
A Relation to Koh and Liang [2017]339

A.1 Brief Review340

As we mentioned in Section 6, Koh and Liang [2017] proposed to estimate the influence by (5), which341

is342

✓̂�j � ✓̂ ⇡ 1

N
Ĥ�1r✓`(zj ; ✓̂),

where Ĥ = 1
N

P
z2D

r2`(z; ✓̂) is the Hessian of the problem (1) for the optimal model ✓̂.343

Note that, Ĥ�1r✓`(zj ; ✓̂) is equivalent to the solution to the following optimization problem:344

argmin
�2Rp

1

2
h�, Ĥ�i � hr✓`(zj ; ✓̂),�i. (6)

Koh and Liang [2017] proposed computing Ĥ�1r✓`(zj ; ✓̂) by solving this optimization problem us-345

ing conjugate gradient descent or its improved version. In the optimization, they also proposed to use346

the mini-batch approximation of the Hessian matrix: they proposed to use ĤS = 1
|S|

P
z2S

r2`(z; ✓̂)347

on the mini-batch S ⇢ D instead of the Hessian matrix Ĥ computed on the all training instances D.348

A.2 Relation to the Proposed Method349

Here, we show the relationship between the proposed method and the method of Koh and Liang350

[2017]. Suppose that we solve the problem (6) using SGD. In the t-th step of SGD, we update � by351

�[t+1] = �[t] � �t(ĤSt�
[t] �r✓`(zj ; ✓̂)) = (I � �tĤSt)�

[t] + �tr✓`(zj ; ✓̂),

where St is the mini-batch and �t > 0 is a learning rate. Suppose that we initialized �[1] = r✓`(zj ; ✓̂)352

and � := maxt �t. Then, the SGD for the problem (6) can be expressed as353

�[2] = (I � �1ĤS1)r✓`(zj ; ✓̂) + �1r✓`(zj ; ✓̂),

�[3] = (I � �2ĤS2)�
[2] + �2r✓`(zj ; ✓̂) = (I � �2ĤS2)(I � �1ĤS1)r✓`(zj ; ✓̂) +O(�),

...

�[T] = (I � �T�1ĤST�1)(I � �T�2ĤST�2) . . . (I � �1ĤS1)r✓`(zj ; ✓̂) +O(�).

Here, let Ẑt := I � �tĤSt , and we obtain354

✓̂�j � ✓̂ ⇡ 1

N
Ĥ�1r✓`(zj ; ✓̂) ⇡ �[T] =

1

N
ẐT�1ẐT�2 . . . Ẑ1r✓`(zj ; ✓̂) +O

⇣ �

N

⌘
.

When � is small and the last term is ignorable, this result resembles to the proposed estimator �✓�j355

in Section 4. Instead of Ẑt := I � �tĤSt computed at the optimal model ✓̂, the proposed estimator356

uses Zt = I � ⌘tH [t] based on the model ✓[t] in the t-th SGD step in the training.357

B Proof of Theorems358

Before proving Theorems 5 and 6, we first prove the next lemma.359

Lemma 7. Assume that `(z; ✓) is twice differentiable with respect to the parameter ✓, and assume360

that there exist �,⇤ > 0 such that �I � r2
✓
`(z; ✓) � ⇤I for all z, ✓. If ⌘s  1/⇤, then we get361

hj(⇤)  k�✓�jk  hj(�), (7)

hj(⇤)  k✓[T]
�j

� ✓[T]k  hj(�), (8)

where hj(a) :=
⌘⇡(j)

|S⇡(j)|
Q

T�1
s=⇡(j)+1(1� ⌘sa)kg(zj ; ✓[⇡(j)])k.362

10

Proof. Since (1� ⌘s⇤)I � Zs � (1� ⌘s�)I we immediately obtain (7) from the definition (2) of363

�✓�j .364

We next show the inequality (8). There exists r 2 [0, 1] such that for ✓[s]⇤ := r✓[s]�j
+ (1� r)✓[s],365

