8l|v[I7 o0 z)
> (o4 24 2 log ——L=2(2)
m_( +p+ = N (/\)) og ;

Then it holds, with probability at least 1 — §:
S LilrlApplrox(;A\m’)\7 b,p/4) = x € LinApprox(A,,b, p).
In particular, with probability 1 — 6,
A\;:Ab € LinApprox(Ay,b, p).

Proof. The proof is exactly the same as that of the previous lemma, using Lemma 10 instead of
Lemma 9 in [29]. O
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