1

|Ss|
X

i2Ss

⇣
r✓`(zi; ✓

[s]
�j

)�r✓`(zi; ✓
[s])

⌘
= H [s]

⇤ (✓[s]�j
� ✓[s]),

where H [s]
⇤ := 1

|Ss|
P

i2Ss
r2

✓
`(zi; ✓

[s]
⇤). Therefore, by setting Z⇤

s
:= (I � ⌘sH

[s]
⇤), we can show the366

inequality (8) in a similar way to the proof of (7).367

B.1 Proof of Theorem 5368

Proof. From Lemma 7,369

k(✓[T]
�j

� ✓[T])��✓�jk2 = k✓[T]
�j

� ✓[T]k2 + k�✓�jk2 � 2h✓[T]
�j

� ✓[T],�✓�ji
 hj(�)

2 + hj(�)
2 + 2hj(⇤)

2 = 2(hj(�)
2 + hj(⇤)

2).

370

B.2 Proof of Theorem 6371

Proof.

✓[s+1]
�j

� ✓[s+1] = Zs(✓
[s]
�j

� ✓[s]) + ⌘(H [s] �H [s]
⇤)(✓[s]�j

� ✓[s]),

where H [s]
⇤ is the same as that in the proof of Lemma 7. We set Ds := ⌘(H [s] �H [s]

⇤)(✓[s]�j
� ✓[s]).372

Applying this equalities recursively over s 2 {⇡(j), . . . , T � 1}, we get373

✓[T]
�j

� ✓[T] = �✓�j +
T�1X

s=⇡(j)

T�1Y

k=s+1

ZkDs.

Hence, a remaining problem is to bound the norm of the second term in the right hand side of this374

equality, which corresponds to a gap we want to evaluate. Since kZkk  1+⌘⇤, k✓[s]�j
�✓[s]k  2⌘GT375

and kH [s] �H [s]
⇤ k  Lk✓[s]�j

� ✓[s]k,376
������

T�1X

s=⇡(j)

T�1Y

k=s+1

ZkDs

������


T�1X

s=1

T�1Y

k=s+1

kZkkkDsk 
T�1X

s=1

(1 + ⌘⇤)T�s�1 ⌘Lk✓[s]�j
� ✓[s]k2

= 4
(1 + ⌘⇤)T�1 � 1

(1 + ⌘⇤)� 1
⌘3T 2G2L  4

⇣
1 +O(�⇤/

p
T)

⌘T

⇤
�2TG2L.

377

C Details and Results of Experiments378

C.1 Setups in Section 7.1379

Datasets We used three datasets: Adult [Dua and Karra Taniskidou, 2017], 20Newsgroups6, and380

MNIST [LeCun et al., 1998]. These are common benchmarks in tabular data analysis, natural381

language processing, and image recognition, respectively. We adopted these three datasets to382

demonstrate the validity of the proposed algorithm across different data domains.383

We prepossessed each dataset as follows. In Adult, we transformed categorical features to numerical384

attributes 7. In 20Newsgroups, we selected the two document categories ibm.pc.hardware and385

mac.hardware. As a preprocessing, we transformed the documents into numerical vectors using386

tf-idf, while removing frequent and scarce words. In MNIST, we selected the images from the two387

categories one and seven, so that the problem to be binary classification.388

6http://qwone.com/~jason/20Newsgroups/
7We used the implementation available at https://www.kaggle.com/kost13/us-income-logistic-regression/

notebook

11

http://qwone.com/~jason/20Newsgroups/
https://www.kaggle.com/kost13/us-income-logistic-regression/notebook
https://www.kaggle.com/kost13/us-income-logistic-regression/notebook

Table 2: Parameters used in SGD: K denotes the
number of epochs. |St| denotes the batch size.

LogReg DNN
K |St| ⌘t K |St| ⌘t

Adult 20 5 0.1p
t

10 20 0.1
20News 10 5 0.01p

t
10 20 0.1

MNIST 5 5 0.1p
t

10 20 0.1

Models To see the validity of the proposed389

method beyond convexity, we adopted two mod-390

els, which are linear logistic regression and deep391

neural networks. For linear logistic regression,392

we adopted the `2-regularized loss `(z; ✓) =393

log(exp(�yh✓, xi) + 1) + ↵

2 k✓k
2 where y 2394

{�1, 1}. In the experiments, we determined the395

regularization parameter ↵ using cross validation.396

For deep neural networks, we used a network with397

two fully connected layers each of which has eight398

units with ReLU as an activation function. We used the sigmoid function at the output layer, and399

adopted the cross entropy as the loss function. To run SGD, we used the parameters shown in Table 2.400

We note that the loss function for the linear logistic regression is convex, while that for the deep401

neural networks is non-convex.402

Target Linear Influence In the experiments, we randomly subsampled 200 instances for the403

training set D and the validation set D0. We then estimated the linear influence for the validation loss404

using Algorithm 2. Here, we set the query vector u as u = 1
|D0|

P
z02D0 r✓`(z0; ✓[T]). Estimation of405

the linear influence thus amounts to estimating the change in the validation loss406

hu, ✓[T]
�j

� ✓[T]i ⇡ 1

|D0|
X

z02D0

⇣
`(z0; ✓[T]

�j
)� `(z0; ✓[T])

⌘
.

We note that the instances with large negative linear influences are deemed to be negatively affecting407

the resulting models. Removing such instances can improve the validation loss, and thus the users408

can prioritize the inspection of such instances.409

Baseline Method We adopted the method of Koh and Liang [2017] as the baseline, which we410

abbreviated as K&L. In K&L, we estimate the influence by (5), which is411

✓̂�j � ✓̂ ⇡ 1

N
Ĥ�1r✓`(zj ; ✓̂),

where Ĥ = 1
N

P
z2D

r2`(z; ✓̂) is the Hessian of the problem (1) for the optimal model ✓̂. For a412

query vector u 2 Rp, the linear influence can be estimated as413

h✓̂�j � ✓̂, ui ⇡ 1

N
hĤ�1r✓`(zj ; ✓̂), ui =

1

N
hr✓`(zj ; ✓̂), Ĥ

�1ui.

Here, the last equality follows from the symmetricity of the Hessian matrix. Thus, for estimating the414

linear influence for all the training instances, we first compute Ĥ�1u, and then take an inner product415

with r✓`(zj ; ✓̂) for each training instance zj 2 D.416

Note that, Ĥ�1u is equivalent to the solution to the following optimization problem:417

argmin
�2Rp

1

2
h�, Ĥ�i � hu,�i. (9)

Koh and Liang [2017] proposed computing Ĥ�1u by solving this optimization problem using418

conjugate gradient descent or its improved version. In the optimization, they also proposed to use the419

mini-batch approximation of the Hessian matrix: they proposed to use ĤS = 1
|S|

P
z2S

r2`(z; ✓̂)420

on the mini-batch S ⇢ D instead of the Hessian matrix Ĥ computed on the all training instances421

D. In the experiment, we used the implementation available at https://github.com/kohpangwei/422

influence-release.423

Evaluation Metrics In the experiments, we ran the counterfactual SGD for all zj 2 D, and424

computed the true linear influence. We then used this ground truth to evaluate the goodness of the425

estimated linear influences. For evaluation, we adopted the following two metrics. The first metric426

is Kendall’s tau. Kendall’s tau is a typical metric for measuring ordinal associations between two427

observations. Kendall’s tau takes the value between plus and minus one, where the value one indicates428

that the orders of the two observations are identical.429

12

https://github.com/kohpangwei/influence-release
https://github.com/kohpangwei/influence-release
https://github.com/kohpangwei/influence-release

The second metric is Jaccard index. For data cleansing, the users are interested in instances with430

large positive or negative influences. We measured how accurately those important instances could be431

identified using the estimated influences. To this end, we selected 10 instances with largest positive432

and negative true influences, and constructed a set of 20 important instances. We compared this433

true important instances with the estimated important instances using Jaccard index. Jaccard index434

measures the similarity of the two sets. Jaccard index takes the value between zero and one, where435

the value one indicates that the sets are identical.436

C.2 Setups in Section 7.2437

Datasets We used MNIST [LeCun et al., 1998] and CIFAR10 [Krizhevsky and Hinton, 2009].438

The MNIST dataset contains 60,000 training instances, while the CIFAR10 dataset contains 50,000439

training instances. Both datasets also contain 10,000 test instanes. From the original training440

instances, we held out randomly selected 10,000 instances for the validation set, and used the441

remaining instances as the training set. Thus, in the experiment, we used 50,000 instances in MNIST442

and 40,000 instances in CIFAR10 for training, and the held out 10,000 instances for validation.443

Models We used convolutional neural networks (CNNs) in the experiment. The network structures444

can be found in Figure 4. In SGD, we set the epochs K = 20, batch size |St| = 64, and learning rate445

⌘t = 0.05. In the training, we used a simple data augmentation. For MNIST, we applied horizontal446

and vertical shifts in ±2 pixels. For CIFAR10, we applied horizontal and vertical shifts in ±4 pixels447

and horizontal flipping.448

Target Linear Influence We set the query vector u as u = 1
|D0|

P
z02D0 r✓`(z0; ✓[T]). Estimation449

of the linear influence thus amounts to estimating the change in the validation loss450

hu, ✓[T]
�j

� ✓[T]i ⇡ 1

|D0|
X

z02D0

⇣
`(z0; ✓[T]

�j
)� `(z0; ✓[T])

⌘
.

We note that the instances with large negative linear influences are deemed to be negatively affecting451

the resulting models. Removing such instances can improve the validation loss, and thus the users452

can prioritize the inspection of such instances.453

Baseline Methods For K&L [Koh and Liang, 2017], to solve the problem (9), we ran momentum-454

SGD for two epochs, where we set the learning rate to be 0.005, the size of momentum to be 0.9,455

and the batch size to be 1000. As baselines for data cleansing, in addition to K&L [Koh and Liang,456

2017], we also adopted two outlier detection methods, Autoencoder [Aggarwal, 2016] and Isolation457

Forest [Liu et al., 2008]. In outlier detection, we treated the validation set as a healthy dataset. We458

then computed outlierness of each training instance using outlier detection methods, as follows.459

• Autoencoder: We trained an autoencoder using the validation set. See Figure 5 for the460

structures of autoencoders used. We adopted the squared loss as the training objective461

function. For training, we used Adam with the learning rate set to 0.001 and the batch462

size set to 128. We used the same data augmentation as the training of CNNs. After the463

autoencoder is trained, we fed each training input x into the autoencoder and obtained an464

reconstructed input x̂. We measured the outlierness of the input x by a = kx� x̂k2.465

• Isolation Forest: We first fed each validation input x0 into the trained CNN, and obtained466

its latent representation r0 from the flatten layer in Figure 4. We trained an isolation forest467

using the latent representations of the validation set. In the experiment, we used the fit468

method of sklearn.ensemble.IsolationForest with default configurations. After the469

isolation forest is trained, we fed each training input x into the isolation forest and obtained470

its outlierness score a using the score_samples method.471

We also adopted random data removal as the baseline.472

Proposed Method For the proposed method, we introduced an approximate version in this experi-473

ment. In Algorithm 2, the proposed method retraces the entire SGD steps. In the approximate version,474

we retrace only one epoch, which requires less computation than the original algorithm. Moreover, it475

is also storage friendly because we need to store intermediate information only in the last epoch of476

SGD.477

13

Procedure We proceeded the experiment as follows. First, we trained the model with SGD using478

the training set. We then computed the influence of each training instance using the proposed method479

as well as the other baseline methods. Finally, we removed the top-m influential instances from the480

training set and retrained the model. For the model ratraining, we considered the two settings.481

• Retrain All: In this setting, we ran counterfactual SGD for all the 20 epochs with influential482

instances omitted.483

• Retrain Last: In this setting, we ran normal SGD for 19 epochs and switched to counterfactual484

SGD in the last epoch with influential instances omitted.485

If the misclassification rate of the retrained model decreases, we can conclude that the training set486

was effectively cleansed.487

14

input x 2 R28⇥28⇥1

Conv2D: size=5⇥ 5⇥ 1, # of channels = 20

ReLU

MaxPool2D: size = 2⇥ 2

Conv2D: size=5⇥ 5⇥ 1, # of channels = 20

ReLU

MaxPool2D: size = 2⇥ 2

Flatten

Fully Connected: size = 320⇥ 10

Softmax

output y 2 R10

(a) CNN for MNIST

input x 2 R32⇥32⇥3

Conv2D: size=3⇥ 3⇥ 3, # of channels = 32

BatchNorm2D

ReLU

Conv2D: size=3⇥ 3⇥ 32, # of channels = 32

ReLU

MaxPool2D: size = 2⇥ 2

Conv2D: size=3⇥ 3⇥ 32, # of channels = 64

BatchNorm2D

ReLU

Conv2D: size=3⇥ 3⇥ 64, # of channels = 64

ReLU

MaxPool2D: size = 2⇥ 2

Conv2D: size=3⇥ 3⇥ 64, # of channels = 128

BatchNorm2D

ReLU

Conv2D: size=3⇥ 3⇥ 128, # of channels = 128

ReLU

MaxPool2D: size = 2⇥ 2

Flatten

Fully Connected: size = 2048⇥ 10

Softmax

output y 2 R10

(b) CNN for CIFAR10

Figure 4: Structures of convolutional neural networks (CNNs)

15

input x 2 R28⇥28⇥1

Conv2D: size=3⇥ 3⇥ 1, # of channels = 24

ReLU

MaxPool2D: size = 2⇥ 2

Conv2D: size=3⇥ 3⇥ 24, # of channels = 12

ReLU

MaxPool2D: size = 2⇥ 2

Conv2DTranpose: size=5⇥ 5⇥ 12,
of channels = 12, stride=2

ReLU

Conv2DTranpose: size=4⇥ 4⇥ 12,
of channels = 24

ReLU

Conv2DTranpose: size=3⇥ 3⇥ 24,
of channels = 1

Tanh

output x̂ 2 R28⇥28⇥1

(a) Autoencoder for MNIST

input x 2 R32⇥32⇥3

Conv2D: size=3⇥ 3⇥ 3, # of channels = 64

ReLU

MaxPool2D: size = 2⇥ 2

Conv2D: size=3⇥ 3⇥ 64, # of channels = 32

ReLU

MaxPool2D: size = 2⇥ 2

Conv2DTranpose: size=5⇥ 5⇥ 32,
of channels = 32, stride=2

ReLU

Conv2DTranpose: size=4⇥ 4⇥ 32,
of channels = 64

ReLU

Conv2DTranpose: size=3⇥ 3⇥ 64,
of channels = 3

Tanh

output x̂ 2 R32⇥32⇥3

(b) Autoencoder for CIFAR10

Figure 5: Structures of Autoencoders

16

C.3 Full Results in Section 7.2488

The full results for MNIST are shown in Figures 6 and 7. The full results for CIFAR10 are shown in489

Figures 8 and 9. In the figures, it is evident that the misclassification rates have decreased after data490

cleansing with the proposed method and its approximate version. We compared the misclassification491

rates before and after the data cleansing using t-test with the significance level set to 0.05. We observed492

that non of the baseline methods have attained statistically significant improvements. By contrast,493

the proposed method and its approximate version attained statistically significant improvements:494

in MNIST, their improvements were statistically significant for the number of removed instances495

between 10 and 100, and in CIFAR10, their improvements were statistically significant for the number496

of removed instances between 100 and 1000. Figure 10 also confirms the effectiveness of the data497

cleansing with the proposed method. Out of 30 experiments, the misclassification rates decreased498

with the proposed method for 25 cases in MNIST, and for 26 cases in CIFAR10. These results499

confirm that the proposed method can effectively suggest influential instances for data cleansing.500

We also note that the proposed method and its approximation version performed comparably well.501

This observation suggests that, in practice, we only need to trace back only one epoch for inferring502

influential instances, which requires less computation and storing intermediate information only in503

the last epoch of SGD.504

Figures 11 and 12 show the examples of found influential instances. An interesting observation is that505

Autoencoder tended to find images with noisy or vivid backgrounds. Visually, it seems reasonable to506

select them as outliers. However, as we have seen in Figure 2, removing these outliers didoes not help507

improving the models. On the other hand, the proposed method found images with confusing shapes508

or backgrounds. Although they are not strongly visually appealing as outliers, Figure 2 confirms509

that these instances have high impacts to the models. These observations indicate that the proposed510

method could find influential instances, which can be missed even by users with domain knowledge.511

17

100 101 102 103 104

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

No Removal Random Autoencoder Isolation Forest Proposed Proposed (Approx.) K&L

100 101 102 103 104

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(a) MNIST: Retrain Last (b) MNIST: Retrain All

Figure 6: MNIST: Average misclassification rates on the test set after data cleansing over 30 experiments.

No Removal Retrain All Retrain Last

100 101 102 103 104
0.006

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(a) Random

100 101 102 103 104
0.006

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(b) K&L

100 101 102 103 104
0.006

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(c) Autoencoder

100 101 102 103 104
0.006

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(d) Isolation Forest

100 101 102 103 104
0.006

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(e) Proposed

100 101 102 103 104
0.006

0.008

0.01

0.012

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(f) Proposed (Approx.)

Figure 7: Exhaustive results on MNIST: [Thick lines] Average misclassification rates on the test set after data
cleansing over 30 experiments. [Shaded Regions] Average ± standard deviation.

18

100 101 102 103 104

0.16

0.17

0.18

0.19

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

No Removal Random Autoencoder Isolation Forest Proposed Proposed (Approx.) K&L

100 101 102 103 104

0.16

0.17

0.18

0.19

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(a) CIFAR10: Retrain Last (b) CIFAR10: Retrain All

Figure 8: CIFAR10: Average misclassification rates on the test set after data cleansing over 30 experiments.

No Removal Retrain All Retrain Last

100 101 102 103 104

0.16

0.18

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(a) Random

100 101 102 103 104

0.16

0.18

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(b) K&L

100 101 102 103 104

0.16

0.18

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(c) Autoencoder

100 101 102 103 104

0.16

0.18

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(d) Isolation Forest

100 101 102 103 104

0.16

0.18

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(e) Proposed

100 101 102 103 104

0.16

0.18

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(f) Proposed (Approx.)

Figure 9: Exhaustive results on CIFAR10: [Thick lines] Average misclassification rates on the test set after data
cleansing over 30 experiments. [Shaded Regions] Average ± standard deviation.

19

0.005 0.01 0.015
0.005

0.01

0.015

Misclassification rate
No Removal

M
is

cl
as

si
fic

at
io

n
ra

te
Pr

op
os

ed

0.14 0.16 0.18 0.2
0.14

0.16

0.18

0.2

Misclassification rate
No Removal

M
is

cl
as

si
fic

at
io

n
ra

te
Pr

op
os

ed

(a) MNIST (b) CIFAR10

Figure 10: Comparison of the misclassification rates before and after the data cleansing with the proposed
method. We set the number of removed instances to be 100 for MNIST and 10000 for CIFAR10.

20

(a) Autoencoder (b) Isolation Forest

(c) Proposed (d) Proposed (Approx.)

(e) K&L [Koh and Liang, 2017]

Figure 11: Examples of found top-20 influential instances in MNIST

21

(a) Autoencoder (b) Isolation Forest

(c) Proposed (d) Proposed (Approx.)

(e) K&L [Koh and Liang, 2017]

Figure 12: Examples of found top-20 influential instances in CIFAR10

22

